• University of Bristol Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Edinburgh Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Kingston University Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Cambridge Featured Masters Courses
Teesside University Featured Masters Courses
"biologics"×
0 miles

Masters Degrees (Biologics)

We have 11 Masters Degrees (Biologics)

  • "biologics" ×
  • clear all
Showing 1 to 11 of 11
Order by 
As a researcher in the School of Pharmacy, you have the opportunity to liaise with leaders in the pharmaceutical and biotechnology industries and to develop strong national and international collaborations. Read more
As a researcher in the School of Pharmacy, you have the opportunity to liaise with leaders in the pharmaceutical and biotechnology industries and to develop strong national and international collaborations.

Research in the School is diverse and multidisciplinary and is generally grouped around two distinct strands: 1) pharmacy education and community engagement with prescribing, and 2) physical pharmaceutics and drug development and delivery. Subsequently, there are opportunities for research students to work with academics across varied topics, including solid-state drug development and biologics delivery.

As a postgraduate student, you can benefit from specialist laboratory space and equipment, a wide range of training programmes designed to enhance your research and transferable skills, as well as support from dedicated academic supervisors.

All of our research students are encouraged to submit papers to scientific journals, present their findings at conferences in the UK and overseas, and share knowledge with colleagues across the University.

Research Areas, Projects & Topics

The School’s research is diverse and multidisciplinary and it includes the following areas:
-Solid state drug development
-Crystal engineering of salts/polymorphs/co-crystals
-Biologics delivery
-Nanomedicine and targeted drug delivery
-Mucosal delivery of biologics
-Mucosal models to study drug delivery
-Antimicrobials and vaccines
-Organic chemistry
-Bioconjugations and Bio-inspired chemistry
-Development of sequence selective DNA cross-linking agents
-Health education
-Personalised care
-Data-based medicine and assessment of individual risks/benefits
-Application and use of evidence, and pharmacy-led clinical medication reviews

How You Study

Our research environment aims to support students through a specific framework. This covers all aspects of the postgraduate experience, including supervisor interaction, training and access to the facilities and allied support through the Directors of Research and Postgraduates Studies, from initial application to final completion.

All postgraduates are actively encouraged to prepare submission to scientific journals in their field. Students are expected to present their findings to national and international conferences, and also to participate in internal research meetings.

Due to the nature of postgraduate research programmes, the vast majority of your time will be spent in independent study and research. You will have meetings with your academic supervisor(s), with the regularity of these varying depending on your own individual requirements, subject area and the stage of your programme.

How You Are Assessed

A PhD is usually awarded based on the quality of your thesis and your ability in an oral examination (viva voce) to present and successfully defend your chosen research topic to a group of academics. You are also expected to demonstrate how your research findings have contributed to knowledge or developed existing theory or understanding.

Facilities

Our Science and Innovation Park, home to the Joseph Banks Laboratories, provides specialist teaching suites and laboratories for study and research. It is a regional hub for science industry innovation and development.

Career and Personal Development

Graduates may progress to careers in the pharmaceutical, cosmetics or food industries, while others may choose to work within academia.

Read less
As a researcher in the School of Pharmacy, you have the opportunity to liaise with leaders in the pharmaceutical and biotechnology industries and to develop strong national and international collaborations. Read more
As a researcher in the School of Pharmacy, you have the opportunity to liaise with leaders in the pharmaceutical and biotechnology industries and to develop strong national and international collaborations.

Research in the School is diverse and multidisciplinary and is generally grouped around two distinct strands: 1) pharmacy education and community engagement with prescribing, and 2) physical pharmaceutics and drug development and delivery. Subsequently, there are opportunities for research students to work with academics across varied topics, including solid-state drug development and biologics delivery.

As a postgraduate student, you can benefit from specialist laboratory space and equipment, a wide range of training programmes designed to enhance your research and transferable skills, as well as support from dedicated academic supervisors.

All of our research students are encouraged to submit papers to scientific journals, present their findings at conferences in the UK and overseas, and share knowledge with colleagues across the University.

