• Jacobs University Bremen gGmbH Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Bristol Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Kingston University Featured Masters Courses
University of Cambridge Featured Masters Courses
King’s College London Featured Masters Courses
Imperial College London Featured Masters Courses
Teesside University Featured Masters Courses
"biomarker"×
0 miles

Masters Degrees (Biomarker)

We have 8 Masters Degrees (Biomarker)

  • "biomarker" ×
  • clear all
Showing 1 to 8 of 8
Order by 
Our MRes Experimental Cancer Medicine master's course will give nurses, doctors and clinical researchers the skills needed to work in early phase clinical studies. Read more

Our MRes Experimental Cancer Medicine master's course will give nurses, doctors and clinical researchers the skills needed to work in early phase clinical studies.

You will learn how to master experimental cancer through a combination of traditional teaching and hands-on learning, spending a year as a member of the Experimental Cancer Medicine Team at The Christie while also taking four structured taught units.

The taught units will see you learn the details of designing and delivering Phase 1 clinical studies, understanding the pre-clinical data required before a clinical programme can commence, and how to optimise early clinical studies to provide evidence for progressing a promising drug into Phase II/III clinical testing.

Alongside the taught elements, you will be allocated to one or more clinical trials that are being conducted by The Christie experimental cancer medicine team. You will have a named trainer and be exposed to tasks required in the setup, delivery, interpretation and audit of a clinical study.

Nursing and physician students will be expected to participate in patient care, including new and follow-on patient clinics, treatment and care-giving episodes with patients.

For clinical trials coordinators, no direct patient contact is envisaged and duties will involve clinical trial setup, protocol amendments, database setup, data entry, costing and billing for clinical research.

You will be able to choose two aspects of your direct clinical trial research experience to write up for your two research projects in a dissertation format. This will give you the skills and knowledge required to critically report medical, scientific and clinically related sciences for peer review.

Aims

The primary purpose of the MRes in Experimental Cancer Medicine is to provide you with the opportunity to work within a premier UK Phase 1 cancer clinical trials unit and, through a mix of taught and experiential learning, master the discipline of Experimental Cancer Medicine.

Special features

Extensive practical experience

You will spend most of your time gaining hands-on experience within The Christie's Experimental Cancer Medicine Team.

Additional course information

Meet the course team

Dr Natalie Cook is a Senior Clinical Lecturer in Experimental Cancer Medicine at the University and Honorary Consultant in Medical Oncology at The Christie. She completed a PhD at Cambridge, investigating translational therapeutics and biomarker assay design in pancreatic cancer.

Professor Hughes is Chair of Experimental Cancer Medicine at the University and Strategic Director of the Experimental Cancer Medicine team at The Christie. He is a member of the research strategy group for Manchester Cancer Research Centre. He serves on the Biomarker evaluation review panel for CRUK grant applications.

Professor Hughes was previously Global Vice-President for early clinical development at AstraZeneca, overseeing around 100 Phase 0/1/2 clinical studies. He was previously Global Vice-President for early phase clinical oncology, having been involved in over 200 early phase clinical studies.

Dr Matthew Krebs is a Clinical Senior Lecturer in Experimental Cancer Medicine at the University and Honorary Consultant in Medical Oncology at The Christie.

He has a PhD in circulating biomarkers and postdoctoral experience in single cell and ctDNA molecular profiling. He is Principal Investigator on a portfolio of phase 1 clinical trials and has research interests in clinical development of novel drugs for lung cancer and integration of biomarkers with experimental drug development.

Teaching and learning

Our course is structured around a 2:1 split between clinical-based research projects and taught elements respectively.

Taught course units will predominantly use lectures and workshops.

For the research projects, teaching and learning will take place through one-to-one mentoring from a member of the Experimental Cancer Medicine team.

The clinical and academic experience of contributors to this course will provide you with an exceptional teaching and learning experience.

Coursework and assessment

You will be assessed through oral presentations, single best answer exams, written reports and dissertation.

For each research project, you will write a dissertation of 10,000 to 15,000 words. Examples of suitable practical projects include the following.

