• University of Derby Online Learning Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
Middlesex University Featured Masters Courses
OCAD University Featured Masters Courses
University of Reading Featured Masters Courses
Cass Business School Featured Masters Courses
University of Surrey Featured Masters Courses
"biomedical" AND "instrum…×
0 miles

Masters Degrees (Biomedical Instrumentation)

We have 53 Masters Degrees (Biomedical Instrumentation)

  • "biomedical" AND "instrumentation" ×
  • clear all
Showing 1 to 15 of 53
Order by 
What's the Master of Biomedical Engineering about? . The Master of Science in Biomedical Engineering provides students with a state-of-the-art overview of all areas in biomedical engineering. Read more

What's the Master of Biomedical Engineering about? 

The Master of Science in Biomedical Engineering provides students with a state-of-the-art overview of all areas in biomedical engineering:

  • Biomechanics
  • Biomaterials
  • Medical sensors and signal processing
  • Medical imaging
  • Tissue engineering

The teaching curriculum builds upon the top-class research conducted by the staff, most of whom are members of the Leuven Medical Technology Centre. This network facilitates industrial fellowships for our students and enables students to complete design projects and Master’s theses in collaboration with industry leaders and internationally recognized research labs.

Biomedical engineers are educated to integrate engineering and basic medical knowledge. This competence is obtained through coursework, practical exercises, interactive sessions, a design project and a Master’s thesis project.

Structure

Three courses provide students with basic medical knowledge on anatomy and functions of the human body. The core of the programme consists of biomedical engineering courses that cover the entire range of contemporary biomedical engineering: biomechanics, biomaterials, medical imaging, biosensors, biosignal processing, medical device design and regulatory affairs.

The elective courses have been grouped in four clusters: biomechanics and tissue engineering, medical devices, information acquisition systems, and Information processing software. These clusters allow the students to deepen their knowledge in one particular area of biomedical engineering by selecting courses from one cluster, while at the same time allowing other students to obtain a broad overview on the field of biomedical engineering by selecting courses from multiple clusters.

Students can opt for an internship which can take place in a Belgian company or in a medical technology centre abroad. 

Through the general interest courses, the student has the opportunity to broaden his/her views beyond biomedical engineering. These include courses on management, on communication (e.g. engineering vocabulary in foreign languages), and on the socio-economic and ethical aspects of medical technology.

A design project and a Master’s thesis familiarize the student with the daily practice of a biomedical engineer.

International

The Faculty of Engineering Science at KU Leuven is involved in several Erasmus exchange programmes. For the Master of Science in Biomedical Engineering, this means that the student can complete one or two semesters abroad, at a number of selected universities.

An industrial fellowship is possible for three or six credits either between the Bachelor’s and the Master’s programme, or between the two phases of the Master’s programme. Students are also encouraged to consider the fellowship and short courses offered by BEST (Board of European Students of Technology) or through the ATHENS programme.

You can find more information on this topic on the website of the Faculty.

Strengths

The programme responds to a societal need, which translates into an industrial opportunity.

Evaluation of the programme demonstrates that the objectives and goals are being achieved. The mix of mandatory and elective courses allows the student to become a generalist in Biomedical Engineering, but also to become a specialist in one topic; industry representatives report that graduates master a high level of skills, are flexible and integrate well in the companies.

Company visits expose all BME students to industry. Further industrial experience is available to all students.

Our international staff (mostly PhD students) actively supports the courses taught in English, contributing to the international exposure of the programme.

The Master’s programme is situated in a context of strong research groups in the field of biomedical engineering. All professors incorporate research topics in their courses.

Most alumni have found a job within three months after graduation.

This is an initial Master's programme and can be followed on a full-time or part-time basis.

Career perspectives

Biomedical engineering is a rapidly growing sector, evidenced by an increase in the number of jobs and businesses. The Master of Science in Biomedical Engineering was created to respond to increased needs for healthcare in our society. These needs stem from an ageing population and the systemic challenge to provide more and better care with less manpower and in a cost-effective way. Industry, government, hospitals and social insurance companies require engineers with specialised training in the multidisciplinary domain of biomedical engineering.

As a biomedical engineer, you'll play a role in the design and production of state-of-the-art biomedical devices and/or medical information technology processes and procedures. You will be able to understand medical needs and translate them into engineering requirements. In addition, you will be able to design medical devices and procedures that can effectively solve problems through their integration in clinical practice. For that purpose, you'll complete the programme with knowledge of anatomy, physiology and human biotechnology and mastery of biomedical technology in areas such as biomechanics, biomaterials, tissue engineering, bio-instrumentation and medical information systems. The programme will help strengthen your creativity, prepare you for life-long learning, and train you how to formalise your knowledge for efficient re-use.

Careers await you in the medical device industry R&D engineering, or as a production or certification specialist. Perhaps you'll end up with a hospital career (technical department), or one in government. The broad technological background that is essential in biomedical engineering also makes you attractive to conventional industrial sectors. Or you can continue your education by pursuing a PhD in biomedical engineering; each year, several places are available thanks to the rapid innovation taking place in biomedical engineering and the increasing portfolio of approved research projects in universities worldwide.



Read less
The programme is a full-time taught postgraduate degree course leading to the degree of MSc in Biomedical Engineering. Read more
The programme is a full-time taught postgraduate degree course leading to the degree of MSc in Biomedical Engineering. It has an international dimension, providing an important opportunity for postgraduate engineers to study the principles and state-of-the-art technologies in biomedical engineering with a particular emphasis on applications in advanced instrumentation for medicine and surgery.

Why study Biomedical Engineering at Dundee?

Biomedical engineers apply engineering principles and design methods to improve our understanding of living systems and to create new techniques and instruments in medicine and surgery.

The taught modules in this course expose students to the leading edge of modern medical and surgical technologies. The course also provides concepts and understanding of the role of entrepreneurship, business development and intellectual property exploitation in the biomedical industry, with case examples.

