• Ross University School of Veterinary Medicine Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • University of Southampton Featured Masters Courses
Middlesex University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Reading Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Aberdeen University Featured Masters Courses
"bioinstrumentation"×
0 miles

Masters Degrees (Bioinstrumentation)

We have 6 Masters Degrees (Bioinstrumentation)

  • "bioinstrumentation" ×
  • clear all
Showing 1 to 6 of 6
Order by 
Students in the Biomedical Engineering (BME) Graduate Program are interested in cutting-edge, multidisciplinary biomedical research. Read more
Students in the Biomedical Engineering (BME) Graduate Program are interested in cutting-edge, multidisciplinary biomedical research. The BME Graduate Program enables graduate students to undertake MEng (Thesis), MSc, or PhD programs that intersect the fields of engineering, kinesiology, medicine, science and veterinary medicine.

The BME Graduate Program is jointly coordinated by the Schulich School of Engineering, Cumming School of Medicine and Faculty of Kinesiology, with additional participating faculty members from the Faculties of Science and Veterinary Medicine. The BME Graduate Program supports the University of Calgary’s Engineering Solutions for Health: Biomedical Engineering Research Strategy. By coordinating and consolidating complementary research and teaching programs across the University of Calgary and linking with health care facilities, the BME Graduate Program forms an integral part of a Canadian centre of excellence in BME graduate education and research.

The unique, multi-disciplinary, design of this program means our trainees have access to cutting edge research laboratories and equipment.

The BME Graduate Program was approved by The University of Calgary Board of Governors in 1997. It was initially funded by a three-year Whitaker Foundation Special Opportunity Award, part of a joint proposal with the University of Alberta. Provincially based activities continue to this day and are highlighted by the now University of Calgary-led Alberta BME Conference. This annual meeting now includes participation from the University of Lethbridge, as well as other western Canadian BME programs. The meeting attracts over 160 individuals and has been held every year since 2000 in Banff, Alberta.

While the BME Graduate Program is an established program supporting a diverse research community, it continues to evolve in response to new opportunities and changing needs of students and the biomedical community in Alberta. It is a key component of The University of Calgary’s Eyes High vision and supports both the university’s academic and research plans, particularly the strategic research theme of Engineering Healthcare Solutions.

Areas of Biomedical Engineering

-Bioelectricity
-Biomechanics
-Cell and tissue engineering (or biomaterials)
-Imaging
-Bioinstrumentation
-Clinical engineering
-Rehabilitation engineering

The University of Calgary is recognized as a leader in the first four areas, and is actively growing expertise in bioinstrumentation. Bioelectricity, biomechanics, cell and tissue engineering (biomaterials) and imaging represent the current four themes of the BME Graduate Program.

BME research at the University of Calgary is carried out in numerous locations throughout engineering, kinesiology, medicine, science, and veterinary medicine. BME active university and hospital-based research centers and institutes include, the Alberta Children’s Hospital Research Institute, the Hotchkiss Brain Institute, the Libin Cardiovascular Institute of Alberta, the McCaig Institute for Bone and Joint Health, the Calgary Centre for Innovative Technology, the Experimental Imaging Centre, the Human Performance Laboratory, the Pharmaceutical Production Research Facility, the Seaman Family MR Research Centre, and the Sports Medicine Centre.

Read less
The course is a suitable preparation for employment in the medical device sector and as preparation for PhD studies or research positions. Read more
The course is a suitable preparation for employment in the medical device sector and as preparation for PhD studies or research positions. The course draws upon the internationally recognised research with the school in areas such as Tissue Engineering, Bioceramics, Medical Electrodes and Drug Delivery. The course team also has a wealth of industrial experience and several medical device spin out companies have been established by the school.

Key benefits

- Accredited by the Institution of Engineering and Technology on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.

Visit the website: https://www.ulster.ac.uk/course/msc-biomedical-engineering-ft-jn

- Part-time students who are in full-time employment will be able to gain credit for work-based activity in the work-based learning modules that are a feature of the programme.

- Students can apply for exemptions for specific modules based on prior learning.

Visit the website: https://www.ulster.ac.uk/course/msc-biomedical-engineering-pt-jn

Course detail

- Description -

The course has been designed to provide postgraduate education and training in the concepts and methods within Biomedical Engineering and their intelligent application to problems within industry and academic research.

- Purpose -

It will enable candidates to develop a comprehensive knowledge and understanding of scientific principles, theories and practice.

- Teaching and learning assessment -

The course is delivered through lectures, tutorials and laboratory classes and is supported with extensive online content. The small class sizes provide an excellent learning environment and the material is assessed thorough formal examinations, coursework, class tests and presentations.

