• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
University of Manchester Featured Masters Courses
University College London Featured Masters Courses
Queen Margaret University, Edinburgh Featured Masters Courses
Swansea University Featured Masters Courses
"biological" AND "enginee…×
0 miles

Masters Degrees (Biological Engineering)

We have 352 Masters Degrees (Biological Engineering)

  • "biological" AND "engineering" ×
  • clear all
Showing 1 to 15 of 352
Order by 
Chemical and Chemical & Biological engineers create and develop processes to change raw materials into the products that society depends on; food, chemicals, fuels, energy, metals, pharmaceuticals, paper, plastics, and personal care products. Read more

Chemical and Chemical & Biological engineers create and develop processes to change raw materials into the products that society depends on; food, chemicals, fuels, energy, metals, pharmaceuticals, paper, plastics, and personal care products. Chemical and process engineers help to manage natural resources, protect the environment, control health and safety procedures, and recycle materials, while developing and managing the processes which make the products we use.

The Department of Chemical and Biological Engineering was established in 1999 at UBC, and reflects the growing need for engineers in the fields of biotechnology, biomedical and bio-resource engineering. At present there are 24 full-time faculty in the Department of Chemical and Biological Engineering, together with a support staff of 17.

We have established a world-class reputation in several areas of chemical engineering science including fluid-solids contacting, pulp and paper engineering, heat exchanger fouling and, more recently, biotechnology.

The Department is actively engaged in applied research, CHBE faculty-led research provides innovative and sustainable solutions to pressing local and global challenges to industry and society.

  • Energy and Fuels: Sustainable clean energy and fuels supply and use
  • Natural Resources: Managing and maximizing the value of Canada’s forest and fossil carbon reserves
  • Environment: Mitigating climate change/pollutionClean water and biodiversity security
  • Health: Rising medical costs in the face of aging populationCancer and other deadly diseases
  • Industry: Increasing pressure from emerging economies

Solutions to the above challenges are inextricably linked to our understanding of complex chemical and biological systems.

Students with a background in Engineering will receive a Master of Applied Science degree whereas students without Engineering background will receive a Master of Science degree.

What makes the program unique?

Research funding per grant holder is amongst the highest for chemical engineering departments in Canada. Several faculty members have won national and international recognition for their research contributions and many former students have gone on to become leaders in industry and academia in Canada and abroad.

The Department facilities include a building with extensive custom research labs designed for quality world class research activities.

Career options

Chemical engineers have a myriad career choices. Chemical engineers find employment globally in industry, government, research and medicine, the opportunities are endless. Many chemical engineers have gone on to become managers, company executives, entrepreneurs and leaders of government and non-government organizations.

Chemical engineers are highly employable and there continues to be a growing demand for chemical engineers.



Read less
Chemical and Chemical & Biological engineers create and develop processes to change raw materials into the products that society depends on; food, chemicals, fuels, energy, metals, pharmaceuticals, paper, plastics, and personal care products. Read more

Chemical and Chemical & Biological engineers create and develop processes to change raw materials into the products that society depends on; food, chemicals, fuels, energy, metals, pharmaceuticals, paper, plastics, and personal care products. Chemical and process engineers help to manage natural resources, protect the environment, control health and safety procedures, and recycle materials, while developing and managing the processes which make the products we use.

The Department of Chemical and Biological Engineering was established in 1999 at UBC, and reflects the growing need for engineers in the fields of biotechnology, biomedical and bio-resource engineering. At present there are 24 full-time faculty in the Department of Chemical and Biological Engineering, together with a support staff of 17.

We have established a world-class reputation in several areas of chemical engineering science including fluid-solids contacting, pulp and paper engineering, heat exchanger fouling and, more recently, biotechnology.

The Department is actively engaged in applied research, CHBE faculty-led research provides innovative and sustainable solutions to pressing local and global challenges to industry and society.

  • Energy and Fuels: Sustainable clean energy and fuels supply and use
  • Natural Resources: Managing and maximizing the value of Canada’s forest and fossil carbon reserves
  • Environment: Mitigating climate change/pollutionClean water and biodiversity security
  • Health: Rising medical costs in the face of aging populationCancer and other deadly diseases
  • Industry: Increasing pressure from emerging economies

Solutions to the above challenges are inextricably linked to our understanding of complex chemical and biological systems.

Students with a background in Engineering will receive a Master of Applied Science degree whereas students without Engineering background will receive a Master of Science degree.

What makes the program unique?

Research funding per grant holder is amongst the highest for chemical engineering departments in Canada. Several faculty members have won national and international recognition for their research contributions and many former students have gone on to become leaders in industry and academia in Canada and abroad.

The Department facilities include a building with extensive custom research labs designed for quality world class research activities.

Career options

Chemical engineers have a myriad career choices. Chemical engineers find employment globally in industry, government, research and medicine, the opportunities are endless. Many chemical engineers have gone on to become managers, company executives, entrepreneurs and leaders of government and non-government organizations.

Chemical engineers are highly employable and there continues to be a growing demand for chemical engineers.