Research Areas, Projects & Topics

The School’s research is diverse and multidisciplinary and it includes the following areas:
-Solid state drug development
-Crystal engineering of salts/polymorphs/co-crystals
-Biologics delivery
-Nanomedicine and targeted drug delivery
-Mucosal delivery of biologics
-Mucosal models to study drug delivery
-Antimicrobials and vaccines
-Organic chemistry
-Bioconjugations and Bio-inspired chemistry
-Development of sequence selective DNA cross-linking agents
-Health education
-Personalised care
-Data-based medicine and assessment of individual risks/benefits
-Application and use of evidence, and pharmacy-led clinical medication reviews

How You Study

Our research environment aims to support students through a specific framework. This covers all aspects of the postgraduate experience, including supervisor interaction, training and access to the facilities and allied support through the Directors of Research and Postgraduates Studies, from initial application to final completion.

All postgraduates are actively encouraged to prepare submission to scientific journals in their field. Students are expected to present their findings to national and international conferences, and also to participate in internal research meetings.

Due to the nature of postgraduate research programmes, the vast majority of your time will be spent in independent study and research. You will have meetings with your academic supervisor(s), with the regularity of these varying depending on your own individual requirements, subject area and the stage of your programme.

Read less
The purpose of the Master of Science in Pharmaceutical Biotechnologies (two years, 120 CFU) is to endow students with a sound scientific knowledge for modern pharmaceutical research and health biotechnologies. Read more

The purpose of the Master of Science in Pharmaceutical Biotechnologies (two years, 120 CFU) is to endow students with a sound scientific knowledge for modern pharmaceutical research and health biotechnologies.

The organization and the needs of the research in the pharmaceutical field have changed dramatically in recent years. Modern research in both academic and industrial setting is intensely devoted to the study and development of biopharmaceuticals, including the development of biologics and monoclonal antibodies of new conception. Currently, the pharmaceutical scientist requires a thorough education and expertise in molecular biology, genetics, recombinant DNA techniques and bioinformatics, with a solid background in chemistry, pharmacology and advanced pharmaceutical technology. The professionals working in pharmaceutical R&D and production must possess a sound interdisciplinary knowledge, including the specific technical and regulatory issues dedicated to the research, development and monitoring of innovative drugs and biosimilars.

The Master of Science focuses on “transferring” knowledge, endowing students with strong technical skills (hard skills) and interpersonal skills (soft skills), building at the same time those competencies needed to face the changing pharmaceutical marketplace. Graduates in Pharmaceutical Biotechnologies will acquire a solid knowledge in biochemistry, molecular biology and protein engineering, immunology, pharmacology and pharmaceutical technology, and in those disciplines required to design, analyze and formulate innovative drugs such as biologics and drugs employed in targeted therapies. The knowledge of the physico-chemical properties of molecules and macromolecules enable students to apply the analytical methods required for the identification, purification and characterization of biopharmaceuticals during production and quality control.

Strengths: innovative teaching approach; critical approach to science (not only theory!); students have an active role in organizing events, projects and investigations; excellent Teacher/Students ratio; high student satisfaction score (>8.5/10); high employability rate (90%, in Italy); most students graduate with full marks and pursue a PhD abroad.

Course structure

  • Advanced Reactivity And Modelling
  • Advanced Molecular Biology
  • Molecular And Experimental Pharmacology
  • Structural Biochemistry
  • Bioinformatics And Computational Biology
  • Drug Discovery And Development
  • Pharmaceutical Nanotechnology
  • Protein Engineering
  • Proteomics And Biochemical Methodologies
  • Biologics And Biopharmaceuticals
  • Delivery And Formulation Of Biotechnological Drugs
  • Diagnostic Microbiology And Molecular Immunology

Career opportunities

Graduates in Pharmaceutical Biotechnologies will operate in various areas of academic and industrial research at national and international level. They will be able to tackle problems related to the study and development of drugs and diagnostics and will work in several fields associated with the production and quality control of the pharmaceutical, biopharmaceutical, diagnostic and scientific instrumentation, as well as the cosmetic and nutraceutical industries and those interested in human and animal nutrition.