The research project allows students to work in a research area of their own particular interest, learning skills in presentation, critical thinking and problem-solving. Project topics are offered to students during the first semester of the course.

UK qualifications are recognised and respected throughout the world. The University of Dundee is one of the top UK universities, with a powerful research reputation, particularly in the medical and biomedical sciences. It has previously been named 'Scottish University of the Year' and short-listed for the Sunday Times 'UK University of the Year'.

Links with Universities in China:

This course can be taken in association with partner universities in China with part of the course taken at the home institution before coming to Dundee to complete your studies. For students from elsewhere it is possible to take the entire course at Dundee.

What's so good about Biomedical Engineering at Dundee?

The University of Dundee has had an active research programme in biomedical engineering for over 20 years.

The Biomedical Engineering group has a high international research standing with expertise in medical instrumentation, signal processing, biomaterials, tissue engineering, advanced design in minimally invasive surgery and rehabilitation engineering.

Research partnerships:

We have extensive links and research partnerships with clinicians at Ninewells Hospital (largest teaching hospital in Europe) and with world renowned scientists from the University's College of Life Sciences. The new Institute of Medical Science and Technology (IMSaT) at the University has been established as a multidisciplinary research 'hothouse' which seeks to commercialise and exploit advanced medical technologies leading to business opportunities.

This course has two start dates - September or January, and lasts for 12 months.

How you will be taught

The structure of the MSc course is divided into two parts. The taught modules expose students to the leading edge of modern biomedical and surgical technologies. The course gives concepts and understanding of the role of entrepreneurship, business development and intellectual property exploitation in the biomedical industry, with case examples.

The research project allows students to work in a research area of their own particular interest, learning skills in presentation, critical thinking and problem-solving. Project topics are offered to students towards at the beginning of second semester of the course.

What you will study

The course is divided into two parts:

Part I (60 Credits):

Bioinstrumentation (10 Credits)
Biomechanical Systems (20 Credits)
Biomaterials (20 credits)
Introduction to Medical Sciences (10 Credits)
Part II (120 Credits) has one taught module and a research project module. It starts at the beginning of the University of Dundee's Semester 2, which is in mid-January:

The taught module, Advanced Medical and Surgical Instrumentation (30 Credits), exposes students to the leading edge of modern medical and surgical technologies. It will also give concepts and understanding of the role of entrepreneurship, business development and intellectual property exploitation in the biomedical industry, with case examples.
The research project (90 Credits) will allow students to work in a research area of their own particular interest and to learn skills in presentation, critical thinking and problem-solving. Project topics will be offered to students before Part II of the course. We shall do our best to provide all students with a project of their choice.
The time spent in Dundee will also give students a valuable educational and cultural experience.

How you will be assessed

The course is assessed by coursework and examination, plus dissertation.

Careers

An MSc degree in Biomedical Engineering will prepare you for a challenging and rewarding career in one of many sectors: the rapidly growing medical technology industry, academic institutions, hospitals and government departments.

A wide range of employment possibilities exist including engineer, professor, research scientist, teacher, manager, salesperson or CEO.

The programme also provides the ideal academic grounding to undertake a PhD degree leading to a career in academic research.

Read less
Biomedical Engineering is a field of engineering that relies on highly inter- and multi-disciplinary approaches to research and development, in order to address biological and medical problems. Read more
Biomedical Engineering is a field of engineering that relies on highly inter- and multi-disciplinary approaches to research and development, in order to address biological and medical problems. Specialists in this area are trained to face scientific and technological challenges that significantly differ from those related to more traditional branches of engineering. Nevertheless, at the same time Biomedical Engineering makes use of more traditional engineering methodologies and techniques, which are adapted and further developed to meet specifications of biomedical applications.

This MSc programme covers the following topics:
• Fundamentals of human physiology;
• Ethics and regulatory affairs in the biomedical field;
• Medical imaging modalities and digital signal processing, their uses and challenges;
• Analysis and design of instrumentation electronics present in a wide range of medical devices;
• Instrumentation and technologies used for clinical measurements;
• Design, analysis and evaluation of critical systems in the context of clinical monitoring, including safety;
• Origin of biological electricity, measurement of bioelectric signals, principles of bioelectric stimulation, and their applications. Applications are welcome from students with a background in Engineering or Physics.

The programme is a joint effort of the School of Engineering and Materials Science and the School of Electronic Engineering and Computer Science. It has strong roots within the well-recognised expertise of academics from the two Schools that deliver the lectures, who have international standing in cutting-edge research on Imaging and Instrumentation. This fact ensures that the programme is delivered with the highest standards in the field. The students also benefit from access to state-of-the-art facilities and instrumentation while undertaking their research projects.The programme is designed with a careful balance of diversified learning components, such that, on completion of their studies, the postgraduates acquire extensive knowledge and skills that make them able to undertake careers in a wide range of professional ambits within the biomedical field, including health care services, industry and scientific research.

Read less
The two MSc programmes in Biomedical Engineering draw on the wide experience of academic staff at Brunel's College of Engineering, Design and Physical Sciences, that ranges from the development of equipment and experiments for use in space, to research carried out in collaboration with hospitals, biomedical companies and research institutions. Read more

About the course

The two MSc programmes in Biomedical Engineering draw on the wide experience of academic staff at Brunel's College of Engineering, Design and Physical Sciences, that ranges from the development of equipment and experiments for use in space, to research carried out in collaboration with hospitals, biomedical companies and research institutions.

The programmes consist of four compulsory taught modules and two optional streams. You can apply to one of the two named degree title awards:

Biomedical, Genetics and Tissue Engineering or
Biomedical, Biomechanics and Bioelectronics Engineering

As well as giving a solid scientific understanding, the course also addresses commercial, ehtical, legal and regulatory requirements, aided by extensive research.