Read less
Chemical & Biological Engineering is a discipline that integrates chemistry and biology at the molecular level and uses this broad foundation along with engineering fundamentals to study the synthesis of new processes and products. Read more
Chemical & Biological Engineering is a discipline that integrates chemistry and biology at the molecular level and uses this broad foundation along with engineering fundamentals to study the synthesis of new processes and products. Our graduate program in Chemical and Biological Engineering is an interdisciplinary program that combines chemical engineering fundamentals and systems biology to meet the research challenges of the future.

Current faculty projects and research interests:

• Drug Discovery
• Tissue Engineering
• Plant Biotechnology
• Protein-Protein Interactions
• Protein Folding
• Process Dynamics, Control and Optimization
• Systems Engineering
• Catalysis
• Supercritical Fluids
• Synthesis of Nanostructured Materials
• Fuel Cells and Sustainable Development
• Computational Fluid Dynamics
• Polymer Science and Engineering

Read less
Medical engineering combines the design and problem-solving skills of engineering with medical and biological sciences to contribute to medical device solutions and interventions for a range of diseases and trauma. Read more

Medical engineering combines the design and problem-solving skills of engineering with medical and biological sciences to contribute to medical device solutions and interventions for a range of diseases and trauma.

This exciting and challenging programme will give you a broad knowledge base in this rapidly expanding field, as well as allowing you to specialise through your choice of optional modules.

We emphasise the multidisciplinary nature of medical engineering and the current shift towards the interface between engineering and the life sciences. You could focus on tissue engineering, biomaterials or joint replacement technology among a host of other topics.

Whether you’re an engineer or surgeon, or you work in sales, marketing or regulation, you’ll gain the knowledge and skills to launch or develop your career in this demanding sector.

Institute of Medical and Biological Engineering

You’ll learn in an exciting research environment where breakthroughs are being made in your discipline. This programme is closely linked to our Institute of Medical and Biological Engineering (IMBE), which focuses on research and education in the fields of medical devices and regenerative medicine. It focuses on innovating and translating new therapies into practical clinical applications.

Our world-class facilities in materials screening analysis, joint simulation, surface analysis, heart valve simulation and tensile and fatigue testing allow us to push the boundaries in medical engineering.

Find out more about IMBE

Accreditation

This course is accredited by the Institute of Mechanical Engineers (IMechE) under licence from the UK regulator, the Engineering Council.



Read less
As a Master of Engineering (ME) graduate you will have the opportunity to either seek employment as a professional engineer, or start a research career. Read more

As a Master of Engineering (ME) graduate you will have the opportunity to either seek employment as a professional engineer, or start a research career.

The ME normally takes 12 months to complete full-time.  It builds on prior study at undergraduate level, such as the four-year BE(Hons) or BSc(Tech).  The degree requires 120 points, which can either be made up of 30 points in taught papers and a 90-point dissertation (research project), or one 120-point thesis.

If you enrol in an ME via the Faculty of Science & Engineering you can major in Engineering, and your thesis topic may come from our wide range of study areas such as biological engineering, chemical engineering, civil engineering, mechanical engineering, materials engineering, environmental engineering and electronic engineering.

The Faculty of Science & Engineering fosters collaborative relationships between science, engineering, industry and management.  The Faculty has developed a very strong research base to support its aims of providing you with in-depth knowledge, analytical skills, innovative ideas, and techniques to translate science into technology in the real world.

You will have the opportunity to undertake research with staff who are leaders in their field and will have the use of world-class laboratory facilities. Past ME students have worked on projects such as a ‘snake robot’ for disaster rescue and a brain-controlled electro-mechanical prosthetic hand.

Facilities

The University of Waikato School of Engineering’s specialised laboratories includes the Large Scale Lab complex that features a suite of workshops and laboratories dedicated to engineering teaching and research.  These include 3D printing, a mechanical workshop and computer labs with engineering design software.

The computing facilities at the University of Waikato are among the best in New Zealand, ranging from phones and tablets for mobile application development to cluster computers for massively parallel processing. Software engineering students will have 24 hour access to computer labs equipped with all the latest computer software.

Build a successful career

Depending on the thesis topic studied, graduates of this degree may find employment in the research and development department in a range of engineering industries, including energy companies, environmental agencies, government departments, biomedical/pharmaceutical industries, private research companies, universities, food and dairy industries, electronics, agriculture, forestry and more. The ME can also be a stepping stone to doctoral studies.

Career opportunities

  • Aeronautical Engineer
  • Automotive Engineer
  • Biotechnologist
  • Computer-aided Engineer
  • Engineering Geologist
  • Food and Drink Technologist
  • Laboratory Technician
  • Mechanical Engineer
  • Medical Sciences Technician
  • Patent Attorney
  • Pharmaceutical Engineer
  • Quality Assurance Officer
  • Research Assistant
  • Theoretical Physics Research


Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Tissue Engineering and Regenerative Medicine at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Tissue Engineering and Regenerative Medicine at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Every day we are hearing of ground breaking advances in the field of tissue engineering which offer tremendous potential for the future of regenerative medicine and health care. Staff at Swansea University are active in many aspects of tissue engineering.