Core module:

• Bioinstrumentation
• Biomaterials 1
• Tissue engineering
• Research Methods & Facilities Core modules
• Composite engineering • Polymer technology
• Process product optimisation
• Research Methods & Facilities

Students can then tailor the course to their needs and interests by selecting from a wide range of optional modules.

Career options

Upon successful completion of the programme students will be more employable, particularly within the industry. Another important opportunity for MSc students is the academic career and/or research career through a PhD programme such as those offered in the Engineering Research Institute (ERI) which hosts the MSc programme.

How to apply: https://www.ulster.ac.uk/apply/how-to-apply#pg

Why Choose Ulster University ?

1. Over 92% of our graduates are in work or further study six months after graduation.
2. We are a top UK university for providing courses with a period of work placement.
3. Our teaching and the learning experience we deliver are rated at the highest level by the Quality Assurance Agency.
4. We recruit international students from more than 100 different countries.
5. More than 4,000 students from over 50 countries have successfully completed eLearning courses at Ulster University.

Flexible payment

To help spread the cost of your studies, tuition fees can be paid back in monthly instalments while you learn. If you study for a one-year, full-time master’s, you can pay your fees up-front, in one lump sum, or in either five* or ten* equal monthly payments. If you study for a master’s on a part-time basis (e.g. over three years), you can pay each year’s fees up-front or in five or ten equal monthly payments each year. This flexibility allows you to spread the payment of your fees over each academic year. Find out more by visiting https://www.ulster.ac.uk/apply/fees-and-finance/postgraduate

Scholarships

A comprehensive range of financial scholarships, awards and prizes are available to undergraduate, postgraduate and research students. Scholarships recognise the many ways in which our students are outstanding in their subject. Individuals may be able to apply directly or may automatically be nominated for awards. Visit the website: https://www.ulster.ac.uk/apply/fees-and-finance/scholarships

English Language Tuition

CELT offers courses and consultations in English language and study skills to Ulster University students of all subjects, levels and nationalities. Students and researchers for whom English is an additional language can access free CELT support throughout the academic year: https://www.ulster.ac.uk/international/english-language-support

Read less
The programme is a full-time taught postgraduate degree course leading to the degree of MSc in Biomedical Engineering. Read more
The programme is a full-time taught postgraduate degree course leading to the degree of MSc in Biomedical Engineering. It has an international dimension, providing an important opportunity for postgraduate engineers to study the principles and state-of-the-art technologies in biomedical engineering with a particular emphasis on applications in advanced instrumentation for medicine and surgery.

Why study Biomedical Engineering at Dundee?

Biomedical engineers apply engineering principles and design methods to improve our understanding of living systems and to create new techniques and instruments in medicine and surgery.

The taught modules in this course expose students to the leading edge of modern medical and surgical technologies. The course also provides concepts and understanding of the role of entrepreneurship, business development and intellectual property exploitation in the biomedical industry, with case examples.

The research project allows students to work in a research area of their own particular interest, learning skills in presentation, critical thinking and problem-solving. Project topics are offered to students during the first semester of the course.

UK qualifications are recognised and respected throughout the world. The University of Dundee is one of the top UK universities, with a powerful research reputation, particularly in the medical and biomedical sciences. It has previously been named 'Scottish University of the Year' and short-listed for the Sunday Times 'UK University of the Year'.

Links with Universities in China:

This course can be taken in association with partner universities in China with part of the course taken at the home institution before coming to Dundee to complete your studies. For students from elsewhere it is possible to take the entire course at Dundee.

What's so good about Biomedical Engineering at Dundee?

The University of Dundee has had an active research programme in biomedical engineering for over 20 years.

The Biomedical Engineering group has a high international research standing with expertise in medical instrumentation, signal processing, biomaterials, tissue engineering, advanced design in minimally invasive surgery and rehabilitation engineering.

Research partnerships:

We have extensive links and research partnerships with clinicians at Ninewells Hospital (largest teaching hospital in Europe) and with world renowned scientists from the University's College of Life Sciences. The new Institute of Medical Science and Technology (IMSaT) at the University has been established as a multidisciplinary research 'hothouse' which seeks to commercialise and exploit advanced medical technologies leading to business opportunities.

This course has two start dates - September or January, and lasts for 12 months.

How you will be taught

The structure of the MSc course is divided into two parts. The taught modules expose students to the leading edge of modern biomedical and surgical technologies. The course gives concepts and understanding of the role of entrepreneurship, business development and intellectual property exploitation in the biomedical industry, with case examples.

