• University of Leeds Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of York Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
Imperial College London Featured Masters Courses
University of Leeds Featured Masters Courses
FindA University Ltd Featured Masters Courses
University of Kent Featured Masters Courses
"bioinformatic"×
0 miles

Masters Degrees (Bioinformatic)

  • "bioinformatic" ×
  • clear all
Showing 1 to 15 of 25
Order by 
Molecular medicine is transforming the way we understand and treat human diseases, from cancers to neurodegenerative disorders. Read more
Molecular medicine is transforming the way we understand and treat human diseases, from cancers to neurodegenerative disorders. Combining contemporary medical studies with biochemistry and molecular biology, this rapidly advancing area creates a bridge between the subjects, and draws on other fields such as physics, chemistry, biology and medicine.

This course examines how normal cellular processes are affected by disease. You gain an understanding of the core foundations of molecular medicine, studying the topics most relevant to the real world, and how this science may be used in the prevention, diagnosis, and treatment of diseases.

You learn about and appraise the approaches that can be used to address global health problems, including cancer as well as genetic and infectious diseases. The foundations that support investigations of molecular disease mechanisms and the search for new diagnostic tools and treatments will be laid, as you explore topics including:
-Gene and protein technology.
-Synthetic biology
-Bioinformatics
-Genomics

This course has a very high proportion of practical and bioinformatic work that provides valuable experience for your career. This includes our optional module Creating and Growing a New Business Venture, which challenges you to think creatively and increases your value to organisations, including small enterprises, which are a growing part of the biopharmaceutical sector.

Your research project is a major component of your course, in which you perform novel laboratory and/or bioinformatic research in one of our academic laboratories or (subject to approval) carry out research in an industrial or hospital setting.

Two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you learn from and work alongside our expert staff.

Our expert staff

As one of the largest schools at our University, we offer a lively, friendly and supportive environment with research-led study and high quality teaching. You benefit from our academics’ wide range of expertise and research on important national and international problems using cutting-edge techniques.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for functional genomics, computational biology and imaging biological systems. On our course you have the opportunity to:
-Work in an open and friendly department, with shared staff-student social spaces
-Conduct your research alongside academics and PhD students in shared labs
-Learn to use state-of-the-art research facilities, from protein purification, to cell culture and imaging, to molecular modelling

Your future

Contribute to a growing industry and gain the skills and knowledge to pursue a career in biomedical research and industry, or continue your studies further in postgraduate science and medical degrees.

Advances in molecular medicine will continue to drive growth of new services and products in health care, biomedical and pharmaceutical organisations and companies, and our graduates are well placed to take advantage of employment opportunities in the life science, biotech and pharmaceutical industries and hospitals.

Many of our Masters students progress to study for their PhD, and we offer numerous studentships to support our students in their studies.

We work with our university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Research Project: MSc Molecular Medicine
-Protein Technologies
-Gene Technology and Synthetic Biology
-Professional Skills and the Business of Molecular Medicine
-Molecular Medicine and Biotechnology
-Genomics
-Advanced Medical Microbiology (optional)
-Human Molecular Genetics (optional)
-Cancer Biology (optional)
-Creating and Growing a New Business Venture (optional)
-Rational Drug Design (optional)
-Molecular and Developmental Immunology (optional)
-Cell Signalling (optional)
-Mechanisms of Neurological Disease (optional)

Read less
The Genetics of Human Disease MSc aims to provide students with an in-depth knowledge of molecular genetics, quantitative and statistical genetics and human disease and how this can be applied to improve healthcare through the development and application of diagnostic tests and therapeutic agents. Read more
The Genetics of Human Disease MSc aims to provide students with an in-depth knowledge of molecular genetics, quantitative and statistical genetics and human disease and how this can be applied to improve healthcare through the development and application of diagnostic tests and therapeutic agents.

Degree Information

The programme provides a thorough grounding in modern approaches to the understanding of the genetics of disease alongside the cutting-edge research methods and techniques used to advance our understanding of development of disease. Core modules provide a broad coverage of the genetics of disease, research skills and social aspects, whilst specialised streams in Inherited Diseases, Pharmacogenetics and Computational Genomics, in which students can qualify, and the research project allow more in-depth analysis in areas of genetics.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits) and two specialist modules (30 credits) and a research project culminating in a dissertation (90 credits).