Key Features of Tissue Engineering and Regenerative Medicine

We are actively researching many aspects of tissue engineering including the following areas:

- Characterisation and control of the stem cell niche

- Mechanical characterisation of stem cells and tissues

- Production of novel scaffolds for tissue engineering

- Electrospinning of scaffold materials

- Cartilage repair and replacement

- Bone repair and replacement

- The application of nanotechnology to regenerative medicine

- Wound healing engineering

- Reproductive Immunobiology

- Bioreactor design

As an MSc By Research Tissue Engineering and Regenerative Medicine student, you will join one of the teams at Swansea University working in tissue engineering and use state of the art research equipment within the Centre for NanoHealth, a collaborative initiative between the College of Engineering and Swansea University Medical School.

The MSc by Research in Tissue Engineering and Regenerative Medicine typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Aim of Tissue Engineering and Regenerative Medicine programme

The aim of this MSc by Research in Tissue Engineering and Regenerative Medicine is to provide you with a solid grounding within the field of tissue engineering and its application within regenerative medicine.

This will be achieved through a year of research in a relevant area of tissue engineering identified after discussion with Swansea academic staff. Working with two academic supervisors you will undertake a comprehensive literature survey which will enable the formulation of an experimental research programme.

As a student on the MSc by Research Tissue Engineering and Regenerative Medicine course, you will be given the relevant laboratory training to undertake the research program. The research will be written up as a thesis that is examined. You will also be encouraged to present your work in the form of scientific communications such as journals and conference poster presentation.

The MSc by Research in Tissue Engineering and Regenerative Medicine will equip you with a wealth of research experience and knowledge that will benefit your future career in academia or the health care industries.

Recent MSc by Research theses supervised in the area of Tissue Engineering at Swansea University include:

- Quality assurance of human stem cell/primary cell bank

- The development of electrospinning techniques for the production of novel tissue engineering scaffolds.

- The incorporation of pulsed electromagnetic fields into wound dressings.

- The application of pulsed electromagnetic fields for improved wound healing.

- The use of nanoparticles in the control of bacterial biofilms in chronic wounds.

- The control of bacterial adhesion at surfaces relevant to regenerative medicine.

- The production of micro-porous particles for bone repair

Facilities

The £22 million Centre for Nanohealth is a unique facility linking engineering and medicine, and will house a unique micro-nanofabrication clean room embedded within a biological research laboratory and with immediate access to clinical research facilities run by local NHS clinicians.

Links with industry

The academic staff of the Medical Engineering discipline have always had a good relationship with industrial organisations. The industrial input ranges from site visits to seminars delivered by clinical contacts.

The close proximity of Swansea University to two of the largest NHS Trusts in the UK outside of London also offers the opportunity for collaborative research.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less
The Masters in Biomedical Engineering is an interdisciplinary programme that will equip you for employment within the biomedical engineering sector. Read more

The Masters in Biomedical Engineering is an interdisciplinary programme that will equip you for employment within the biomedical engineering sector. This programme addresses all the key aspects of biomedical engineering.

Why this programme

  • The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
  • Biomedical Engineering is the newest division of the School, bringing together our long standing expertise. Research covers four themes, Biomaterials and Tissue Engineering, Bionanotechnology, Rehabilitation Engineering, Biosensors and Diagnostics.
  • The course is based on in-depth modules and individual projects, which are designed to give graduates an opportunity to specialise in specific areas of Biomedical Engineering or to cover a more general Biomedical Engineering syllabus.
  • This taught MSc/PG Dip offers a wide exposure to the philosophy and practice of Biomedical Engineering whilst simultaneously enabling the students to deepen their knowledge of specific areas of biomedical engineering disciplines, which have been chosen on the basis of the research strengths of the Discipline. The choice includes Biomaterials and Biomechanics including their application in Tissue Engineering and Regenerative Medicine, Rehabilitation Engineering includes applied within Glasgow hospital and bioelectronics and diagnostic systems, designed to be applied from advanced hospitals to out-in-the-field situations.
  • The compulsory part provides the basic underlying knowledge need throughout biomedical engineering these core courses are taken in both semesters to allow a wide range of optional subjects to be available.
  • You will broaden and/or deepen your knowledge of biomedical engineering disciplines.

Programme structure

Modes of delivery of the MSc in Biomedical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, team work and study trips in the UK. You will undertake an MSc project working on a specific research area with one of the academics.

Core courses

  • Applications of biomedical engineering
  • Biological fluid mechanics
  • Cellular biophysics
  • Energy in biological systems
  • Medical imaging
  • Statistics for biomedical engineering
  • MSc project.

Optional courses

  • Advanced imaging and therapy
  • Applied engineering mechanics
  • Bioinformatics and systems biology
  • Biomechanics
  • Biosensors and diagnostics
  • Microscopy and optics
  • Nanofabrication
  • Rehabilitation engineering
  • Scaffolds and tissues
  • Signal processing of bio-signatures
  • Tissue and cell engineering.