Research proposal

  • Compilation of a research proposal to research council/charity
  • Writing a protocol and trial costings for sponsor
  • Research and write a successful expression of interest selected by grant funder for full development

Publication-based/dissertation by publication

  • Writing a clinical study report
  • Authoring a peer-review journal review/original article

Service development/professional report/ report based dissertation

  • Public health report/outbreak report/health needs assessment/health impact assessment
  • Proposal for service development/organisational change
  • Audit/evaluate service delivery/policy
  • Implement recommended change from audit report

Adapted systematic review (qualitative data)

  • Compiling the platform of scientific evidence for a new drug indication from literature
  • Review of alternative research methodologies from literature

Full systematic review that includes data collection (quantitative data)

  • Referral patterns for Phase 1 patients

Qualitative or quantitative empirical research

  • Design, conduct, analyse and report an experiment

Qualitative secondary data analysis/analysis of existing quantitative data

  • Compilation, mining and analysis of existing clinical data sets

Quantitative secondary data analysis/analysis of existing qualitative data/theoretical study/narrative review

  • Policy analysis or discourse analysis/content analysis
  • A critical review of policy using framework analysis

Facilities

Teaching will take place within The Christie NHS Foundation Trust , Withington.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

This course is relevant to physician, nursing and clinical research students who are considering a career in Phase 1 clinical studies.

The course provides a theoretical and experiential learning experience and offers a foundation for roles within other experimental cancer medicine centres within the UK and EU, as well as careers in academia, the pharmaceutical industry, clinical trials management and medicine.

The MRes is ideal for high-calibre graduates and professionals wishing to undertake directly channelled research training in the clinical and medical oncology field.



Read less
About the Course. This 1 year course leads to an internationally recognised MRes qualification that provides training in transferable skills essential for those wishing to pursue post-graduate PhD, commercial or industrial research opportunities. Read more

About the Course

This 1 year course leads to an internationally recognised MRes qualification that provides training in transferable skills essential for those wishing to pursue post-graduate PhD, commercial or industrial research opportunities. Focusing on parasites and the diseases that they cause, you will gain expert knowledge in the detection, prevention and control of protozoan as well as metazoan animal and human pathogens. You will be trained in specialisms including biochemistry, molecular biology, whole organism/cell culture and manipulation, bioinformatics, proteomics, transcriptomics, genomics, functional genomics, drug discovery, vaccinology, biomarker discovery, genetics/epigenetics, epidemiology, vector/intermediate host biology and ecology.

At the end of the course you will understand how interdisciplinary methods can be brought to bear on controlling some of the deadliest infectious organisms on the planet and be ready to pursue your career in parasitology.

Why study Parasite Control at Aberystwyth?

Parasitism is the most successful lifestyle on the planet and leads to diverse and highly-damaging infectious diseases of agricultural, veterinary and biomedical significance. Therefore, a greater understanding of the parasite species responsible for these conditions and the means by which they are controlled remain a priority for scientists, health care professionals and farmers in this 21st Century. For example, it is recognised that parasitic worms infect greater than 1 billion people worldwide with some species causing between $700 million-$1 billion USDs in economic losses per annum. The development of novel, creative and integrated control strategies are urgently needed to combat the growing threat of changing parasite distributions due to climate change, human migration, animal transportation and farming practices. This MRes course will provide you with a range of vocational skills and prepare you for professional employment or further post-graduate PhD studies in Parasitology or related disciplines (i.e. infectious diseases, public health, epidemiology, etc.).

IBERS continuously maintained an excellent internationally-recognised reputation in parasitological research since the 1930s. One of the British Society of Parasitology’s founding members and two of its past presidents were IBERS Parasitologists. More recently, IBERS appointments and University investments have increased critical mass in Parasitology leading to the formation of the Parasitology and Epidemiology Research Group (in 2007) as well as the Barrett Centre for Helminth Control (in 2016). The creation of both research groupings has facilitated greater interactions with animal health and pharmaceutical/biotech companies as well as increased research grant capture derived from government, research council and charitable funding bodies.

Why study at Aberystwyth?

With 360 members of staff (principle investigators, technicians and post-doctoral fellows), 1350 undergraduate students and more than 150 postgraduate students, IBERS is the largest research and teaching institute within Aberystwyth University. Excellence in teaching was recognised by outstanding scores in the National Student Satisfaction Survey (NSS 2017) and being awarded University of the Year for Teaching Quality by the Times and Sunday Times Good University Guide 2018. Employability data from the Recent Destinations of Leavers from Higher Education (DLHE, 2017) shows that 97% of IBERS graduates were in work or further study six months after leaving Aberystwyth University. The economic and social impact of IBERS research was recognised in 2011 when IBERS won the national BBSRC Excellence with Impact Award.  