A Postgraduate Diploma consisting of six modules (four core modules in term one and two modules within the selected stream in term two) is offered, full-time nine months.

A Postgraduate Certificate consisting of four core modules in term one (60 credits) is offered, full-time three months.

Core Modules
- Advanced Human Genetics: Research Principles
- Human Genetics in Context
- Core Skills
- Basic Statistics for Medical Sciences

Specialist modules
In term two you will take specialist modules depending on the specialist stream you select: Inherited Disease (A); Pharmacogenetics (B); Computational Genomics (C).
- Applications in Human Genetics (A)
- Either Genetics of Cardiovascular Disease or Genetics of Neurological Disease (A)
- Clinical Applications of Pharmacogenetic Tests (B)
- Anti-Cancer Personalised Medicine or Pharmacogenomics, Adverse Drug Reactions and Biomarkers (B)
- Applications in Human Genetics (C)
- Statistics for Interpreting Genetic Data (C)

Dissertation/report
Students undertake an original research project investigating topical questions in genetics and genetics of human disease which culminates in a dissertation of 12,000 to 14,000 words and an oral presentation.

Teaching and learning
Students develop their knowledge and understanding of genetics of human diseases through a combination of lectures, seminars, tutorials, presentations and journal clubs. Taught modules are assessed by unseen written examination and/or, written reports, oral presentations and coursework. The research project is assessed by the dissertation and oral presentation.

Careers

Advanced training in genetic techniques including bioinformatic and statistical approaches positions graduates well for PhD studentships in laboratories using genetic techniques to examine diseases such as heart disease, cancer and neurological disorders. Another large group will seek research jobs in the pharmaceutical industry, or jobs related to genetics in healthcare organisations.

Employability
The MSc in Genetics of Human Disease facilitates acquisition of knowledge and skills relevant to a career in research in many different biomedical disciplines. About half of our graduates enter a research career by undertaking and completing PhDs and working as research associates/scientists in academia. Some of our graduates go on to jobs in the pharmaceutical industry, while others enter careers with clinical genetic diagnosis services, particularly in molecular genetics, in healthcare organisations and hospitals around the world. Those graduates with a prior medical training often utilise their new skills as clinical geneticists.

Why study this degree at UCL?

UCL is in a unique position to offer both the basic science and application of modern genetics to improve human health. The programme is a cross-faculty initiative with teaching from across the School of Life and Medical Sciences (SLMS) at UCL.

Students will be based at the UCL Genetics Institute (UGI), a world-leading centre which develops and applies biostatistical and bioinformatic approaches to human and population genetics. Opportunities to conduct laboratory or computational-based research projects are available in the laboratories of world-leading geneticists affiliated to the UGI.

Read less
How can biological processes and organisms be used in the development of new technologies? Biotechnology enables us to improve practices in diverse fields including genetics, agriculture, bioremediation, immunology, diagnostics, energy production, and age-assisted living. Read more
How can biological processes and organisms be used in the development of new technologies? Biotechnology enables us to improve practices in diverse fields including genetics, agriculture, bioremediation, immunology, diagnostics, energy production, and age-assisted living.

Our course provides you with knowledge, understanding and hands-on experience in modern biotechnology, and with practical insights into current commercial applications. It creates access to a broad range of career opportunities in this rapidly growing key technology.

You will learn about and appraise the approaches that can be used to address the challenges facing our planet, including:
-The development of biofuels, pharmaceuticals and crops to support and feed the growing human population
-Industrial, plant and medical biotechnology
-Gene and protein technology
-Synthetic biology
-Bioinformatics

The course has a very high proportion of practical work that provides valuable experience for your career, and in addition to this, our optional module Creating and Growing a New Business Venture challenges you to think creatively. This increases your value to organisations, including small enterprises, which are a growing part of the biotechnology sector.

Your research project is a major component of this course, for which you perform novel laboratory and/or bioinformatic research in one of our academic laboratories, or (subject to approval) carry out research in an industrial or hospital setting.

Two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you learn from and work alongside our expert staff.