Career prospects

Career opportunities include positions in rehabilitation engineering, biomaterials for reconstructive surgery, biosensors, device and implant design and development, and biosignal processing.



Read less
About the course. Accredited by the the Institution of Chemical Engineers. Develop the essential skills for a career in bioindustry or for further advanced research in next-horizon biotechnologies. Read more

About the course

Accredited by the the Institution of Chemical Engineers

Develop the essential skills for a career in bioindustry or for further advanced research in next-horizon biotechnologies. You’ll learn from world-class researchers, including staff from Biomedical Science and Materials Science and Engineering. Our graduates work in biotechnology, biopharmaceutical and bioprocess organisations.

Take advantage of our expertise

Our teaching is grounded in specialist research expertise. Our reputation for innovation secures funding from industry,

UK research councils, the government and the EU. Industry partners, large and small, benefit from our groundbreaking work addressing global challenges.

You’ll have access to top facilities, including modern social spaces, purpose-built labs, the Harpur Hill Research Station for large-scale work, extensive computing facilities and a modern applied science library. There are high-quality research facilities for sustainable energy processes, safety and risk engineering, carbon capture and utilisation, and biological processes and biomanufacturing.

Studentships

Contact us for current information on available scholarships.

Course content

Four core modules including research project, a conversion module, and three optional modules.

Core modules

  • Biopharmaceutical Bioprocessing
  • Biosystems Engineering and Computational Biology
  • Bioanalytical Techniques
  • Research Project

Examples of optional modules

Examples of optional modules

  • Bio-Nanomaterial
  • Tissue Engineering Approaches to Failure in Living Systems
  • Challenging Industries – an Industry-led Enterprising Project
  • Bio-energy
  • Synthetic Biology
  • Tissue Engineering Approaches to Failure in Living Systems
  • Bionanomaterials
  • Stem Cell Biology
  • Proteomics and Bioinformatics

Conversion modules:

  • Principles in Biochemical Engineering or
  • Principles in Biomolecular Sciences

Teaching and assessment

We use a combination of lectures, tutorials, examples classes and coursework assignments.

Assessment is based on assignments for each module, formal examination of core modules, dissertation and oral presentation of the laboratory-based research project.



Read less
The Masters in Biomedical Engineering is an interdisciplinary programme that will equip you for employment within the biomedical engineering sector. Read more

The Masters in Biomedical Engineering is an interdisciplinary programme that will equip you for employment within the biomedical engineering sector. This programme addresses all the key aspects of biomedical engineering.

Why This Programme

  • The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
  • Biomedical Engineering is the newest division of the School, bringing together our long standing expertise. Research covers four themes, Biomaterials and Tissue Engineering, Bionanotechnology, Rehabilitation Engineering, Biosensors and Diagnostics.
  • The course is based on in-depth modules and individual projects, which are designed to give graduates an opportunity to specialise in specific areas of Biomedical Engineering or to cover a more general Biomedical Engineering syllabus.
  • This taught MSc/PG Dip offers a wide exposure to the philosophy and practice of Biomedical Engineering whilst simultaneously enabling the students to deepen their knowledge of specific areas of biomedical engineering disciplines, which have been chosen on the basis of the research strengths of the Discipline. The choice includes Biomaterials and Biomechanics including their application in Tissue Engineering and Regenerative Medicine, Rehabilitation Engineering includes applied within Glasgow hospital and bioelectronics and diagnostic systems, designed to be applied from advanced hospitals to out-in-the-field situations.
  • The compulsory part provides the basic underlying knowledge need throughout biomedical engineering these core courses are taken in both semesters to allow a wide range of optional subjects to be available.
  • You will broaden and/or deepen your knowledge of biomedical engineering disciplines.

Programme structure

Modes of delivery of the MSc in Biomedical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, team work and study trips in the UK. You will undertake an MSc project working on a specific research area with one of the academics.

Core courses

  • Applications of biomedical engineering
  • Biological fluid mechanics
  • Cellular biophysics
  • Energy in biological systems
  • Medical imaging
  • Statistics for biomedical engineering
  • MSc project.

Optional courses

  • Advanced imaging and therapy
  • Applied engineering mechanics
  • Bioinformatics and systems biology
  • Biomechanics
  • Biosensors and diagnostics
  • Microscopy and optics
  • Nanofabrication
  • Rehabilitation engineering
  • Scaffolds and tissues
  • Signal processing of bio-signatures
  • Tissue and cell engineering.

Career prospects

Career opportunities include positions in rehabilitation engineering, biomaterials for reconstructive surgery, biosensors, device and implant design and development, and biosignal processing.



Read less
Have you ever wondered how the latest life science discoveries - such as a novel stem cell therapy - can move from the lab into commercial scale production?… Read more

Have you ever wondered how the latest life science discoveries - such as a novel stem cell therapy - can move from the lab into commercial scale production? Would you like to know whether it is possible to produce bio-polymers (plastics) and biofuels from municipal or agricultural waste? If you are thinking of a career in the pharma or biotech industries, the Biochemical Engineering MSc could be the right programme for you.