Scholarships and Fee Waivers

The University of Padova, the Veneto Region and other organisations offer various scholarship schemes to support students. Below is a list of the funding opportunities that are most often used by international students in Padova.

You can find more information below and on our website here: http://www.unipd.it/en/studying-padova/funding-and-fees/scholarships

You can find more information on fee waivers here: http://www.unipd.it/en/fee-waivers



Read less
Your programme of study. If you are interested in how drugs metabolise, small molecule discovery and biologics this programme will provide an advanced level of study and challenge to ensure you have sound skills to innovate within the drug development industry. Read more

Your programme of study

If you are interested in how drugs metabolise, small molecule discovery and biologics this programme will provide an advanced level of study and challenge to ensure you have sound skills to innovate within the drug development industry. This industry area is rapidly expanding due to new discoveries across biotechnology, biologics, Internet of Things, customised drug treatments and diagnostics at source. This has lead to many new companies being formed, customised and small batch medicines apart from large batch pharmaceutical research and production.

University of Aberdeen is world renowned in this area with the invention of Insulin to treat diabetes which won a Nobel Prize and strengths in medical research areas which also include food and nutrition and disease treatment. You learn about bio-business, how drugs are developed and managed. The university has strong links with GSK, Pfizer, and AstraZeneca plus Novabiotics and others.

In our MSc in Drug Discovery and Development we train students in major areas of biochemical and molecular pharmacology and therapeutics relevant to the drug discovery and development business. This includes training in molecular pharmacology, drug metabolism and toxicology, therapeutics, pharmacokinetics, pharmacovigilance, regulatory affairs and clinical pharmacology.

Courses listed for the programme

Semester 1

  • Introduction to Bio-Business and Commercialisation of Bioscience Research
  • Drug Metabolism and Toxicology
  • Generic Skills
  • Basic Skills - Introduction
  • Small Molecule Drug Discovery

Semester 2

  • Advanced Bio- Business and the Commercialisation of Bioscience Research 2
  • Pharmokinetics
  • Basic Research Methods
  • Biologic Drug Discovery

Semester 3

  • Research Project

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • We work closely with industry and our research strengths have spanned over 50 years with many coming from the inception of the   University in 1495
  • The degree will give you the skills and knowledge to work in the pharmaceutical industry but you may wish to continue your research towards drug discovery and start up
  • You learn bio-business but you also learn how bio-business is commercialised

Where you study

  • University of Aberdeen
  • 12 Months or 24 Months
  • Full Time or Part Time
  • September start
  • 12 months or 24 months

International Student Fees 2017/2018

Find out about fees

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs

https://abdn.ac.uk/study/student-life



Read less
The modern pharmaceutical industry encompasses the development of ‘biologics’ (for example antibodies or protein hormones), as much as it does traditional small-molecule drug discovery. Read more

The modern pharmaceutical industry encompasses the development of ‘biologics’ (for example antibodies or protein hormones), as much as it does traditional small-molecule drug discovery.

You will study the design and potential uses of different families of proteins and will examine the experiences of successful entrepreneurs in the field who have been involved in the commercialisation of biopharmaceuticals.

Your research project will focus on the early phases of an industrial biologics design programme.

Online learning

Our award-winning online learning technology enables you to interact with our highly qualified teaching staff from the comfort of your home or workplace. You will have the same access to our staff as you would if you were on campus. Our online students not only have access to Edinburgh’s excellent resources but they get the opportunity to become part of a supportive online community.

Programme structure

You will learn through a variety of teaching methods, including online tuition, peer-to-peer discussion and individual study.

For the MSc, you will take 12 courses followed by a research project leading to a dissertation in your final year.

Individual courses can be taken for Continuing Professional Development purposes or you can study for a Postgraduate Certificate, Postgraduate Diploma or MSc.

We offer a fast-track option to complete the MSc in two years, or you can spread your programme over a maximum of six years, through intermittent study, allowing you to accommodate work and other commitments.