Course Details

An aspect of this course that uniquely positions itself from other Masters level Parasitology courses in the UK is the 12-month dissertation project (Semesters 1-3). Working under the supervision of active researchers in the field, you will collaboratively develop a research project on diverse topics such as (but not inclusive) intermediate host and vector control, anthelmintic drug and target discovery, biomarker identification, visual cue selection for arthropod vectors, mathematical modelling of disease transmission, host responses to parasite biomolecules, parasite and host population studies and functional genomics manipulation of parasites. A list of available projects and supervisors will be advertised closer to the start of each academic year. Your supervisor/supervisory team will mentor you in hypothesis and discovery driven experimental design, provide training in lab-based and computer-assisted methodologies, arrange instruction in analytical techniques, aid in the trouble-shooting of experimental challenges, assist you in the interpretation of results and prepare you for successful oral presentations. You will also be guided in how to most efficiently communicate your results during the dissertation write-up. It is expected that during this year long research project you will become an expert in your topic.   

Please refer to our couse web pages for full details of course modules.

Employability

Careers

This course is an ideal training programme for those wishing to:

-         Pursue PhD studies;

-         Work in industry, charities or funding bodies;

-         Improve animal and human health;

-         Influence governmental policies.

 

Skills

Throughout this course you will:

·        Develop strong data collection/analysis, fieldwork and laboratory skills;

·        Enhance your scientific communication and team work skills;

·        Write for a range of audiences including academics and the wider public;

·        Enhance your analytical abilities, critical thinking and problem solving skills;

·        Develop study and research skills;

·        Direct and sustain a self-initiated programme of study underpinned by good time management skills;

·        Work effectively and independently;

·        Hone your project management skills to deliver a demanding combination of research, analysis, communication and presentation

 

How will I learn?

During the one year of full-time study students complete 40 60 credits of core modules centred on parasitology, parasite control and a further 20 credits focusing on laboratory techniques & research methodologies. The taught modules are assessed by scientific writing assignments (such as reports, critical reviews, essays and journalistic articles), presentations, contribution to group discussions in seminars and online assignments. The core element of this course is the 120 credit MRes Dissertation, during which students will have supervision meetings to give them guidance before undertaking a prolonged period of experimental work/data gathering, research, and writing up of the dissertation. All postgraduate students in IBERS also have a named personal tutor, with whom they can discuss personal or domestic concerns that impact on their studies. Subsequent successful submission of your dissertation leads to the award of an MRes.



Read less
This exciting new course is designed to equip future scientists with the knowledge to make a difference in the understanding and treatment of cancer. Read more
This exciting new course is designed to equip future scientists with the knowledge to make a difference in the understanding and treatment of cancer. The course will take the mechanistic understanding of cancer biology and apply it to the analysis of risk, prevention, diagnosis, prognosis and therapy. Building on a foundation of the understanding of basic cancer cell biology, translational coverage will consider design of treatment modalities, mechanisms of action of anti-cancer drugs, therapy resistance and biomarker discovery. The course will allow the students to gain expertise and knowledge in therapy, cancer chemoprevention, anti-cancer target discovery, clinical trials, imaging, cancer risk and epidemiology and biostatistics. A key component of the course is a five/six-month research project, which will give students an opportunity to study one of these areas in depth.

Read less
Our geochemistry research includes specific areas of expertise. applied and fundamental aspects of geochemistry; environmental sustainability; climate change; and biosphere/geosphere interactions. Read more
Our geochemistry research includes specific areas of expertise: applied and fundamental aspects of geochemistry; environmental sustainability; climate change; and biosphere/geosphere interactions. Through working with academics who are leaders in their field, you will be supported and guided to produce research of an international standard.

The School of Civil Engineering and Geosciences enjoys an international reputation for using the latest science to solve problems of global importance. For geochemistry we have MPhil and PhD supervision in the following areas:

Petroleum-related geological research
-Reservoir and source-rock geochemistry
-Microbial deep biosphere of petroleum reservoirs
-Origin, significance and maturation of molecular biomarker compounds in the sedimentary record
-Physico-chemical properties and behaviour of mudstone sequences
-Shale gas
-Geological sequestration of CO2
-Palynofacies and organic facies of ancient and modern sediments

Environment-related research
-Geomicrobiology
-Mineral science
-Molecular microbial ecology
-Molecular palaeontology
-Soil biogeochemistry
-Waste management
-Bioremediation of polluted soils and waters
-Biogeochemical cycling of elements through Earth history
-Climate change during past greenhouse conditions
-Processes of carbon cycling and export across the land–ocean transition

Delivery

We offer the MPhil and PhD on a full time or part time basis. You will work with research-active academics who will provide advice and support throughout your research project. You will receive formal training in research skills and methods and discipline-specific training is provided where appropriate.