Our expert staff

As one of the largest schools at our University, we offer a lively, friendly and supportive environment with research-led study and high quality teaching. You benefit from our academics’ wide range of expertise and research on important national and international problems using cutting-edge techniques.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for functional genomics, computational biology, and imaging biological systems. On our course you have the opportunity to:
-Work in an open and friendly department, with shared staff-student social spaces
-Conduct your research alongside leading academics and PhD students in shared labs
-Learn to use state-of-the-art equipment

Your future

Our graduates are well placed to find employment in the ever-growing bio-based economy, and postgraduate study is often a requirement for becoming a researcher, scientist, academic journal editor and to work in some public bodies or private companies.

Many of our Masters students progress to study for their PhD, and we offer numerous studentships to support our students in their studies.

We work with our university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

Postgraduate study is the chance to take your education to the next level. The combination of compulsory and optional modules means our courses help you develop extensive knowledge in your chosen discipline, whilst providing plenty of freedom to pursue your own interests. Our research-led teaching is continually evolving to address the latest challenges and breakthroughs in the field, therefore to ensure your course is as relevant and up-to-date as possible your core module structure may be subject to change.

Biotechnology - MSc
-Research Project: MSc Biotechnology
-Protein Technologies
-Gene Technology and Synthetic Biology
-Genomics
-Professional Skills and the Business of Biotechnology
-Creating and Growing a New Business Venture (optional)
-Industrial Biotechnology: Enzymes, Biochemicals and Biomaterials (optional)
-Molecular Medicine and Biotechnology (optional)
-Plant Biotechnology (optional)
-Rational Drug Design (optional)

Read less
With whole genome sequences being available for numerous organisms across all kingdoms of life, numerous questions concerning genome evolution to gene function, phylogenetic relationships to genetic and metabolic networks, genotype to phenotype of complex traits, can be addressed through comparative genomics. Read more
With whole genome sequences being available for numerous organisms across all kingdoms of life, numerous questions concerning genome evolution to gene function, phylogenetic relationships to genetic and metabolic networks, genotype to phenotype of complex traits, can be addressed through comparative genomics. Bioinformatic analysis of related genomes leads to testable hypotheses. Research available covers all of these areas and will use our expertise and resources on genome sequences to yeasts and fungi.

APPLICATION PROCEDURES

After identifying which Masters you wish to pursue please complete an on-line application form
https://pgapps.nottingham.ac.uk/
Mark clearly on this form your choice of course title, give a brief outline of your proposed research and follow the automated prompts to provide documentation. Once the School has your application and accompanying documents (eg referees reports, transcripts/certificates) your application will be matched to an appropriate academic supervisor and considered for an offer of admission.

COURSE STRUCTURE
The MRes degree course consists of two elements:
160 credits of assessed work. The assessed work will normally be based entirely on a research project and will be the equivalent of around 10 ½ months full-time research work. AND
20 credits of non-assessed generic training. Credits can be accumulated from any of the courses offered by the Graduate School. http://www.nottingham.ac.uk/gradschool/research-training/index.phtml The generic courses should be chosen by the student in consultation with the supervisor(s).

ASSESSMENT
The research project will normally be assessed by a dissertation of a maximum of 30,000 to 35,000 words, or equivalent as appropriate*. The examiners may if they so wish require the student to attend a viva.
*In consultation with the supervisor it maybe possible for students to elect to do a shorter research project and take a maximum of 40 credits of assessed modules.

The School of Life Sciences will provide each postgraduate research student with a laptop for their exclusive use for the duration of their studies in the School.

SCHOLARSHIPS FOR INTERNATIONAL STUDENTS

http://www.nottingham.ac.uk/studywithus/international-applicants/scholarships-fees-and-finance/scholarships/masters-scholarships.aspx

Read less
Clinicians, scientists and students engaged in cancer research at Newcastle share a common purpose. to improve treatment outcomes for patients with cancer. Read more
Clinicians, scientists and students engaged in cancer research at Newcastle share a common purpose: to improve treatment outcomes for patients with cancer. Work covers a broad spectrum - understanding the biological and molecular differences between normal and malignant cells and using this knowledge to develop new anti-cancer drugs.

Our staff and postgraduate students are based in the Northern Institute for Cancer Research (NICR) or the School of Chemistry. The NICR incorporates the Newcastle Cancer Centre, a unique collaboration between Cancer Research UK and the North of England Children's Cancer Research Fund.