Students who successfully complete the course will have acquired skills that are essential to the modern biomedical and healthcare industry, together with the expertise required to enter into management, product innovation, development and research

Aims

Understanding how the human body works isn’t just required learning for sports coaches, specialists in biomedical engineering can help in the design, development and operation of complex medical devices. They are used in the prevention, diagnosis and treatment, to the characterisation of tissue.

This programme has a strong research and development emphasis. It aims to provide an overall knowledge base, skills and competencies, which are required in biomedical engineering, research activities and in related fields. Students will develop expertise in advanced product development and research.

Course Content

The MSc programmes in Biomedical Engineering are full-time courses, lasting one academic year of 12 consecutive months, from September to September.

The programmes consist of four core (compulsory) taught modules and two optional streams. The Biomedical, Genetics and Tissue Engineering stream has three optional modules. The second stream, Biomedical, Biomechanics and Bioelectrionics Engineering, consists of five optional modules. Students choosing this latter option will be requires to choose 60 credit worth of modules. See below.

The taught modules are delivered to students over two terms; Term 1 (September – December) and Term 2 (January – April) of each academic year. The taught modules are examined at the end of each term, and the students begin working on their dissertations on a part-time basis in term 2, then full-time during the months of May to September.

Compulsory Modules:

Compulsory Modules
Biomechanics and Biomaterials
Biomedical Engineering Principles
Design and Manufacture
Innovation and Management and Research Methods
Dissertation

Optional Modules:

Optional Modules
Applied Sensors Instrumentation and Control
Artificial Organs
Biofluid Mechanics
Biomedical Imaging
Design of Mechatronic Systems
Group Project

Special Features

Industry relevance
Scientific understanding is just one part of medical engineering – and the course addresses commercial, ethical, legal and regulatory requirements, with input from Brunel’s extensive industrial contacts.

Excellent facilities
We have extensive and well-equipped laboratories – with notable strength in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion
engines, suspensions, built environment, and other systems of interest to the research groups.

Foundation course at Brunel
The Pre-Masters is a full-time 14-week course for international students who have marginally fallen below the postgraduate direct entry level and would like to progress onto a Master's degree course in the College of Engineering, Design and Physical Sciences. It combines academic study, intensive English language preparation, study skills and an orientation programme.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This programme is seeking accreditation by the Institution of Mechanical Engineers (IMechE) post the recent change in available degree routes. The IMechE formerly accredited the MSc Biomedical Engineering and we anticipate no problems in extending this accreditation to the new routes.

Teaching

The taught modules are delivered to students over two terms; Term 1 (September – December) and Term 2 (January – April) of each academic year. The taught modules are examined at the end of each term, and the students begin working on their dissertations on a part-time basis in term 2, then full-time during the months of May to September.

Read less
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. Read more
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. The MSE program is designed for highly qualified graduate students holding a Bachelor degree in engineering or science.

In the first year 12 mandatory courses provide the fundamental theoretical framework for a future career in Microsystems. These courses are designed to provide students with a broad knowledge base in the most important aspects of the field:

• MSE technologies and processes
• Microelectronics
• Micro-mechanics
• MSE design laboratory I
• Optical Microsystems
• Sensors
• Probability and statistics
• Assembly and packaging technology
• Dynamics of MEMS
• Micro-actuators
• Biomedical Microsystems
• Micro-fluidics
• MSE design laboratory II
• Signal processing

As part of the mandatory courses, the Microsystems design laboratory is a two-semester course in which small teams of students undertake a comprehensive, hands-on design project in Microsystems engineering. Requiring students to address all aspects of the generation of a microsystem, from conceptualization, through project planning to fabrication and testing, this course provides an essential glimpse into the workings of engineering projects.

In the second year, MSE students can specialise in two of the following seven concentration areas (elective courses), allowing each student to realize individual interests and to obtain an in-depth look at two sub-disciplines of this very broad, interdisciplinary field:

• Circuits and systems
• Design and simulation
• Life sciences: Biomedical engineering
• Life sciences: Lab-on-a-chip
• Materials
• Process engineering
• Sensors and actuators

Below are some examples of subjects offered in the concentration areas. These subjects do not only include theoretical lectures, but also hands-on courses such as labs, projects and seminars.

Circuits and Systems
• Analog CMOS Circuit Design
• Mixed-Signal CMOS Circuit Design
• VLSI – System Design
• RF- und Microwave Devices and Circuits
• Micro-acoustics
• Radio sensor systems
• Optoelectronic devices
• Reliability Engineering
• Lasers
• Micro-optics
• Advanced topics in Macro-, Micro- and Nano-optics


Design and Simulation
• Topology optimization
• Compact Modelling of large Scale Systems
• Lattice Gas Methods
• Particle Simulation Methods
• VLSI – System Design
• Hardware Development using the finite element method
• Computer-Aided Design

Life Sciences: Biomedical Engineering
• Signal processing and analysis of brain signals
• Neurophysiology I: Measurement and Analysis of Neuronal Activity
• Neurophysiology II: Electrophysiology in Living Brain
• DNA Analytics
• Basics of Electrostimulation
• Implant Manufacturing Techologies
• Biomedical Instrumentation I
• Biomedical Instrumentation II

Life Sciences: Lab-on-a-chip
• DNA Analytics
• Biochip Technologies
• Bio fuel cell
• Micro-fluidics 2: Platforms for Lab-on-a-Chip Applications

Materials
• Microstructured polymer components
• Test structures and methods for integrated circuits and microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• Microsystems Analytics
• From Microsystems to the nano world
• Techniques for surface modification
• Nanomaterials
• Nanotechnology
• Semiconductor Technology and Devices

MEMS Processing
• Advanced silicon technologies
• Piezoelectric and dielectric transducers
• Nanotechnology

Sensors and Actuators
• Nonlinear optic materials
• CMOS Microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• BioMEMS
• Bionic Sensors
• Micro-actuators
• Energy harvesting
• Electronic signal processing for sensors and actuators


Essential for the successful completion of the Master’s degree is submission of a Master’s thesis, which is based on a project performed during the third and fourth semesters of the program. Each student works as a member of one of the 18 research groups of the department, with full access to laboratory and cleanroom infrastructure.