About this degree

Our MSc programme focuses on the core biochemical engineering principles that enable the translation of advances in the life sciences into real processes or products. Students will develop advanced engineering skills (such as bioprocess design, bioreactor engineering, downstream processing), state-of-the-art life science techniques (such as molecular biology, vaccine development, microfluidics) and essential business and regulatory knowledge (such as management, quality control, commercialisation).

Three distinct pathways are offered tailored to graduate scientists, engineers, or biochemical engineers.

Students undertake modules to the value of 180 credits.

The programme offers three distinct pathways tailored to: graduate scientists ("Engineering Stream"); graduate engineers from other disciplines ("Science Stream"); or graduate biochemical engineers ("Biochemical Engineering Stream"). The programme for all three streams consists of a combination of core and optional taught modules (120 credits) and a research or design project (60 credits).

Core modules

Students are allocated to one of the three available streams based on their academic background (life science/science, other engineering disciplines, biochemical engineering). The programme for each stream is tailored to the background of students in that stream. Core modules may include the following (depending on stream allocation). 

  • Advanced Bioreactor Engineering
  • Dissertation on Bioprocess Research
  • Fundamental Biosciences
  • Integrated Downstream Processing
  • Sustainable Industrial Bioprocesses and Biorefineries

Please go to the "Degree Structure" tab on the departmental website for a full list of core modules.

Optional modules

Optional modules may include the following (details will vary depending on stream allocation).

  • Bioprocess Management – Discovery to Manufacture
  • Bioprocess Microfluidics
  • Bioprocess Systems Engineering
  • Bioprocess Validation and Quality Control
  • Commercialisation and Bioprocess Research
  • Vaccine Bioprocess Development

Please go to the "Degree Structure" tab on the departmental website for a full list of optional modules

Research project/design project

Students allocated to the "Engineering" stream will have to complete a bioprocess design project as part of their MSc dissertation.

Students allocated to the "Science" and "Biochemical Engineering" streams will have to complete a research project as part of their MSc dissertation.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials, and individual and group activities. Guest lectures delivered by industrialists provide a professional and social context. Assessment is through unseen written examinations, coursework, individual and group project reports, individual and group oral presentations, and the research or design project.

Further information on modules and degree structure is available on the department website: Biochemical Engineering MSc

Careers

The rapid advancements in biology and the life sciences create a need for highly trained, multidisciplinary graduates possessing technical skills and fundamental understanding of both the biological and engineering aspects relevant to modern industrial bioprocesses. Consequently, UCL biochemical engineers are in high demand, due to their breadth of expertise, numerical ability and problem-solving skills. The first destinations of those who graduate from the Master's programme in biochemical engineering reflect the highly relevant nature of the training delivered.

Approximately three-quarters of our graduates elect either to take up employment in the relevant biotechnology industries or study for a PhD or an EngD, while the remainder follow careers in the management, financial or engineering design sectors.

Recent career destinations for this degree

  • Biopharmaceutical Processing Engineer, Johnson & Johnson
  • Process Engineer, ExxonMobil
  • PhD Biochemical Engineering, UCL
  • Bio-Pharmaceutical Engineer, GSK (GlaxoSmithKline)
  • Research Analyst, CIRS (Centre for Innovation in Regulatory Science)

Employability

The department places great emphasis on its ability to assist its graduates in taking up exciting careers in the sector. UCL alumni, together with the department’s links with industrial groups, provide an excellent source of leads for graduates. Over 1,000 students have graduated from UCL with graduate qualifications in biochemical engineering at Master’s or doctoral levels. Many have gone on to distinguished and senior positions in the international bioindustry. Others have followed independent academic careers in universities around the world.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL was a founding laboratory of the discipline of biochemical engineering, established the first UK department and is the largest international centre for bioprocess teaching and research. Our internationally recognised MSc programme maintains close links with the research activities of the Advanced Centre for Biochemical Engineering which ensures that lecture and case study examples are built around the latest biological discoveries and bioprocessing technologies.

UCL Biochemical Engineering co-ordinates bioprocess research and training collaborations with more than a dozen UCL departments, a similar number of national and international university partners and over 40 international companies. MSc students directly benefit from our close ties with industry through their participation in the Department’s MBI® Training Programme.

The MBI® Training Programme is the largest leading international provider of innovative UCL-accredited short courses in bioprocessing designed primarily for industrialists. Courses are designed and delivered in collaboration with 70 industrial experts to support continued professional and technical development within the industry. Our MSc students have the unique opportunity to sit alongside industrial delegates, to gain deeper insights into the industrial application of taught material and to build a network of contacts to support their future careers. 

Accreditation

Our MSc is accredited by the Institute of Chemical Engineers (IChemE).

The “Science” and “Biochemical Engineering” streams are accredited by the IChemE as meeting the further learning requirements, in full, for registration as a Chartered Engineer (CEng, MIChemE).