The research project allows students to work in a research area of their own particular interest, learning skills in presentation, critical thinking and problem-solving. Project topics are offered to students towards at the beginning of second semester of the course.

What you will study

The course is divided into two parts:

Part I (60 Credits):

Bioinstrumentation (10 Credits)
Biomechanical Systems (20 Credits)
Biomaterials (20 credits)
Introduction to Medical Sciences (10 Credits)
Part II (120 Credits) has one taught module and a research project module. It starts at the beginning of the University of Dundee's Semester 2, which is in mid-January:

The taught module, Advanced Medical and Surgical Instrumentation (30 Credits), exposes students to the leading edge of modern medical and surgical technologies. It will also give concepts and understanding of the role of entrepreneurship, business development and intellectual property exploitation in the biomedical industry, with case examples.
The research project (90 Credits) will allow students to work in a research area of their own particular interest and to learn skills in presentation, critical thinking and problem-solving. Project topics will be offered to students before Part II of the course. We shall do our best to provide all students with a project of their choice.
The time spent in Dundee will also give students a valuable educational and cultural experience.

How you will be assessed

The course is assessed by coursework and examination, plus dissertation.

Careers

An MSc degree in Biomedical Engineering will prepare you for a challenging and rewarding career in one of many sectors: the rapidly growing medical technology industry, academic institutions, hospitals and government departments.

A wide range of employment possibilities exist including engineer, professor, research scientist, teacher, manager, salesperson or CEO.

The programme also provides the ideal academic grounding to undertake a PhD degree leading to a career in academic research.

Read less
The MSc Medical Imaging programme is intended to provide a Masters-level postgraduate education in the knowledge, skills and understanding of engineering design of advanced medical and biotechnology products and systems. Read more
The MSc Medical Imaging programme is intended to provide a Masters-level postgraduate education in the knowledge, skills and understanding of engineering design of advanced medical and biotechnology products and systems. Students will also acquire a working knowledge of the clinical environment to influences their design philosophy.

Why study Medical Imaging at Dundee?

With biotechnology replacing many of the traditional engineering disciplines within the UK, this programme will allow you to develop the skills to apply your engineering or scientific knowledge to technologies that further the developments in this field. As a result, employment opportunities will be excellent for graduates, both in research and in industry.

We have an active research group, and you will be taught by leading researchers in the field.

What's so good about Medical Imaging at Dundee?

The MSc in Medical Imaging at the University of Dundee will:

Provide knowledge, skills and understanding of medical imaging technologies, particularly in modern biomedical, radiological and surgical imaging instrumentation, biomaterials, biomechanics and tissue engineering

Enhance your analytical and critical abilities, competence in multi-disciplinary research & development

Provide broad practical training in biology and biomolecular sciences sufficient for you to understand the biomedical nomenclature and to have an appreciation of the relevance and potential clinical impact of the research projects on offer

Allow you to experience the unique environment of clinical and surgical aspects in medical imaging in order to provide an understanding of the engineering challenges for advanced practice

Provide core training in electrical, microwave, magnetic, acoustic and optical techniques relevant to the life sciences interface and

Provide broad experience of analytical and imaging techniques relevant for biology, biomolecular and clinical sciences
provide core training in acoustic ultrasound technologies.

Who should study this course?

This course is suitable for students who are recent graduates of mechanical engineering courses or other related programmes.

This course has two start dates - January & September, and lasts for 12 months.

How you will be taught

The programme will involve a variety of teaching formats including lectures, tutorials, seminars, hands-on imaging classes, laboratory exercises, case studies, coursework, and an individual research project.

The teaching programme will include visits to and seminars at IMSaT and clinical departments at Ninewells Hospital and Medical School and Tayside University Hospitals Trust, including the Clinical Research Centre, the Departments of Medicine, Surgery, Dentistry and ENT, the Vascular Laboratory and Medical Physics.

A high degree of active student participation will be encouraged throughout. Taught sessions will be supported by individual reading and study. You will be guided to prepare your research project plan and to develop skills and competence in research including project management, critical thinking and problem-solving, project report and presentation.

What you will study

The course is divided into two parts:

Part I has 60 credits:

Biomechanics (20 Credits)
Biomaterials (20 Credits)
Bioinstrumentation (10 Credits)
Introduction to Medical Sciences (10 Credits)

Part II has one taught module and a research project module. It starts at the beginning of the University of Dundee's Semester 2, which is in mid-January:

Taught module: Advanced Biomedical Imaging Technologies (30 Credits).
Research project (30 Credits for diploma or 90 Credits for MSc)

How you will be assessed

The taught modules will be assessed by a combination of written examinations and coursework. The research project will be assessed by a written thesis and oral presentation.