We are a major training base for the next generation of cancer researchers. Our Institute covers many areas of cancer research, including:
-Solid tumours and leukaemias
-Childhood and adult cancers
-Drug discovery and early phase clinical trials

We offer approximately 15 MD, PhD and integrated MRes/PhD studentships each year, including the Newcastle Cancer Centre training programme. Projects in all research areas are available to fully-funded international students.

Members of our postgraduate community come from a variety of subject backgrounds including biological and biomedical sciences, chemistry, genetics, pharmacy, medicine, dentistry and veterinary medicine.

We hold regular postgraduate seminars which you will be required to attend and where you will deliver presentations. You will also attend and present your data annually at national cancer research meetings and at least one international meeting.

Placements

Our Institute has close working relationships with companies in the pharmaceutical and biotechnology sectors.

A number of our studentships are direct collaborations with industrial partners, with opportunities to spend placements with these partners.

Facilities

Our staff and postgraduate students are based in the Northern Institute for Cancer Research (NICR) or the School of Chemistry (medicinal chemistry students).

Our laboratories contain a full range of contemporary genomic, bioinformatic, proteomic, synthetic chemistry and pharmacology equipment, and clinical research facilities.

Read less
Our programme gives graduates the scientific knowledge and practical skills to carry out research in the emerging area of animal science and ‘One Health’, by providing foundation knowledge about the functioning of the animal body. Read more

Programme description

Our programme gives graduates the scientific knowledge and practical skills to carry out research in the emerging area of animal science and ‘One Health’, by providing foundation knowledge about the functioning of the animal body. We explore applications of basic animal sciences to veterinary and human medicine, the livestock industry and food security.

The programme is held in the world-famous Roslin Institute, which is housed in a state-of-the-art research building on the Easter Bush campus, adjacent to the Royal (Dick) School of Veterinary Studies. As a member of staff at the Institute, you will benefit from our world-class reputation for research in a vibrant, successful academic community.

You will acquire expert scientific knowledge and practical skills in animal sciences, veterinary and human medicine, the livestock industry and food security.

Programme structure

The programme involves courses that are a blend of lectures, guided practical studies and independent research. You will also complete your own dissertation.

Courses include:

Foundations of Animal Science
One Health and Comparative Animal Models
Laboratory Tools for the Biosciences
Avian Biology and Development
Analytical Methods in Animal Biosciences
One Health, Zoonoses and Emerging Infections
Semester 1 courses
Semester 2 courses
Dissertation

You will prepare a research proposal based on your laboratory or bioinformatic research project and will carry out this project under the supervision of a staff member of the Roslin Institute.

Research project and dissertation

Career opportunities

This programme develops theoretical knowledge and practical skills, giving graduates a number of potential career development options in academia or industry.

We envisage that at least 50 per cent of our graduates will find a PhD placement after this MSc.

Our programme has been tailored to fulfil industry demand in vivo skills and a wide range of our industrial partners have told us that graduates from this programme will be attractive employees.

Read less
This exciting cross-disciplinary course is designed to enable students to develop a range of key skills fitting them for subsequent employment or further study in Medical Biotechnology by provision of a progressive, coherent challenging programme emphasising advanced training on research skills. Read more
This exciting cross-disciplinary course is designed to enable students to develop a range of key skills fitting them for subsequent employment or further study in Medical Biotechnology by provision of a progressive, coherent challenging programme emphasising advanced training on research skills

The course offers students the opportunity to study recent, vibrant advances in biotechnological and bioinformatic approaches, which offer great hope for major breakthroughs in designing new medical therapies. and to equip themselves with the research skills necessary to complement and deepen their academic or clinical laboratory abilities.

The course encourages and enables students to make original and substantial contributions to knowledge and practice through critical understanding of current advances in medical biotechnology and development of appropriate laboratory practices.

It also allows students of diverse academic backgrounds and abilities entry at appropriate levels and to achieve to the maximum of their ability.