Read less
Biomedical Engineering is a field of engineering that relies on highly inter- and multi-disciplinary approaches to research and development, in order to address biological and medical problems. Read more
Biomedical Engineering is a field of engineering that relies on highly inter- and multi-disciplinary approaches to research and development, in order to address biological and medical problems. Specialists in this area are trained to face scientific and technological challenges that significantly differ from those related to more traditional branches of engineering. Nevertheless, at the same time Biomedical Engineering makes use of more traditional engineering methodologies and techniques, which are adapted and further developed to meet specifications of biomedical applications.

This MSc programmes in Biomedical Engineering is a 1 calendar year conversion programme that is part of a suite of programmes offered in Biomedical Engineering at Queen Mary University of London. This MSc conversion programme is aimed at students who already have an in depth knowledge of an area of Science (e.g. Maths, Physics, Biology or Chemistry), and who wish to convert to a career in Biomedical Engineering

This MSc programme aims to prepare specialists with advanced knowledge and transferable skills in the field of Biomedical Engineering, covering the following topics:

Fundamentals of human physiology;
Ethics and regulatory affairs in the biomedical field;
Advanced aspects of tissue engineering, regenerative medicine and biomaterials;
Advanced techniques to synthesize and/or characterise materials for biomedical engineering;
Mechanics of tissues, cells and sub-cellular components;
Biocompatibility of implantable materials and devices;
Materials and techniques for nanotechnology and nanomedicine.
The programme has strong roots within the well-recognised expertise of the academics that deliver the lectures, who have international standing in cutting-edge research on Biomedical Engineering and Materials. This fact ensures that the programme is delivered with the highest standards in the field. The students also benefit from access to state-of-the-art facilities and instrumentation in the areas of Biomedical Engineering and Materials, while undertaking research projects in brand-new large laboratories that are the result of a recent multi-million investment from QMUL.

The programme is designed with a careful balance of diversified learning components, such that, on completion of their studies, the postgraduates acquire extensive knowledge and skills that make them able to undertake careers in a wide range of professional ambits within the biomedical field, including health care services, industry and scientific research.

* All new courses are required to undergo a two-stage internal review and approval process before being advertised to students. Courses that are marked "subject to approval" have successfully completed the first stage of this process. Applications are welcome but we will not make formal offers for this course until it has passed this second (and final) stage.

Read less
In the first semester of the programme, graduates from a range of backgrounds are brought up-to-speed on core knowledge in engineering, biology and research practice. Read more

In the first semester of the programme, graduates from a range of backgrounds are brought up-to-speed on core knowledge in engineering, biology and research practice.

This is followed by specialist modules in the second semester on human movement analysis, prostheses, implants, physiological measurements and rehabilitation, as well as numerous computer methods applied across the discipline.

The course makes use of different approaches to teaching, including traditional lectures and tutorials, off-site visits to museums and hospitals, and lab work (particularly in the Human Movement and Instrumentation modules).

The core lecturing team is supplemented by leading figures from hospitals and industry.

Programme structure

This programme is studied full-time over one academic year and part-time over two academic years. It consists of eight taught modules and a research project.

All modules are taught on the University main campus, with the exception of visits to the health care industry (e.g. commercial companies and NHS hospitals).

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

The course aims:

  • To educate engineering, physical science, life science, medical and paramedical graduates in the broad base of knowledge required for a Biomedical Engineering career in industry, healthcare or research in the United Kingdom, Europe and the rest of the world
  • To underpin the knowledge base with a wide range of practical sessions including laboratory/experimental work and applied visits to expert health care facilities and biomedical engineering industry
  • To develop skills in critical review and evaluation of the current approaches in biomedical engineering
  • To build on these through an MSc research project in which further experimental, analytical, computational, and/or design skills will be acquired

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • Demonstrate breadth and depth of awareness and understanding of issues at the forefront of Biomedical Engineering
  • Demonstrate broad knowledge in Human Biology, Instrumentation, Biomechanics, and Professional and Research skills
  • Demonstrate specialist knowledge in Implants, Motion analysis and rehabilitation, and Medical signals
  • Understand how to apply engineering principles to conceptually challenging (bio)medical problems
  • Appreciate the limitations in the current understanding of clinical problems and inherent in adopted solutions
  • Understand routes/requirements for personal development in biomedical engineering including state registration
  • Understand key elements of the concept of ethics and patient-professional relationships, recognise, analyse and respond to the complex ethical issues

Intellectual / cognitive skills

  • Evaluate a wide range of applied engineering and clinical measurement and assessment tools
  • Design and implement a personal research project; this includes an ability to accurately assess/report on own/others work with justification and relate them to existing knowledge structures and methodologies, showing insight and understanding of alternative points of view
  • Carry out such research in a flexible, effective and productive manner, optimising use of available support, supervisory and equipment resources, demonstrating understanding of the complex underlying issues
  • Apply appropriate theory and quantitative methods to analyse problems

Professional practical skills

  • Make effective and accurate use of referencing across a range of different types of sources in line with standard conventions
  • Use/ apply basic and applied instrumentation hardware and software
  • Correctly use anthropometric measurement equipment and interpret results in the clinical context
  • Use/apply fundamental statistical analysis tools
  • Use advanced movement analysis hardware and software and interpret results in the clinical context
  • Use advanced finite element packages and other engineering software for computer simulation
  • Program in a high-level programming language and use built-in functions to tackle a range of problems
  • Use further specialist skills (laboratory-experimental, analytical, and computational) developed through the personal research project

Key / transferable skills

  • Identify, select, plan for, use and evaluate ICT applications and strategies to enhance the achievement of aims and desired outcomes
  • Undertake independent review, and research and development projects
  • Communicate effectively between engineering, scientific and clinical disciplines
  • Prepare relevant, clear project reports and presentations, selecting and adapting the appropriate format and style to convey information, attitudes and ideas to an appropriate standard and in such a way as to enhance understanding and engagement by academic/ professional audiences