The first three months of study involve intensive theoretical and practical tuition to ensure that you have the study skills to plan your project and can use the equipment and software related to your research. You are encouraged to attend our weekly research seminar series and to present your work at our annual postgraduate research conference, group seminars and relevant international conferences.

Facilities

The School of Civil Engineering and Geosciences has an exceptional range of laboratories equipped with a wide range of analytical instrumentation supporting our research, teaching and contract research projects.
-Chemical and Biological Research Laboratories
-Geotechnics and Structures Research Laboratories

Read less
Do you want to focus your scientific career on one of the fastest moving sectors of science? The UK has hundreds of biotech companies and is a leader in innovating specialist products from living organisms. Read more
Do you want to focus your scientific career on one of the fastest moving sectors of science? The UK has hundreds of biotech companies and is a leader in innovating specialist products from living organisms. Biotech applications are enhancing food production, treating medical conditions, and having a significant impact on the global future.

Given the common expectation for job candidates to have some form of postgraduate qualification, this Masters course offers a route to careers in biotechnology as well as the broader life sciences industry. If your first degree included the study of genetics and molecular biology, and a research module, you’re well-placed to join us.

This course can also be started in January (full time 21 months) - for more information please view this web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/biotechnology-dtfbty6/

Learn From The Best

The quality of teaching in life sciences at Northumbria has been recognised by strong performance in student-led awards, Further evidence of academic excellence is the number of invitations to members of our team to join the editorial boards of scientific journals.

Our teaching team maintains close links with biotech companies and research labs, including via on-going roles as consultants, which helps ensure an up-to-date understanding of the latest technical and commercial developments. Several academics are involved in biotech ventures that make use of the University’s facilities: Nzomics Biocatalysis develops enzyme alternatives to chemical processes, and Nu-omics offers DNA sequencing services.

Teaching And Assessment

We aim for interactive teaching sessions and you will engage in discussions, problem-solving exercises and other activities. Teaching can start in the lab or classroom and then you make the material your own by exploring and applying it. Technology Enhanced Learning makes this easier; each module has an electronic blackboard site with relevant information including electronic reading lists and access to websites, videos and other study materials that are available anytime, anywhere.

You will undertake assignments within small groups and we provide training in communication skills relevant for scientific communication. The course aims to foster your ability to work at a professional standard both individually and as part of a team.

Module Overview
AP0700 - Graduate Science Research Methods (Core, 20 Credits)
AP0701 - Molecular Biology (Core, 20 Credits)
AP0702 - Bioinformatics (Core, 20 Credits)
AP0703 - Subject Exploration (Core, 20 Credits)
AP0704 - Industrial Biotechnology (Core, 20 Credits)
AP0705 - Current Topics in Biotechnology (Core, 20 Credits)
AP0708 - Applied Sciences Research Project (Core, 60 Credits)

Learning Environment

The technical facilities at Northumbria University are excellent. We are fully equipped for molecular biology manipulations and imaging – techniques include RT-PCR to show whether or not a specific gene is being expressed in a given sample. We also have pilot scale bioreactors so that we can scale up experiments and processes.

For cell biology and immunology, we have two multi-user laboratories. Technologies include assays for measuring immune responses at the single-cell level, and for monitoring the functioning of cells in real time. Further capabilities include biomarker analysis, flow cytometry, chemical imaging and fluorescence microscopy. For genomics, proteomics and metabolomics, our capabilities include genomic sequencing, mass spectrometry, 2D protein electrophoresis and nanoflow liquid chromatography.

All our equipment is supported up by highly skilled technical staff who will help you make the best use of all the facilities that are available.

Research-Rich Learning

In fast-moving fields like biotechnology, it’s particularly important for teaching to take account of the latest research. Many of our staff are conducting research in areas such as molecular biology, bio-informatics, gene expression and micro-biology of extreme environments. They bring all this experience and expertise into their teaching.