Read less
This Masters in Bioinformatics, Polyomics and Systems Biology is a new, exciting and innovative programme that has grown out of our well-regarded MRes in Bioinformatics. Read more
This Masters in Bioinformatics, Polyomics and Systems Biology is a new, exciting and innovative programme that has grown out of our well-regarded MRes in Bioinformatics. Bioinformatics is a discipline at the interface between biology and computing and is used in organismal biology, molecular biology and biomedicine. ‘Polyomics’ is a new term used to describe the modern integrated approach to biological analysis involving genomics, transcriptomics, proteomics, metabolomics and systems-level datasets. The MSc Bioinformatics programme focuses on using computers to glean new insights from DNA, RNA and protein sequence data and related data at the molecular level through data storage, mining, analysis and display - all of which form a core part of modern biology.

Why this programme

-Our programme emphasises understanding core principles in practical bioinformatics and functional genomics, and then implementing that understanding in a series of practical-based elective courses in Semester 2 and in a summer research project.
-You will benefit from being taught by scientists at the cutting edge of their field and you will get intensive, hands-on experience in an active research lab during the summer research project.
-Bioinformatics and the 'Omics' technologies have evolved to play a fundamental role in almost all areas of biology and biomedicine.
-Advanced biocomputing skills are now deemed essential for many PhD studentships/projects in molecular bioscience and biomedicine, and are of increasing importance for many other such projects.
-The Semester 2 elective courses are built around real research scenarios, enabling you not only to gain practical experience of working with large molecular datasets, but also to see why each scenario uses the particular approaches it does and how to go about organizing and implementing appropriate analysis pipelines.
-You will be based in the College of Medical, Veterinary & Life Sciences, an ideal environment in which to train in bioinformatics; our College has carried out internationally-recognised research in functional genomics and systems biology.
-The new programme reflects the development and activities of 'Glasgow Polyomics'. Glasgow Polyomics is a world-class facility set up in 2012 to provide research services using microarray, proteomics, metabolomics and next-generation DNA sequencing technologies. Its scientists have pioneered the 'polyomics' approach, in which new insights come from the integration of data across different omics levels.
-In addition, we have several world-renowned research centres at the University, such as the Wellcome Trust Centre for Molecular Parasitology and the Wolfson Wohl Cancer Research Centre, whose scientists do ground-breaking research employing bioinformatic approaches in the study of disease.
-You will learn computer programming in courses run by staff in the internationally reputed School of Computing Science, in conjunction with their MSc in Information Technology.

Programme structure

Bioinformatics helps biologists gain new insights about genomes (genomics) and genes, about RNA expression products of genes (transcriptomics) and about proteins (proteomics); rapid advances have also been made in the study of cellular metabolites (metabolomics) and in a newer area: systems biology.

‘Polyomics’ involves the integration of data from these ‘functional genomics’ areas - genomics, transcriptomics, proteomics and metabolomics - to derive new insights about how biological systems function.

The programme structure is designed to equip students with understanding and hands-on experience of both computing and biological research practices relating to bioinformatics and functional genomics, to show students how the computing approaches and biological questions they are being used to answer are connected, and to give students an insight into new approaches for integration of data and analysis across the 'omics' domains.

On this programme, you will develop a range of computing and programming skills, as well as skills in data handling, analysis (including statistics) and interpretation, and you will be brought up to date with recent advances in biological science that have been informed by bioinformatics approaches.

The programme has the following overall structure
-Core material - 60 credits, Semester 1, made up of 10, 15 and 20 credit courses.
-Elective material - 60 credits, Semester 2, students select 4 courses (two 10 credit courses and two 20 credit courses) from those available.
-Project - 60 credits, 14 weeks embedded in a research group over the summer.

Core and optional courses

Core courses include:
-Programming (Java)
-Database Theory and Application
-Foundations of Bioinformatics
-Omics and Systems Approaches in Biology
-These 4 courses are obligatory for those taking the MSc degree and the PgDip; they are also obligatory for those with no prior programming experience taking the PgCert.
-60-credit summer research project lasting 14 weeks - this is also obligatory for those taking the MSc programme; normally this will be with one of the research laboratories in Glasgow associated with the programme, but there is also the opportunity to study in suitable laboratories in other parts of the world