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
IN BRIEF. Research-led teaching that develops high-priority technical and employability skills through a series of lectures, tutorials and journal clubs. Read more

IN BRIEF:

  • Research-led teaching that develops high-priority technical and employability skills through a series of lectures, tutorials and journal clubs
  • Complete projects and dissertations within active research groups
  • Opportunities for development through a seminar series and guest lectures presented by clinicians and international speakers
  • Part-time study option
  • International students can apply

COURSE SUMMARY

This course aims to provide a balance between theoretical, practical and biomedical skills, and develop your levels of critical enquiry. You will be encouraged to pursue creative approaches to contemporary research in biomedical science and communication through creative thinking, research methods,  computer  systems, case studies and practicals. You will evaluate how these various approaches can assist you in formulating your own experiments and research project, increasing your skill set and future employability.

This course has both full-time and part-time routes, comprising of three, 14-week semesters or five 14-week semesters, which you can take within one or three years respectively.

TEACHING

Teaching sessions include lectures, laboratory practicals, tutorials, guest lectures and guided reading.  Lectures provide a thorough theoretical basis for the course subjects and are delivered by internationally recognised, research active staff. A variety of other teaching approaches including tutorials, case studies, and workshops reinforce theoretical knowledge and facilitate the development of individual and group based research and transferable skills. 

Practical sessions demonstrate techniques and methods used in biomedicine, and provide an opportunity for you to learn complex experimental approaches and operate laboratory equipment. Guided reading will recommend key articles and other materials to help you learn. Guest expert seminars from clinicians and academics will provide insight into modern biomedical research. 

The research project will enable you to start your own research and be part of active, internationally recognised research teams, where you will practice the application of relevant biomedical techniques and skills valuable for your future employment in biomedical sector.

ASSESSMENT

Assessment is by a combination of written examinations, oral presentations, coursework, laboratory reports and submission of the dissertation.

FACILITIES

We have newly refurbished and well-equipped teaching and research laboratories for practical work in molecular biology and biochemistry. State-of-the-art instrumentation includes cell culture facilities, FACS, MALDI-TOF mass spectrometry, FTIR and FTNMR spectroscopy, fluorescence spectroscopy and microscopy and scanning electron microscopy.

CAREER PROSPECTS

At the University of Salford we aim to produce graduates who meet the needs of their future employers: highly skilled practitioners and excellent communicators who are seeking to push the boundaries in the rapidly growing biomedicine sector.

Many of our biomedical science graduates are employed in roles such as research assistants and research laboratory technicians, across various sectors including clinical and research laboratories and pharmaceutical and biotechnology organisations. Some have gone on to pursue the field of education, working as lecturers and teachers in universities and schools.

A number of our graduates choose to continue their education by pursing PhD studies, with areas of research including microbiology, parasitology, medicinal chemistry, cancer and cell biology- to name a few! Furthermore, graduates of this course have been accepted into medical schools as students on completion of this degree.

LINKS WITH INDUSTRY

Guest speakers provide a valuable contribution to the course, and bring a real world perspective to the academic delivery of the modules. The School of Environment and Life Sciences has a regular Postgraduate Research Seminar Series in which experts from outside the University share their knowledge and latest research findings. This Series not only augments scientific knowledge and progresses students’ understanding of effective science communication, it also allows for networking and the formation of valuable academic and industrial contacts.

FURTHER STUDY

There are over 50 fully research-active academic staff and a number of early career researchers engaged in a range of innovative research fields and in advancing the boundaries of theoretical investigation. Research in the School focuses on understanding disease processes and applying this information  to  understand  pathology and develop new diagnostics and treatments. Research areas include microbiology, parasitology, medicinal chemistry, rational drug design, cancer, molecular endocrinology, pharmacology, physiology, immunology, proteomics, molecular diagnostics and cell biology. The School offers  several  fully  funded Graduate Teaching Studentships for studying in these areas.  

For more information about our Biomedical Research Centre visit http://www.salford.ac.uk/research/brc



Read less
The MSc in Electronics with Medical Instrumentation aims to produce postgraduates with an ability to design and implement medical instrumentation based systems used for monitoring, detecting and analysing biomedical data. Read more
The MSc in Electronics with Medical Instrumentation aims to produce postgraduates with an ability to design and implement medical instrumentation based systems used for monitoring, detecting and analysing biomedical data. The course will provide ample opportunity to develop practical skill sets. The student will also develop an in-depth understanding of the scientific principles and use of the underlying components such as medical transducers, biosensors and state-of-the-art tools and algorithms used to implement and test diagnostic devices, therapeutic devices, medical imaging equipment and medical instrumentation devices.

The course broadens the discussion of medical equipment and its design by investigating a range of issues including medical equipment regulation, user requirements, impacts of risk, regulatory practice, legislation, quality insurance mechanisms, certification, ethics and ‘health and safety’ assessment. The course will enable a student with an interest in medical electronics to re-focus existing knowledge gained in software engineering, embedded systems engineering and/or electronic systems engineering and will deliver a set specialist practical skills and a deeper understanding of the underlying principles of medical physics. A graduate from this course will be able to immediately participate in this multi-disciplined engineering sector of biomedical and medical instrumentation systems design.

Course structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.

Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Electronics Suite of Courses

The MSc in Electronics has four distinct pathways:
-Robotic and Control Systems
-Embedded Systems
-System-on-Chip Technologies
-Medical Instrumentation

The subject areas covered within the four pathways of the electronic suite of MSc courses offer students an excellent launch pad which will enable the successful graduate to enter into these ever expanding, fast growing and dominant areas. With ever increasing demands from consumers such as portability, increased battery life and greater functionality combined with reductions in cost and shrinking scales of technologies, modern electronic systems are finding ever more application areas.