As a student, you will be heavily engaged in analysing recent insights from the scientific literature. You will undertake a major individual project in molecular and cellular science that will encompass all aspects of a scientific study. These include evaluation of relevant literature, design and set-up of experiments, collection and processing of data, analysis of results, preparation of a report and presentation of findings in a seminar.

Give Your Career An Edge

Many recruiters in the biotech industry expect candidates to have studied at postgraduate level so our Masters qualification will help you get through the door of the interview room. Once there, your major project and other assignments will help ensure there is plenty to catch their attention. Employers are looking for the ability to solve problems, think critically, work with others and function independently – which are exactly the attributes that our course develops to a higher level.

During your time at Northumbria, we encourage you to participate in the activities organised by the Career Development Service. We also encourage you to apply for associate membership of the Royal Society of Biology, with full membership becoming possible once you have at least three years’ postgraduate experience in study or work.

Your Future

The biotech industry has made huge progress in the last few decades and the years ahead promise to be even more transformational. With an MSc Biotechnology, you will be ready to contribute to the changes ahead through a rigorous scientific approach and your grasp of the fundamental knowledge, insights and skills that underlie modern biotechnology.

Scientific research is at the heart of the course and you will strengthen pivotal skills that will enhance your employability in any research-rich environment. By developing the practices, standards and principles relevant to becoming a bioscience professional, you will also prepare yourself for success in other sectors of the life sciences industry and beyond.

Read less
We invite postgraduate research proposals in a number of disease areas that impact significantly on patient care. We focus on exploring the mechanisms of disease, understanding the ways disease impacts patients’ lives, utilising new diagnostic and therapeutic techniques and developing new treatments. Read more

We invite postgraduate research proposals in a number of disease areas that impact significantly on patient care. We focus on exploring the mechanisms of disease, understanding the ways disease impacts patients’ lives, utilising new diagnostic and therapeutic techniques and developing new treatments.

As a student you will be registered with a University research institute, for many this is the Institute for Cellular Medicine (ICM). You will be supported in your studies through a structured programme of supervision and training via our Faculty of Medical Sciences Graduate School.

We undertake the following areas of research and offer MPhil, PhD and MD supervision in:

Applied immunobiology (including organ and haematogenous stem cell transplantation)

Newcastle hosts one of the most comprehensive organ transplant programmes in the world. This clinical expertise has developed in parallel with the applied immunobiology and transplantation research group. We are investigating aspects of the immunology of autoimmune diseases and cancer therapy, in addition to transplant rejection. We have themes to understand the interplay of the inflammatory and anti-inflammatory responses by a variety of pathways, and how these can be manipulated for therapeutic purposes. Further research theme focusses on primary immunodeficiency diseases.

Dermatology

There is strong emphasis on the integration of clinical investigation with basic science. Our research include:

  • cell signalling in normal and diseased skin including mechanotransduction and response to ultraviolet radiation
  • dermatopharmacology including mechanisms of psoriatic plaque resolution in response to therapy
  • stem cell biology and gene therapy
  • regulation of apoptosis/autophagy
  • non-melanoma skin cancer/melanoma biology and therapy.

We also research the effects of UVR on the skin including mitochondrial DNA damage as a UV biomarker.

Diabetes

This area emphasises on translational research, linking clinical- and laboratory-based science. Key research include:

  • mechanisms of insulin action and glucose homeostasis
  • insulin secretion and pancreatic beta-cell function
  • diabetic complications
  • stem cell therapies
  • genetics and epidemiology of diabetes.

Diagnostic and therapeutic technologies

Focus is on applied research and aims to underpin future clinical applications. Technology-oriented and demand-driven research is conducted which relates directly to health priority areas such as:

  • bacterial infection
  • chronic liver failure
  • cardiovascular and degenerative diseases.

This research is sustained through extensive internal and external collaborations with leading UK and European academic and industrial groups, and has the ultimate goal of deploying next-generation diagnostic and therapeutic systems in the hospital and health-care environment.

Kidney disease

There is a number of research programmes into the genetics, immunology and physiology of kidney disease and kidney transplantation. We maintain close links between basic scientists and clinicians with many translational programmes of work, from the laboratory to first-in-man and phase III clinical trials. Specific areas:

  • haemolytic uraemic syndrome
  • renal inflammation and fibrosis
  • the immunology of transplant rejection
  • tubular disease
  • cystic kidney disease.