You can expect to spend seven to 13 hours a week on your studies, depending on your chosen schedule.

Courses

  • Professional Skills in Drug Discovery
  • Measuring Drug Binding
  • Structure Determination of Drug Targets
  • Introduction to Modelling Biological Systems
  • Systems Approach to Modelling Cell Signal Transduction
  • Molecular Modelling
  • High Throughput Drug Discovery
  • Commercial Aspects of Drug Discovery
  • Systems Approach to Modelling Cell Signal Transduction
  • In Silico Drug Discovery
  • Research Grant Proposal

Career opportunities

You will enhance your career prospects with marketable analytical and presentation skills.



Read less
Biochemical Engineering concerns the use of biological organisms or processes by manufacturing industries. Read more
Biochemical Engineering concerns the use of biological organisms or processes by manufacturing industries. It is a multidisciplinary subject, requiring the integration of engineering and bioscience knowledge to design and implement processes used to manufacture a wide range of products; from novel therapeutics such as monoclonal antibodies for treating cancer, vaccines and hormones, to new environmentally-friendly biofuels. It is also essential in many other fields, such as the safe manufacture of food and drink and the removal of toxic compounds from the environment..

This course will provide you with the skills you need to start an exciting career in the bioprocess industries, or continue research in the area of bioprocessing or industrial biotechnology.

Industry involvement

As this is a highly industrially-led subject area, we have secured guest lectures from Cobra Biologics (contract manufacturing), Biocats Ltd (Enzyme manufacture) and the Centre for Process Innovation Ltd (biological process development) and are currently seeking additional industrial lectures.

Academics working at Birmingham have strong links with industry, through collaborative projects, so allow students to make contact with companies. Graduates from the MSc programme have gone on to careers in biochemical engineering world-wide, in large and small companies working in diverse areas.

There are also guest lectures from academics working at other institutions.

Practical experience

You will gain practical experience of working with industrially applicable systems, from fermentation at laboratory scale to 100 litre pilot scale, in the Biochemical Engineering laboratories. Theory learned in lectures will be applied in practical terms. In addition, theoretical aspects will be applied in design case studies in a number of modules, including the Design Project.

All MSc students complete a summer research project, working on a piece of individual, novel research within one of the research groups in the school. These projects provide an ideal experience of life as a researcher, from design of experimental work, practical generation of data, analysis and communication of findings. Many students find this experience very useful in choosing the next steps in their career.

Special Features

The lecture courses are supplemented with tutorials, seminars and experimental work. Industrial visits and talks by speakers from industrial and service organisations are also included in the course programme.

Pilot Plant

The Biochemical Engineering building houses a pilot plant with large-scale fermentation and downstream processing equipment. The newly-refurbished facility includes state-of-the-art computer-controlled bioreactors, downstream processing equipment and analytical instruments.

Course structure

The MSc is a 12-month full-time advanced course, comprising lectures, laboratory work, short experimental projects and a research project. You will take an introductory module, four core modules, and then choose 50 credits of optional themed modules. The course can also be taken on a part-time basis. The Postgraduate Diploma (PGDip) lasts for 8 months from the end of September until June.

For the first eight months you have lectures, tutorials and laboratory work. Core module topics include:

Fermentation and cell culture
Bioseparations
Process monitoring and control
Systems and synthetic biology approaches
Optional module include:

Biopharmaceutical development and manufacture
Food processing
Business skills for the process industries
The programme is strongly design-orientatedand you complete a full process plant design exercise. You also have practical experience of working in the newly-refurbished pilot plant of the Biochemical Engineering building.

From June to September you gain research training on your own project attached to one of the teams working in the bioprocessing research section.