A vastly expanding application base for electronic systems has led to an explosion in the use of embedded system technologies. Part of this expansion has been led by the introduction of new medical devices and robotic devices entering the main stream consumer market. Industry has also fed the increase in demand particularly within the medical electronics area with the need of more sophisticated user interfaces, demands to reduce equipment costs, demands for greater accessibility of equipment and a demand for ever greater portability of equipment.

Read less
Biomedical Engineering is a field of engineering that relies on highly inter- and multi-disciplinary approaches to research and development, in order to address biological and medical problems. Read more
Biomedical Engineering is a field of engineering that relies on highly inter- and multi-disciplinary approaches to research and development, in order to address biological and medical problems. Specialists in this area are trained to face scientific and technological challenges that significantly differ from those related to more traditional branches of engineering. Nevertheless, at the same time Biomedical Engineering makes use of more traditional engineering methodologies and techniques, which are adapted and further developed to meet specifications of biomedical applications.

This MSc programme covers the following topics:

• Fundamentals of human physiology;
• Ethics and regulatory affairs in the biomedical field;
• Advanced aspects of tissue engineering, regenerative medicine and biomaterials;
• Advanced techniques to synthesize and/or characterise materials for biomedical engineering;
• Mechanics of tissues, cells and sub-cellular components;
• Biocompatibility of implantable materials and devices;
• Materials and techniques for nanotechnology and nanomedicine.

Applications are welcome from students with a background in physical sciences (Chemistry, Physics, Mathematics and Materials Science) or Engineering.The programme has strong roots within the well-recognised expertise of the academics that deliver the lectures, who have international standing in cutting-edge research on Biomaterials and Tissue Engineering.

This fact ensures that the programme is delivered with the highest standards in the field. The students also benefit from access to state-of-the-art facilities and instrumentation in the areas of Biomaterials and Tissue Engineering, while undertaking research projects in brand-new large laboratories that are the result of a recent multi-million investment from the College.

The programme is designed with a careful balance of diversified learning components, such that, on completion of their studies, the postgraduates acquire extensive knowledge and skills that make them able to undertake careers in a wide range of professional ambits within the biomedical field, including health care services, industry and scientific research

Read less
The objective of this course is to introduce students to an inter-disciplinary approach to research, which utilises technologies and skills from a wide spectrum of scientific, engineering and clinical disciplines to address fundamental questions originating in biology and medicine. Read more

Course Objective

The objective of this course is to introduce students to an inter-disciplinary approach to research, which utilises technologies and skills from a wide spectrum of scientific, engineering and clinical disciplines to address fundamental questions originating in biology and medicine. During the course students will carry out a number of practicals. They will be introduced to selected advanced experimental techniques used in biomedical science and industry. The techniques include:
DNA-microarray and RT-PCR, Immunostaining and Confocal Microscopy, Scanning Electron Microscopy, Atomic Force Microscopy and Nano Hardness Tester, Mass Spectrometry, various chromatography methods and Infra-red spectroscopy.

Benefits of the Course

The programme offers the Biological Sciences graduate a means of achieving the mathematical, computational, and instrumentation skills necessary to work in biomedical science. Likewise the Physical Science/Engineering graduate will gain experience in aspects of cell biology, tissue engineering, and animal studies. The course work will draw mainly from courses already on offer to undergraduates in the Science faculty, but will also include new modules developed specifically for this course. Expertise from other research institutes and from industry will be used,where appropriate.

The course covers following areas:
Material Science and Biomaterials
Applied Biomedical Sciences
Cell & Molecular Biology: Advanced Technologies
Fundamental Concepts in Pharmacology
Human Body Structure
Protein Technology
Tissue Engineering
Bioinformatics
Radiation & Medical Physics
Molecular Medicine
Regulatory Compliance in Healthcare Manufacturing
Advanced Tissue Engineering
Introduction to Business
Scientific Writing

Career Opportunities

Graduates of the MSc in Biomedical Science with undergraduate degrees in engineering and science have gone on to work within the medical device and pharmaceutical industry, hospitals and academia.

Read less
This MSc in Biomedical Science, a two-year, part-time course introduces students to an interdisciplinary approach to research, which utilises technologies and skills from a wide spectrum of scientific, engineering and clinical disciplines to address fundamental questions originating in biology and medicine. Read more

About the Programme

This MSc in Biomedical Science, a two-year, part-time course introduces students to an interdisciplinary approach to research, which utilises technologies and skills from a wide spectrum of scientific, engineering and clinical disciplines to address fundamental questions originating in biology and medicine. Aimed at individuals employed in the biomedical device, pharmaceutical and diagnostic sectors, this course has been developed to meet the needs of working graduates who wish to update their knowledge and/or change careers.

A Prime Location

The NUI Galway campus offers students the vibrancy and activity of a bustling community with over 40,000 students. Offering an extensive range of academically-challenging undergraduate and postgraduate degrees and diplomas of international quality, NUIG’s programmes provide students with opportunities for personal and academic development, as well as equipping them with the skills and knowledge necessary to embark on successful careers. The University's long-standing policy of innovative programme development ensures that the teaching programmes respond to the ever-changing needs of employers and of the economy.
Being a University City, Galway is a lively energetic place throughout the year. The University, situated close to the heart of Galway, enjoys an intimate relationship with the city and during the academic year, 15% of the population of the city are students. A compact, thriving city, Galway caters to youth like few other places can. The University's graduates have played a pivotal role in all areas of the development of Galway, including the arts, industry and commerce.

Programme Delivery

The programme provides you with the means of achieving the mathematical, computational, and instrumentation skills required in this field. The programme covers modules in Cellular Biology, Innovation and Technology Transfer, Anatomy (Histology & Gross), Biomaterials, and a practical module. Additional modules offered include Molecular and Regenerative Medicine, Applied Pharmacology and Toxicology, Monitoring for Health Hazards at Work, Lasers, Stereology and Tissue Engineering and Biomechanics.