Read less
Engineering organisms and processes to generate the products of the future. Many everyday products are generated using biological processes. Read more

Engineering organisms and processes to generate the products of the future

Many everyday products are generated using biological processes. Foods such as bread, yoghurt and beer rely upon microscopic organisms to generate their structure and flavour. Many drugs are made using cells, such as insulin used to treat diabetes and many anticancer chemotherapy drugs. In the future, more products will be made using biological processes as they are typically ‘greener’ than traditional chemical processes – they are less energy intensive and generate fewer harmful chemical by-products. Biological processes are also responsible for many environmentally-friendly biofuels, which aim to reduce fossil fuel use.

Biological processes are key to many UK companies, from small contract manufacturers of protein and DNA drugs to large companies making fuels, commodity chemicals, foods and plastics. Biochemical engineering is an area that is essential to UK, European and Worldwide industrial development.

This is a highly multidisciplinary subject, requiring the integration of engineering and bioscience knowledge. If you are interested in pursuing a career in industrial biotechnology, biochemical engineering, biotechnology or bioprocessing, then this programme will provide you with the basic knowledge and skills required. Optional modules expand your horizons to include specific product areas (such as pharmaceuticals) and other skills required for a career in the area (such as business skills).

Birmingham is a friendly School which has one of the largest concentrations of chemical engineering expertise in the UK. The School is consistently in the top five chemical engineering schools for research in the country.

It has a first-class reputation in learning, teaching and research, and is highly placed in both The Guardian and The Times league tables. 

Course details

Biochemical Engineering concerns the use of biological organisms or processes by manufacturing industries. It is a multidisciplinary subject, requiring the integration of engineering and bioscience knowledge to design and implement processes used to manufacture a wide range of products; from novel therapeutics such as monoclonal antibodies for treating cancer, vaccines and hormones, to new environmentally-friendly biofuels. It is also essential in many other fields, such as the safe manufacture of food and drink and the removal of toxic compounds from the environment..

This course will provide you with the skills you need to start an exciting career in the bioprocess industries, or continue research in the area of bioprocessing or industrial biotechnology.

Industry involvement

Academics working at Birmingham have strong links with industry, through collaborative projects, so allow students to make contact with companies. Graduates from the MSc programme have gone on to careers in biochemical engineering world-wide, in large and small companies working in diverse areas.

There are also guest lectures from academics working at other institutions.

Practical experience

You will gain practical experience of working with industrially applicable systems, from fermentation at laboratory scale to 100 litre pilot scale, in the Biochemical Engineering laboratories. Theory learned in lectures will be applied in practical terms. In addition, theoretical aspects will be applied in design case studies in a number of modules.

All MSc students complete a summer research project, working on a piece of individual, novel research within one of the research groups in the school. These projects provide an ideal experience of life as a researcher, from design of experimental work, practical generation of data, analysis and communication of findings. Many students find this experience very useful in choosing the next steps in their career.

Special Features

The lecture courses are supplemented with tutorials, seminars and experimental work. Industrial visits and talks by speakers from industrial and service organisations are also included in the course programme.

Pilot Plant

The Biochemical Engineering building houses a pilot plant with large-scale fermentation and downstream processing equipment. The refurbished facility includes state-of-the-art computer-controlled bioreactors, downstream processing equipment and analytical instruments

Course structure

The MSc is a 12-month full-time advanced course, comprising lectures, laboratory work, short experimental projects and a research project. You will take an introductory module, four core modules, and then choose 50 credits of optional themed modules. The course can also be taken on a part-time basis. The Postgraduate Diploma (PGDip) lasts for 8 months from the end of September until June. 

For the first eight months you have lectures, tutorials and laboratory work. Core module topics include:

  • Fermentation and cell culture
  • Bioseparations
  • Process monitoring and control
  • Systems and synthetic biology approaches

There are numerous optional modules available across three themes: 

  • Biopharmaceutical development and manufacture
  • Food processing
  • Business skills for the process industries

From June to September you gain research training on your own project attached to one of the teams working in the bioprocessing research section.

Related links

Learning and teaching

The MSc is a 12-month full-time advanced course, comprising lectures, laboratory work, short experimental projects and a research project. You will take an introductory module, four core modules, and then choose 50 credits of optional themed modules. The course can also be taken on a part-time basis. The Postgraduate Diploma (PGDip) lasts for 8 months from the end of September until June.  

For the first eight months you have lectures, tutorials and laboratory work. Topics include:

  • Fermentation and cell culture
  • Bioseparations
  • Process monitoring and control
  • Systems and synthetic biology approaches
  • Biopharmaceutical development and manufacture

You also have practical experience of working in the newly-refurbished pilot plant of the Biochemical Engineering building

From June to September you gain research training on your own project attached to one of the teams working in the bioprocessing research section.