The liver

We have particular interests in:

  • primary biliary cirrhosis (epidemiology, immunobiology and genetics)
  • alcoholic and non-alcoholic fatty liver disease
  • fibrosis
  • the genetics of other autoimmune and viral liver diseases

Magnetic Resonance (MR), spectroscopy and imaging in clinical research

Novel non-invasive methodologies using magnetic resonance are developed and applied to clinical research. Our research falls into two categories:

  • MR physics projects involve development and testing of new MR techniques that make quantitative measurements of physiological properties using a safe, repeatable MR scan.
  • Clinical research projects involve the application of these novel biomarkers to investigation of human health and disease.

Our studies cover a broad range of topics (including diabetes, dementia, neuroscience, hepatology, cardiovascular, neuromuscular disease, metabolism, and respiratory research projects), but have a common theme of MR technical development and its application to clinical research.

Musculoskeletal disease (including auto-immune arthritis)

We focus on connective tissue diseases in three, overlapping research programmes. These programmes aim to understand:

  • what causes the destruction of joints (cell signalling, injury and repair)
  • how cells in the joints respond when tissue is lost (cellular interactions)
  • whether we can alter the immune system and ‘switch off’ auto-immune disease (targeted therapies and diagnostics)

This research theme links with other local, national and international centres of excellence and has close integration of basic and clinical researchers and hosts the only immunotherapy centre in the UK.

Pharmacogenomics (including complex disease genetics)

Genetic approaches to the individualisation of drug therapy, including anticoagulants and anti-cancer drugs, and in the genetics of diverse non-Mendelian diseases, from diabetes to periodontal disease, are a focus. A wide range of knowledge and experience in both genetics and clinical sciences is utilised, with access to high-throughput genotyping platforms.

Reproductive and vascular biology

Our scientists and clinicians use in situ cellular technologies and large-scale gene expression profiling to study the normal and pathophysiological remodelling of vascular and uteroplacental tissues. Novel approaches to cellular interactions have been developed using a unique human tissue resource. Our research themes include:

  • the regulation of trophoblast and uNk cells
  • transcriptional and post-translational features of uterine function
  • cardiac and vascular remodelling in pregnancy

We also have preclinical molecular biology projects in breast cancer research.

Respiratory disease

We conduct a broad range of research activities into acute and chronic lung diseases. As well as scientific studies into disease mechanisms, there is particular interest in translational medicine approaches to lung disease, studying human lung tissue and cells to explore potential for new treatments. Our current areas of research include:

  • acute lung injury - lung infections
  • chronic obstructive pulmonary disease
  • fibrotic disease of the lung, both before and after lung transplantation.

Pharmacology, Toxicology and Therapeutics

Our research projects are concerned with the harmful effects of chemicals, including prescribed drugs, and finding ways to prevent and minimise these effects. We are attempting to measure the effects of fairly small amounts of chemicals, to provide ways of giving early warning of the start of harmful effects. We also study the adverse side-effects of medicines, including how conditions such as liver disease and heart disease can develop in people taking medicines for completely different medical conditions. Our current interests include: environmental chemicals and organophosphate pesticides, warfarin, psychiatric drugs and anti-cancer drugs.

Pharmacy

Our new School of Pharmacy has scientists and clinicians working together on all aspects of pharmaceutical sciences and clinical pharmacy.



Read less
In response to the global epidemic in obesity and diabetes the University of Glasgow has developed this MSc in Diabetes. Read more
In response to the global epidemic in obesity and diabetes the University of Glasgow has developed this MSc in Diabetes. To address the immense challenge presented by this disease, it is essential that the researchers and medical practitioners of tomorrow understand the cutting edge advances and technologies to tackle diabetes.