Students attend lectures once every 5 weeks, with distance learning supported by Echo360 Lecture Capture and Blackboard technologies. Product Development, Validation and Regulation, as well as Project Management, Experimental Design and Data Analysis, are also covered. Students complete a research project worth a third of the final grade. The research may be done in-house at the student’s place of work or it may be done in collaboration with NUI Galway based researchers.

Students who are unable to complete a research project have the option to leave with a PDip Biomedical Science (Level 9). The PG Cert (Level 8) caters for those not in a position to commit more than one year to postgraduate studies. However, following successful completion of the PG Cert, students may request a transfer into the second year of the MSc programme, assuming numbers permit it. Alternatively, students may choose to leave with a PG Cert, but may request entry into the MSc programme two or four years later, joining a subsequent student cohort.

Read less
The MSc Design for Medical Technologies is aimed at providing the key knowledge and experience to allow you to pursue a career in bioengineering, healthcare or biotechnology. Read more
The MSc Design for Medical Technologies is aimed at providing the key knowledge and experience to allow you to pursue a career in bioengineering, healthcare or biotechnology. The course will expose you to the leading edge of modern medical and surgical technologies, as well as exploring the role of entrepreneurship, business development and intellectual property exploitation.

Why study Design for Medical Technologies at Dundee?

The unique environments of medicine and biotechnology offer exacting challenges in the design of high technology products for use in these fields. Engineers and product designers involved in the development of new biomedical instrumentation, surgical tools or biotechnology products must understand the constrictions placed on them by this environment. As a result, bioengineering has been established as the fusion of engineering and ergonomics with a deep understanding of medical science.

Benefits of the programme include:
Knowledge and understanding of medical and surgical engineering and technology
Skills in research methods, communications, teamwork and management
Appreciation of entrepreneurship and the global 'Medtech' industry
Participation in research activities of world renowned research groups
Preparation for careers in industry, academia and commerce

What's great about Design for Medical Technologies at Dundee?

The University of Dundee is one of the top UK universities, with a powerful research reputation, particularly in the medical and biomedical sciences. It has previously been named Scottish University of the Year and short-listed for the Sunday Times UK University of the year.

The Mechanical Engineering group has a high international research standing with expertise in medical instrumentation, signal processing, biomaterials, tissue engineering, advanced design in minimally invasive surgery and rehabilitation engineering.

Links and research partnerships:

We have extensive links and research partnerships with clinicians at Ninewells Hospital (largest teaching hospital in Europe) and with world renowned scientists from the University's College of Life Sciences.

The new Institute of Medical Science and Technology (IMSaT) at the University has been established as a multidisciplinary research 'hothouse' which seeks to commercialise and exploit advanced medical technologies leading to business opportunities.

The start date is September each year, and lasts for 12 months.

How you will be taught

The structure of the MSc course is divided into two parts. The taught modules expose students to the leading edge of modern medical and surgical technologies. The course gives concepts and understanding of the role of entrepreneurship, business development and intellectual property exploitation in the biomedical industry, with case examples.

The research project allows students to work in a research area of their own particular interest, learning skills in presentation, critical thinking and problem-solving. Project topics are offered to students during the first semester of the course.

What you will study

The three taught modules are:
Imaging and Instrumentation for Medicine and Surgery (30 Credits)
Biomechanics and Biomedical (30 Credits)
Advanced Medical and Surgical Instrumentation (30 Credits)

These modules are followed by the biomedical research project (90 credits).

How you will be assessed

The course is assessed by coursework and examination, plus research project.

Careers

The MSc Design for Medical Technologies is aimed at providing the key knowledge and experience to allow you to pursue a career in bioengineering, healthcare or biotechnology. This opens up a vast range of opportunities for employment in these industries as a design, development or product engineer, research scientist, sales and marketing manager or Director of a start-up company. The programme also provides the ideal academic grounding to undertake a PhD degree leading to a career in academic research.

Read less
This MRes conversion course is ideal for graduates interested in developing a research career in an academic, industrial or clinical setting. Read more
This MRes conversion course is ideal for graduates interested in developing a research career in an academic, industrial or clinical setting. It introduces biomedical engineering and provides extensive training in research methodology and practice.

The MRes is a credit-based modular degree comprising both assessed instructional modules and project work. Students must obtain a minimum of 180 credits, 60 of them by satisfactory completion of instructional classes and 120 by satisfactory completion of research project requirements.

Instructional modules are selected from conversion classes, compulsory classes and advanced study class options as follows (number of credits in brackets):

Conversion Classes

. Engineering Science (20)
. Medical Science (20)

Compulsory Taught Classes

. Professional Studies in Biomedical Engineering (10)
. Research Methodology (10)

Advanced Class Options (minimum of one)

. Biomedical Electronics (10)
. Biomedical Instrumentation (10)
. Introduction to Biomechanics (10)
. Clinical and Sports Biomechanics (10)
. Tissue Mechanics (10)
. Biomaterials and biocompatibility (10)
. Regenerative Medicine & Tissue Engineering (10)
. Cardiovascular Devices (10)
. Prosthetics and Orthotics (10)
. Bio-signal Processing and Analysis (10)


Students also undertake a research/development project (120 credits), chosen from a pool of relevant industrial or clinical projects, and submit a thesis.

Read less
Make future breakthroughs within healthcare with the MSc Biomedical Engineering with Healthcare Technology Management course. This course is for inquisitive students who want to design, develop, apply or even manage the use of cutting-edge methods and devices that will revolutionise healthcare. Read more
Make future breakthroughs within healthcare with the MSc Biomedical Engineering with Healthcare Technology Management course.

Who is it for?

This course is for inquisitive students who want to design, develop, apply or even manage the use of cutting-edge methods and devices that will revolutionise healthcare. It is open to science and engineering graduates and those working within hospitals or related industry who want to work in healthcare organisations, in the medical devices industry, or in biomedical engineering research.

The course will suit recent graduates and/or clinical engineers with a technical background or those working in healthcare who want to move into a management position.