About the School of Chemical Engineering

Birmingham has one of the largest concentrations of Chemical Engineering expertise in the UK, with an excellent reputation in learning, teaching and research.
Investment totalling over £3.5 million in our buildings has resulted in some of the best teaching, computing and laboratory facilities anywhere in the UK.
We have achieved an excellent performance in the Research Excellence Framework (REF) – the system for assessing the quality of research in UK higher education institutions. 87% of the research in the School was rated as world-leading or internationally excellent. It was ranked joint fourth overall in the UK for its research prowess and first nationally for research impact.
The enthusiasm that the academic staff have for their research comes through in their teaching and ensures that they and you are at the cutting edge of chemical engineering.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The aim of the Distance Learning (DL) PGDip/MSc in Clinical Drug Development course is to provide students with a multi-disciplinary perspective to facilitate their skills. Read more
The aim of the Distance Learning (DL) PGDip/MSc in Clinical Drug Development course is to provide students with a multi-disciplinary perspective to facilitate their skills. This course is designed for individuals who need an understanding of the drug development process, and provides a detailed picture of the complex and highly interrelated activities required for the development cycle for drugs and biologics, from the process of discovery to successful commercialisation. The DL PGDip/MSc in Clinical Drug Development provides students the edge that pharmaceutical industry requires. It also empowers the professionals working within the field with the skills and understanding required for fast progression within the industry and contract research organisations (CRO-s).
The modular nature of the courses is designed to fit in with the needs of those students who are in full time employment. The taught element of the modules is delivered in three-day blocks every four to six weeks (approximately). For a PGDip award students have to complete in total of 7 modules, while for an MSc award students need to complete 10 modules in total.
Module Titles:
Drug Discovery & Pre-Clinical Research & Development
Toxicology: From Molecules to Man
Clinical Study Design
Practical Aspects of Clinical Research & Early Drug Development
Ethics & Regulation in Clinical Research
Data Management: The Interpretation of Statistics & Pharmacokinetics
Specific Topics in Clinical Trial Design and Elective Project
Health and Pharmaco-Economics
Pharmaceutical & Healthcare Marketing
Dissertation
The final mark will have the following components
• Continuous assessment (module assignment)
• Dissertation

Read less
Your programme of study. If you want to discover a cure for a major disease or lesser known disease this programme will help you towards that goal. Read more

Your programme of study

If you want to discover a cure for a major disease or lesser known disease this programme will help you towards that goal. Aberdeen is well know for drug discovery as Insulin was developed at the university and there has always been a strong research focus within the medical sciences to continue finding major innovations in health sciences. You learn how to formulate drugs to understand how they are regulated and the bio-business area. This area has been in rapid growth since the discovery of customised drugs which rely on individual genetic make up to define, small batch drugs which larger drug companies don't manufacture for reasons of scale and economy, and the understanding of biologics to treat diseases.

Drug Discovery is one of the few areas which have continued to expand over the last 5 years, in fact there is a major revolution in treating disease processes with other disciplines assisting. The pharmaceutical industry in the UK is one of the largest contributors of income and it is being disrupted by a combination of easy process and scale up using innovation centre facilities, and customised treatments. Drug discovery involves multidisciplinary teams working in academia, biotechnology and pharmaceutical industries. Our MRes in Drug Discovery provides training in across all aspects of drug discovery and development, clinical pharmacology and medical biotechnology. The degree programme consists of one term of taught courses (3 months) followed by 2 individual research projects lasting 16 weeks each.

Courses listed for the programme

Semester 1

  • Molecular Pharmacology
  • Small Molecule Drug Discovery
  • Introduction to Bio-Business and the Commercialisation of Bioscience Research
  • Basic Skills-Induction
  • Generic Skills

Optional

  • Introduction to Molecular Biology
  • Applied Statistics
  • Drug Metabolism & Toxicology

Semester 2

  • Research Project

Optional

  • Advanced Bio-Business and the Commercialisation of Bioscience Research
  • Biologic Drug Discovery
  • Basic Research Methods

Semester 3

Why study at Aberdeen?