Why this programme

◾This is one of the only MSc in Diabetes programmes focused entirely on research rather than health care management. You will be taught by clinicians and scientists known for their world-class research.
◾The University has state-of-the-art research facilities to study obesity, metabolic disease and diabetes from the whole body to the molecular level and students will undertake a research project/dissertation in this area.
◾The University of Glasgow is expert in establishing disease-specific bioresources linked with routinely-acquired anonymised data from the National Health Service in Scotland.
◾The collective expertise within the Institute of Cardiovascular and Medical Sciences spans a full range from molecular and biomarker/ “-omic” techniques through clinical investigation to population-level epidemiology, clinical trials and cardiovascular endpoint adjudication.
◾This Degree in Diabetes is ideal for those who aspire to build their future career in diabetes whether in the fields of basic research, medical practice, pharmaceutical industry, public health or nutrition. We aim to provide an excellent research training that will inspire and provide students with the confidence to join the global research effort in tackling diabetes.
◾Using world-leading experts and experienced and dedicated teaching staff, this programme aims to provide students with state-of-the-art knowledge of pathological mechanisms and methodologies used for studying diabetes as well as providing a firm grounding in generic research skills.
◾You will develop and enhance your skills in literature searching and critically evaluating relevant scientific evidence; application of knowledge to novel concepts and situations; experimental design; research methods and ethics; data handling and statistics; interpretation and evaluation of experimental data; scientific writing; and oral presentations.
◾The MSc Diabetes programme is taught predominantly at the new Teaching and Learning Centre on the Queen Elizabeth University Hospital Campus. This has state-of-the-art teaching facilities, Wi-Fi, computer clusters and cafe area. There is frequent convenient transport to this campus from the central University campus.

Programme structure

The MSc in Diabetes is a 12 month, full time programme. The programme is made up of eight compulsory courses, two are of 20 credits (one in each semester) and 6 are of 10 credits (four in the first semester and 2 in the second semester). In addition, students will select two optional 10 credit courses from a choice of six in the second semester. A dissertation/research project of 60 credits is undertaken to fulfil the requirements of a Masters degree. The taught courses will be undertaken in the period October to March during the academic session, with the dissertation commencing in June with submission in mid August.

Dissertation

To fulfil the requirements of a Masters degree, students must undertake an independent piece of research in the area of diabetes under the supervision of a project supervisor. Projects may take a number of different formats including a literature review, meta-analysis, data audit or secondary analysis, laboratory-based project, clinical/human volunteer based investigation. The student must then submit a report demonstrating an in-depth, critical understanding and evaluation of the project and deliver an oral presentation summarising their project.

Career prospects

Graduates may wish to pursue a career in diabetes clinical research entering clinical translational diabetes research or commercial industrial research. Other opportunities for diabetes specialists are available in education, public health and professions allied to medicine. The MSc Diabetes also provides an excellent basis to pursue PhD level research.

Read less
This programme offers the opportunity to gain a qualification by following a structured route in scientific research. It is closely linked with parallel MPhil and PhD programmes of work. Read more
This programme offers the opportunity to gain a qualification by following a structured route in scientific research. It is closely linked with parallel MPhil and PhD programmes of work. Students can select from a wide range of theory courses appropriate to their individual research topic across the disciplines of chemical and life sciences. The programme comprises taught courses (60 credits) and a research project (120 credits) and is suitable for students who want to gain a postgraduate research qualification and strengthen their practical skills. The research project may be partially assessed by the publication of an original paper rather than a traditional thesis. The programme is designed to provide a comprehensive insight into the mechanics of research from both the literature and experimental perspectives. On successful completion of the programme, students are able to critically assess the primary research literature in depth, and appreciate the significance of the economic, environmental and social impact of research and development in a competitive industrial world. They can also design and carry out experiments to test hypotheses, and compose and present scientific information for publication purposes. The university has an extensive network of overseas contacts, with staff based in, or regularly visiting, some 40 to 50 countries. Overseas students are able to obtain an MSc by Research by attending classes for three to four months in the UK, with a project based and supervised in their own country, subject to approval by the Faculty of Engineering and Science.

The aims of the programme are:

- To provide a critical understanding of the knowledge base required for a proposed research project

- To provide and build upon analytical, conceptual and research skills

- To achieve an understanding of the research methods appropriate to the chosen field

- To undertake a critical investigation of an approved topic.

Visit the website http://www2.gre.ac.uk/study/courses/pg/res/science

What you'll study

Recent topics include:

Analytical informatics and chemometrics
Biomarker profiling
Biomaterials
Cell biology and intracellular gene delivery
Medicinal chemistry and drug-delivery systems
Nanotechnology
Mass Spectrometry
Pharmaceutical materials science
Biotechnology
GIS and remote sensing
Chemostratigraphy and inorganic forensic fingerprinting
Geography - sustainable development
Landscape ecology
Palaeoenvironmental analysis
Solar energy conversion and hydrogen production

Students must also take 60 credits of Master's level courses in order to obtain the award.

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:
- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)
- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

Students are assessed through coursework and a dissertation or a published original research paper.

Career options

This programme offers opportunities in the public and private sectors.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X