Objectives

With several medical conditions requiring extensive and continuous monitoring and early and accurate diagnosis becoming increasingly desirable, technology for biomedical applications is rapidly becoming one of the key ingredients of today and tomorrow’s medical care.

From miniaturised home diagnostic instruments to therapeutic devices and to large scale hospital imaging and monitoring systems, healthcare is becoming increasingly dependent on technology. This course meets the growing need for biomedical and clinical engineers across the world by focusing on the design of medical devices from conception to application.

One of the few accredited courses of its kind in London, the programme concentrates on the use of biomedical-driven engineering design and technology in healthcare settings so you can approach this multidisciplinary topic from the biological and medical perspective; the technological design and development perspective; and from the perspective of managing the organisation and maintenance of large scale equipment and IT systems in a hospital.

This MSc in Biomedical Engineering with Healthcare Technology Management course has been created in consultation and close collaboration with clinicians, biomedical engineering researchers and medical technology industrial partners. The programme fosters close links with the NHS and internationally-renowned hospitals including St. Bartholomew's (Barts) and the Royal London Hospital and Great Ormond street so that you can gain a comprehensive insight into the applied use and the management of medical technology and apply your knowledge in real-world clinical settings.

Placements

In the last few years there have been some limited opportunities for our top students to carry out their projects through placements within hospital-based healthcare technology groups or specialist London-based biomedical technology companies. Placement-based projects are also offered to selected students in City’s leading Research Centre for Biomedical Engineering (RCBE). As we continue our cutting-edge research and industrial and clinical collaborations, you will also have this opportunity.

Academic facilities

As a student on this course you will have the opportunity to work with cutting-edge test and measurement instrumentation – oscilloscopes, function generators, analysers – as well as specialist signal generators and analysers. The equipment is predominantly provided by the world-leading test and measurement equipment manufacturer Keysight, who have partnered with City to provide branding to our electronics laboratories. You also have access to brand new teaching labs and a dedicated postgraduate teaching lab. And as part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

You will be taught through face-to-face lectures in small groups, where there is a lot of interaction and feedback. Laboratory sessions run alongside the lectures, giving you the opportunity to develop your problem-solving and design skills. You also learn software skills in certain modules, which are taught inside computer labs. We also arrange hospital visits so you gain hands-on experience of different clinical environments.

We arrange tutorials for setting coursework, highlight important subject areas, conduct practical demonstrations, and offer support with revision. You are assessed by written examinations at the end of each term, and coursework assignments, which are set at various times throughout the term.

You also work towards an individual project, which is assessed in the form of a written thesis and an oral examination at the end of the summer. The project can be based on any area of biomedical engineering, telemedicine or technology management and will be supervised by an academic or clinical scientist with expertise in the subject area. Many projects are based in hospital clinical engineering departments, or if you are a part-time student, you can base the project on your own workplace. You will have regular contact with the supervisor to make sure the project progresses satisfactorily. Some of the programme’s current students are working on a project focusing on devices that use brain signals to move external objects such as a remote control car and a prosthetic arm.

Some of the previous projects students have worked on include:
-A cursor controller based on electrooculography (EOG)
-Modelling a closed-loop automated anaesthesia system
-Design of a movement artefact-resistant wearable heart rate/activity monitor
-Review of progress towards a fully autonomous artificial mechanical heart
-Design of smartphone-based healthcare diagnostic devices and sensors.

If you successfully complete eight modules and the dissertation you will be awarded 180 credits and a Masters level qualification. Alternatively, if you do not complete the dissertation but have successfully completed eight modules, you will be awarded 120 credits and a postgraduate diploma. Completing four modules (60 credits) will lead to a postgraduate certificate.

Modules

Along with the 60 credit dissertation eight core modules cover diverse subject areas including biomedical electronics and instrumentation, technology infrastructure management, as well as the latest advances in medical imaging and patient monitoring.

The course includes a special module which gives you an introduction to anatomy, physiology and pathology designed for non-clinical science graduates.

The most innovative areas of biomedical and clinical engineering are covered and the content draws from our research expertise in biomedical sensors, bio-optics, medical imaging, signal processing and modelling. You will learn from academic lecturers as well as clinical scientists drawn from our collaborating institutions and departments, which include:
-Charing Cross Hospital, London
-The Royal London Hospital
-St Bartholomew's Hospital, London
-Basildon Hospital
-Department of Radiography, School of Community and Health Sciences, City, University of London

Modules
-Anatomy, Physiology and Pathology (15 credits)
-Physiological Measurement (15 credits)
-Biomedical Instrumentation (15 credits)
-Medical Electronics (15 credits)
-Cardiovascular Diagnostics and Therapy (15 credits)
-Medical Imaging Modalities (15 credits)
-Clinical Engineering Practice (15 credits)
-Healthcare Technology Management (15 credits)

Career prospects

This exciting MSc programme offers a well-rounded background and specialised knowledge for those seeking a professional career as biomedical engineers in medical technology companies or research groups but is also uniquely placed for offering skills to clinical engineers in the NHS and international healthcare organisations.

Alumnus Alex Serdaris is now working as field clinical engineer for E&E Medical and alumna Despoina Sklia is working as a technical support specialist at Royal Brompton & Harefield NHS Foundation Trust. Other Alumni are carrying out research in City’s Research Centre for Biomedical Engineering (RCBE).

Applicants may wish to apply for vacancies in the NHS, private sector or international healthcare organisations. Students are encouraged to become members of the Institute of Physics and Engineering in Medicine (IPEM) where they will be put in touch with the Clinical Engineering community and any opportunities that arise around the UK during their studies. Application to the Clinical Scientist training programme is encouraged and fully supported.

The Careers, Student Development & Outreach team provides a professional, high quality careers and information service for students and recent graduates of City, University of London, in collaboration with employers and other institutional academic and service departments. The course also prepares graduates who plan to work in biomedical engineering research and work within an academic setting.

Read less

Show 10 15 30 per page



Cookie Policy    X