Careers

This Master's programme provides you with the skills to continue into research in areas such as biomedical and biomaterials engineering as well as progression into relevant jobs within the Mechanical Engineering and Mechatronics industries.

Read less
1. Big Challenges being addressed by this programme – motivation. Human health and quality of life is one of the most critical challenges facing humanity. Read more

About the Course

1. Big Challenges being addressed by this programme – motivation

• Human health and quality of life is one of the most critical challenges facing humanity.
• The challenge is all the greater due to a rapidly increasing and rapidly aging global population that now exceeds 7 billion.
• Biomedical Engineering addresses these issues directly, with engineers innovating, analysing, designing and manufacturing new medical implants, devices and therapies for the treatment of disease, injuries and conditions of the human body, to restore health and improve quality of life.
• CNN lists Biomedical Engineering as No. 1 in the “Best Jobs in America” 2013.

2. Programme objectives & purpose

The objective of the programme is to generate graduates with a sound grounding in engineering fundamentals (analysis, design and problem solving), but who also have the multi-disciplinary breadth that includes knowledge of human biology and clinical needs and applications, to be able to make an immediate impact in the field on graduation, in either the academic research or medical technology industry domains. Ultimately the programme aims to generate the future leaders of the national and international medical technology industry, and of academic research and teaching in biomedical engineering.

3. What’s special about CoEI/NUIG in this area:

• NUI Galway pioneered the development of educational programmes in Biomedical Engineering in Ireland, introducing the country’s first bachelor’s degree in Biomedical Engineering in 1998, that was the first to achieve professional accreditation from Engineers Ireland in 2004, and at the graduate level with the Structured PhD programme in Biomedical Engineering and Regenerative Medicine (BMERM) in 2011.
• NUI Galway has been at the forefront of world-class research in biomedical engineering for over 20 years and has pioneered multi-disciplinary research in biomedical engineering and science, with the establishment of the National Centre for Biomedical Engineering Science (NCBES) in 1999, and up to the present day with the announcement of NUI Galway as the lead institution in a new Science Foundation Ireland funded Centre for Research in Medical Devices (CÚRAM).
• NUI Galway has a very close and deep relationship with the medical device industry locally, nationally and internationally, at many levels, from industry visits, guest lectures and student placements, up to major research collaborations.
• Many of our engineering graduates now occupy senior management and technical positions in the medical device industry nationally and internationally.

4. Programme Structure – ECTS weights and split over semester; core/elective, etc.:

• 90ECTS programme
• one full year in duration, beginning September and finishing August
• comprises:
- Foundational taught modules (20 ECTS)
- Advanced taught modules (40 ECTS)
- Research/Industry Project (30 ECTS).

5. Programme Content – module names

Sample Modules:

Advanced Finite Element Methods
Advanced Computational Biomechanics
Advanced Biomaterials
Mechanobiology
Bioinstrumentation Design
Medical and Surgical Practice
Stem Cells and Gene Therapy
Translational Medicine
Polymer Engineering
Advanced Engineering Statistics
Systems Reliability
Lean Systems
Research Methods for Engineers
Financial Management
Regulatory Affairs and Case Studies
Technology, Innovation and Entrepreneurship

6. Any special funding arrangements – e.g. Irish Aid

Comment (PMcH): CoEI scholarships a great idea.

7. Opportunity for number of Industrial & Research internships.

Students enrolled on this programme will have an opportunity to apply for a one-year post-graduation internship in either a related industry or research group in Ireland.

8. Testimonials.

“The Biomedical Engineering programme at NUI Galway has given me the fundamental engineering skills and multi-disciplinary background in biology and clinical application that I needed to be able to make an immediate impact in industry and to be able to design and develop new medical implants and devices. My graduate education through my PhD in bone biomechanics was also very important in this because I directly combined engineering and biological analysis techniques to better understand how stem cells generate new bone, showing me how biomedical engineers can play a critically important role in generating new knowledge on how the body works, and how new treatments can be developed for diseases and injuries, such as osteoporosis.” Evelyn Birmingham, BE Biomedical Engineering (2009), PhD Biomedical Engineering (2014), R&D Engineer, Medtronic Vascular, Galway.

For further details

visit http://nuigalway.ie/engineering-informatics/internationalpostgraduatestudents/

How to Apply:

Applications are made online via the Postgraduate Applications Centre (PAC): https://www.pac.ie
Please use the following PAC application code for your programme:

M.Sc. Biomedical Engineering - PAC code GYE24

Scholarships :

Please visit our website for more information on scholarships: http://www.nuigalway.ie/engineering-informatics/internationalpostgraduatestudents/feesandscholarships/

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X