Read less
The two MSc programmes in Biomedical Engineering draw on the wide experience of Brunel's academic staff, which ranges from the development of equipment and experiments for use in space, to research carried out in collaboration with hospitals, biomedical companies and research institutions. Read more

About the course

The two MSc programmes in Biomedical Engineering draw on the wide experience of Brunel's academic staff, which ranges from the development of equipment and experiments for use in space, to research carried out in collaboration with hospitals, biomedical companies and research institutions.

Four (compulsory) taught modules and two optional streams are available. Students can apply to one of the two named degree title awards - 'Biomedical, Genetics and Tissue Engineering' or 'Biomedical, Biomechanics and Bioelectronics Engineering'.

The programme has a strong research and development emphasis and students will develop expertise in advanced product development and research. It aims to provide an overall knowledge base, skills and competencies, which are required in biomedical engineering, research activities and in related fields.

Aims

The modern healthcare industry is commercially-driven and fast moving – putting a premium on recruits who bring strong research experience. Biomedical engineering is a new and rapidly emerging field of engineering to biological and clinical problems. It relies on the methodologies and techniques developed in more traditional engineering fields, further advanced and adapted to the particular complexity associated with biological systems.

These applications vary from design, development and operation of complex medical devices, used in the prevention, diagnosis and treatment, to the characterisation of tissue behaviour in health and disease, and theoretical models that enhance the understanding of complex biomedical issues.

As well as giving a solid scientific understanding, this course provides students with an understanding of the commercial, ethical, legal and regulatory requirements of the industry.

Graduates acquire the skills that are essential to the modern biomedical and healthcare industry, gaining expertise in management, product innovation, development and research.

Our students benefit from the University’s strong industrial partnerships and pioneering research activities.

Staff at Brunel generate numerous publications, conference presentations and patents, and have links with a wide range of institutions both within and outside the UK.

Course Content

The MSc programmes in Biomedical Engineering are full-time, one academic year (12 consecutive months).

Compulsory Modules:

Biomechanics and Biomaterials
Biomedical Engineering Principles
Design and Manufacture
Innovation and Management and Research Methods
Dissertation

Optional Modules:

Genomic Technologies
Molecular Mechanisms of Human Disease
Tissue Engineering

Special Features

Industry relevance
Scientific understanding is just one part of medical engineering and this course also addresses commercial, ethical, legal and regulatory requirements, with input from Brunel's extensive industrial contacts.

Excellent facilities
We have extensive and well-equipped laboratories - with notable strengths in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Foundation course available
The  Pre-Masters is a full-time 14-week course for international students who have marginally fallen below the postgraduate direct entry level and would like to progress onto a Master's degree course in the College of Engineering, Design and Physical Sciences. It combines academic study, intensive English Language preparation, study skills and an orientation programme.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This programme is seeking accreditation by the Institution of Mechanical Engineers (IMechE) post the recent change in available degree routes. The IMechE formerly accredited the MSc Biomedical Engineering and we anticipate no problems in extending this accreditation to the new routes.

Teaching

The taught modules are delivered to students over two terms; Term 1 (September – December) and Term 2 (January – April) of each academic year. The taught modules are examined at the end of each term, and the students begin working on their dissertations on a part-time basis in term 2, then full-time during the months of May to September.

Read less
Biomedical Engineering is a field of engineering that relies on highly inter- and multi-disciplinary approaches to research and development, in order to address biological and medical problems. Read more
Biomedical Engineering is a field of engineering that relies on highly inter- and multi-disciplinary approaches to research and development, in order to address biological and medical problems. Specialists in this area are trained to face scientific and technological challenges that significantly differ from those related to more traditional branches of engineering. Nevertheless, at the same time Biomedical Engineering makes use of more traditional engineering methodologies and techniques, which are adapted and further developed to meet specifications of biomedical applications.

This MSc programme covers the following topics:

• Fundamentals of human physiology;
• Ethics and regulatory affairs in the biomedical field;
• Advanced aspects of tissue engineering, regenerative medicine and biomaterials;
• Advanced techniques to synthesize and/or characterise materials for biomedical engineering;
• Mechanics of tissues, cells and sub-cellular components;
• Biocompatibility of implantable materials and devices;
• Materials and techniques for nanotechnology and nanomedicine.

Applications are welcome from students with a background in physical sciences (Chemistry, Physics, Mathematics and Materials Science) or Engineering.The programme has strong roots within the well-recognised expertise of the academics that deliver the lectures, who have international standing in cutting-edge research on Biomaterials and Tissue Engineering.

This fact ensures that the programme is delivered with the highest standards in the field. The students also benefit from access to state-of-the-art facilities and instrumentation in the areas of Biomaterials and Tissue Engineering, while undertaking research projects in brand-new large laboratories that are the result of a recent multi-million investment from the College.

The programme is designed with a careful balance of diversified learning components, such that, on completion of their studies, the postgraduates acquire extensive knowledge and skills that make them able to undertake careers in a wide range of professional ambits within the biomedical field, including health care services, industry and scientific research

Read less
Biomedical engineers work at the interface of engineering, biology, and medicine, combining their engineering expertise with an understanding of human biology and medical needs to make the world a healthier place. Read more

Biomedical engineers work at the interface of engineering, biology, and medicine, combining their engineering expertise with an understanding of human biology and medical needs to make the world a healthier place.