  • The university is highly regarded and known as a 'centre for excellence' in drug discovery and commercialisation
  • Researchers that teach are active opinion leaders and regulators with further interdisciplinary researchers in other countries and two British Pharmacological Society Wellcome Gold Medal winners on staff
  • The university won the Nobel Prize for the treatment of diabetes and invention of insulin

Where you study

  • University of Aberdeen
  • Full Time or Part Time
  • 12 Months or 24 Months
  • September

International Student Fees 2017/2018

Find out about fees

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

  • Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs



Read less
This is a full-time 1 year MSc programme suitable for biomedical or life scientists who wish to acquire an extensive knowledge and key skills relating to the fundamental molecular and cellular regulation of immunity and its application to the treatment of disease. Read more
This is a full-time 1 year MSc programme suitable for biomedical or life scientists who wish to acquire an extensive knowledge and key skills relating to the fundamental molecular and cellular regulation of immunity and its application to the treatment of disease. The programme will be delivered by world leaders at the forefront of immunology and immunotherapy research, each with an internationally renowned research group.

Over the past few years significant advances have been made in our understanding of the molecular and cellular control of immune responses. These discoveries are now being translated into the design and testing of immunotherapeutic interventions for a range of diseases including cancer, autoimmunity and inflammatory disease. This programme is for biomedical or life scientists who wish to extend their knowledge and skills in both immunology and its translation to immunotherapy.

A series of interlinked taught modules cover molecular mechanisms in immune cell differentiation and function, autoimmunity, transplant and tumour immunology, and inflammation. This is complemented by comprehensive coverage of the latest developments in immunotherapy including the use of microbial products in immunomodulation and vaccination, small molecules and biologics, as well as cellular immunotherapy.

The programme aims to allow you to understand the research process, from the fundamental discoveries at the forefront of immunological research, to the application of novel interventional immune-based therapies.

A key part of the MSc programme is the planning, execution and reporting of a piece of independent study leading to submission of a dissertation. This study will be in the form of an extensive laboratory research project carried out in internationally renowned research groups. Each student will be a fully-integrated member of one of the large number of research teams in a wide variety of topics across both immunology and immunotherapy. We also plan to offer some projects within external biotechnology companies.

About the College of Medical and Dental Sciences

The College of Medical and Dental Sciences is a major international centre for research and education, make huge strides in finding solutions to major health problems including ageing, cancer, cardiovascular, dental, endocrine, inflammatory diseases, infection (including antibiotic resistance), rare diseases and trauma.
We tackle global healthcare problems through excellence in basic and clinical science, and improve human health by delivering tangible real-life benefits in the fight against acute and chronic disease.
Situated in the largest healthcare region in the country, with access to one of the largest and most diverse populations in Europe, we are positioned to address major global issues and diseases affecting today’s society through our eight specialist research institutes.
With over 1,000 academic staff and around £60 million of new research funding per year, the College of Medical and Dental Sciences is dedicated to performing world-leading research.
We care about our research and teaching and are committed to developing outstanding scientists and healthcare professionals of the future. We offer our postgraduate community a unique learning experience taught by academics who lead the way in research in their field.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The MSc in Biotherapeutics educates students on the practical uses of molecular advances in the discovery of protein and other biomolecular drug candidates and their development into biotherapeutics. Read more

Programme Description

The MSc in Biotherapeutics educates students on the practical uses of molecular advances in the discovery of protein and other biomolecular drug candidates and their development into biotherapeutics. It will provide students with a comprehensive understanding of the development of biotherapeutics, beginning with pre-clinical modelling and target identification together with antibody engineering, biochemical and biophysical characterisation, and development issues for bioprocessing. Systems biology of biotechnological processes and approaches to the analysis of proteomics-based discovery data will be covered in detail together with mathematical modelling, bioinformatics analysis and data integration strategies. Regulatory issues, and innovation and commercialisation strategies, will also be covered. Mammalian cell culture and bioprocess laboratory structure will be comprehensively covered in addition to novel approaches to therapeutic development. A practical drug discovery laboratory project will form a significant component of the experience of how candidates are identified and brought through the development pipeline.

Key Fact

This programme is the culmination of close collaboration between the UCD School of Biomolecular and Biomedical Science, Systems Biology Ireland and the Biopharmaceutical Industry in Ireland and across the world.

Course Content and Structure

The structure of the programme is as follows:

Semester 1
• Biotherapeutic Discovery and Development I
• Professional Career Development
• Recombinant DNA Technology
• Business of Biotechnology & Science
• Biomedical Diagnostics
• High Content Screening Microscopy
• Pharmacology & Drug Development

Semesters 2 & 3
• Biotherapeutic Discovery and Development II
• Systems Biology in Drug Development
• Professional Career Development
• Bioprocessing Laboratory
• Emerging Issues in Biotechnology
• Regulatory Affairs
• Microbial & Animal Cell Products
• Project – Biotherapeutic Development

Career Opportunities

This advanced graduate degree in Biotherapeutics has been developed in consultation with the Biopharmaceutical industry and is recognised and valued by them. A key feature is the undertaking of a significant drug discovery and development laboratory project which is reviewed by industry partners. This engagement is designed to help graduates identify opportunities in the industry at the earliest stage. Prospective employers include: Novartis, Glaxo SmithKline, Eli Lilly, Johnson & Johnson, Pfizer, Janssen Biologics, AstraZeneca, MSD, Bristol Myers Squibb, Abbott, Sanofi.

Facilities and Resources

Students on this programme will benefit from the use of a research skills laboratory in the prestigious UCD Conway Institute, as well as state-of-the-art teaching and laboratory facilities
in the new O'Brien Centre for Science.

Read less
Summary. The programme focuses on biological and artificial interfaces that are of utmost importance and interest in the field of biomedical science. . Read more

Summary

The programme focuses on biological and artificial interfaces that are of utmost importance and interest in the field of biomedical science. 

This is an excellent opportunity for you who has a bachelor’s degree in life sciences and would like to advance your skills in biomedical science. The programme offers theoretical as well as practical skills, beyond traditional teaching in biomedicine, biology and chemistry. The education combines cell and molecular biology with surface and colloid chemistry. It offers unique knowledge, useful in biotech applica­tions such as: drug delivery systems, implants, bio-assays, medical nano-technology and food technology. Arranged in close collaboration with regional industry, it provides an up to date overview of research and development in the field of biomedical surface science.

About

The program creates a platform for understanding the involvement of surface science in biomedicine and biotechnology. You will get theoretical knowledge and practical skills in the areas of biomedical activities which require expertise beyond traditional disciplines of biomedicine, chemistry or biology.

Active connections

The program is carried out in close collaboration with regional industry, and provides up to date overview on research and development work in the area of biomedical technology. Education is conducted by researchers and teachers who are participants of an industrially relevant research network called Profile “Biofilms – research center for biointerfaces”. Our experimental facilities combine chemistry, cell and molecular biology, and bioanalytical laboratories.

Forms of study

We use different pedagogical forms, with a strong focus on research questions in development of biomedical products. The collaboration with surrounding biomedical industry is conducted through CDIO, Conceive - Design - Implement - Operate projects.

What is Biomedical Surface Science?

Biomedical surface science refers to the knowledge and understanding of the theoretically and practically integration of surface chemistry in applied aspects of cell biology, immunology, molecular biology and nanotechnology.Biomedical surface science refers to specialised knowledge of surface chemistry in applied areas of cell biology, immunology, molecular biology, nano-biotechnology and colloid chemistry, as well as substantially knowledge on integration of these subject in biomedical surface science.

Major Biomedical industries

Drugs and biotechnology

  • small molecules - synthetic organic molecules
  • biologics - biological molecules made by living organisms (biotechnology)

Devices and diagnostics

  • medical devices industry
  • diagnostics - IVD (in-vitro diagnostics)

Syllabus

For syllabus, course content and learning outcomes, please see here.

Degree

Master's Degree (120 credits).

After the education on the programme is accomplished the requirements for the master degree in Biomedical Surface Science are fulfilled. 

The degree certificate states the Swedish title Masterexamen i biomedicinsk ytvetenskap (120 hp)and the English title Degree of Master of Science (120 credits) with a major in Biomedical Surface Science.



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X