This masters course will equip you with the specialist knowledge, expertise and skills to integrate biology and medicine with engineering to solve problems related to living systems.

Introducing your degree

The MSc Biomedical Engineering is designed for engineering, and physical science graduates who want to specialise in this vibrant area of engineering. There is high demand for biomedical engineers, and this masters has been developed with our graduates’ employability in mind.

Overview

During this course, you will learn the fundamental scientific and technical aspects of biomedical engineering, alongside developing your knowledge of the relevant aspects of human biology in health and disease. This interdisciplinary course draws on expertise from leading departments within the University of Southampton, brought together through the Institute for Life SciencesEngineering and the EnvironmentMedicineHealth SciencesNatural and Environmental Sciences, and Electronics and Computer Science.

If you choose to, you will be able to specialise in your chosen area of biomedical engineering through themed areas of application: musculoskeletal, cardiovascular, imaging, diagnostic systems and audiology.

The course will enable you to thrive in an environment where teams from range of disciplines have work together efficiently. To help you succeed as biomedical engineer, the course features ‘problem-driven’ seminars, site and hospital visits, workshops and training sessions by experts from industry and national laboratories. This combination of advanced engineering, industrial experience and research enables our graduates to make a significant contribution to the development and translation of biomedical technology in both industry and academia.

You will develop the skills to apply advanced engineering in an interdisciplinary environment working in teams of physicians, scientists, engineers, business people and other professionals to monitor, restore and enhance normal body function, abilities and outcomes. You will also enhance your understanding of the ethical, safety and societal implications of developing medical technologies. 

Through your research project you have a further opportunity to integrate your engineering skills with an understanding of the complexity of biological systems, enabling you to work successfully at the intersection of science, medicine and mathematics to solve biological and medical problems. Example research projects may include the design and performance evaluation of new devices to replace joints, or the development of new imaging methods to study bone or lung diseases.

View the specification document for this course

Career Opportunities

Many biomedical engineers work in research, either in academia or industry, along with medical scientists, to develop and evaluate systems and products such as artificial organs, prostheses, instrumentation, and diagnostic, health management and care delivery systems.

Biomedical engineers may design devices used in various medical procedures and develop imaging systems and devices for observing and controlling body functions.

Biomedical engineers therefore make careers in academia, industry, healthcare and clinical medicine, as well as government.



Read less
Chemical engineering and chemical engineers provide the leading-edge solutions to the society’s needs. Read more

Mission and goals

Chemical engineering and chemical engineers provide the leading-edge solutions to the society’s needs: we need efficient and clean technologies for energy transformation, technologically advanced materials, better medicines, efficient food production techniques, a clean environment, a better utilization of the natural resources. Chemical Engineering plays a pivotal role because all these challenges have a common denominator: they involve chemical processes. Chemical engineers are the "engineers of chemistry": by making use of chemistry, physics and mathematics they describe the chemical processes from the molecular level to the macroscale (chemical plant), and design, operate, and control all processes that produce and/or transform materials and energy.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/chemical-engineering/

Career opportunities

The Master of Science programme in Chemical Engineering completes the basic preparation of the bachelor chemical engineer and provide guided paths towards high-level professional profiles which are employed in various industrial sectors including the chemical, pharmaceutical, food, biological and automotive industry; energy production and management; transformation and process industries; engineering companies designing, developing and implementing processes and plant; research centres and industrial laboratories; technical structures in Public Administration; environmental and safety consultancy firms.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Chemical_Engineering_01.pdf
Chemical engineering provides the leading-edge solutions to the society’s needs: we require clean energy sources, efficient and clean technologies for energy transformation, technologically advanced materials, better medicines, efficient food production techniques, a clean environment, a better utilization of the natural resources. Chemical Engineering plays a pivotal role because all these challenges have a common denominator: they are based on chemical processes. Chemical engineers are the “engineers of chemistry”: by making use of chemistry, physics and mathematics they describe the chemical processes from the molecular level (chemical bond) to the macroscale (chemical plant), and design, operate, and control all processes that produce and/or transform materials and energy. The Master of Science programme in Chemical Engineering provides guided paths towards high-level professional profiles which find employment in various industrial sectors. The programme is taught in English.

Subjects

The Chemical Engineering programme includes mandatory courses on Chemical reaction engineering and applied chemical kinetics; Advanced calculus; Industrial organic chemistry; Unit operations of chemical plants; Mechanics of solids and structures; Applied mechanics. Other courses can be selected by the students on many subjects related to e.g. chemical plants and unit operations, safety, process design, catalysis, material science, numerical methods, environmental protection, food production, energy, biomaterials, etc.. A proper selection of the eligible courses will lead to specializations in Process engineering, Project engineering or Product engineering.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/chemical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/chemical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less

Show 10 15 30 per page



Cookie Policy    X