Optional courses include:
-RNA-seq and next generation transcriptomics
-Metagenomics
-Pathogen Polyomics
-Cancer Genomics - NGS and functional analysis methods
-Disease Pathway Analysis - Systems Approaches and De Novo Pathway Mapping
-Using Chemical Structure Databases in Drug Discovery for Protein Targets
-Identification of disease-causing genetic variants
-A range of more general biology and computing biology courses are also available in semester 2

Career prospects

Most of our graduates embark on a research career path here in the UK or abroad using the skills they've acquired on our programme - these skills are now of primary relevance in many areas of modern biology and biomedicine. Many are successful in getting a PhD studentship. Others are employed as a core bioinformatician (now a career path within academia in its own right) or as a research assistant in a research group in basic biological or medical science. A postgraduate degree in bioinformatics is also valued by many employers in the life sciences sector - e.g. computing biology jobs in biotechnology/biosciences/neuroinformatics/pharma industry. Some of our graduates have entered science-related careers in scientific publishing or education; others have gone into computing-related jobs in non-bioscience industry or the public sector.

Read less
The course is especially designed for healthcare professionals from a range of backgrounds. Read more
The course is especially designed for healthcare professionals from a range of backgrounds. It follows a syllabus specified by Health Education England (HEE) for training NHS staff in Genomic Medicine, and HEE has ring-fenced funding to allow NHS staff to study for the MSc (Genomic Medicine) at accredited provider institutions, including Birmingham.

Further information about HEE funding is now available. You can choose to study for the full Masters, the intermediate qualifications of Postgraduate Diploma or Postgraduate Certificate, or select individual modules as CPD.

The course is also suitable for other Home/EU or international students who wish to learn about the advances in genomics and bioinformatics particularly as relevant to medical applications, and the challenges of introducing the technology into a healthcare system.

The course begins with a brief revision of DNA, genes and genetics and updates these concepts to the scale of contemporary, whole-genome information. It will introduce to you the technologies for generating genome-wide data, and how the resulting vast quantities of data can be approached and interrogated to generate meaningful information that can be useful for families affected by inherited conditions, or for patients with acquired diseases including cancer and infections.

You will learn how to interrogate genomic data using bioinformatic tools to identify and investigate the pathogenicity of genetic variants, and relate these to real-life case-studies. The core modules also include consideration of the ethical, legal and social issues that surround genomic medicine, which can be further explored in an optional module. Other options include counselling skills and advanced bioinformatics.

Finally, you can choose either a 60-credit research project (which could be a computer-based bioinformatics project, a lab-based or clinically-based project, either in Birmingham or at your home institution), or a 30-credit dissertation (combined with additional taught modules), to hone your research skills while exploring a genomics-related project of your choice.

About the College of Medical and Dental Sciences

The College of Medical and Dental Sciences is a major international centre for research and education, make huge strides in finding solutions to major health problems including ageing, cancer, cardiovascular, dental, endocrine, inflammatory diseases, infection (including antibiotic resistance), rare diseases and trauma.
We tackle global healthcare problems through excellence in basic and clinical science, and improve human health by delivering tangible real-life benefits in the fight against acute and chronic disease.
Situated in the largest healthcare region in the country, with access to one of the largest and most diverse populations in Europe, we are positioned to address major global issues and diseases affecting today’s society through our eight specialist research institutes.
With over 1,000 academic staff and around £60 million of new research funding per year, the College of Medical and Dental Sciences is dedicated to performing world-leading research.
We care about our research and teaching and are committed to developing outstanding scientists and healthcare professionals of the future. We offer our postgraduate community a unique learning experience taught by academics who lead the way in research in their field.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
This course trains healthcare professionals in how to integrate genomic technology into patient care. We have developed this course with Health Education England (HEE) and Genomics England Ltd (GeL). Read more
This course trains healthcare professionals in how to integrate genomic technology into patient care. We have developed this course with Health Education England (HEE) and Genomics England Ltd (GeL).

This course follows a syllabus specified by HEE to train National Health Service staff in genomic medicine. There is funding available for NHS staff to study genomic medicine at Newcastle.

This course will help you lead the holistic integration of genomic technology into patient care within the NHS. This includes the ambitious 100,000 Genomes Project at GeL.

The course is especially for NHS professionals to improve skills and support career progression. It is also suitable for healthcare professionals from a wide range of backgrounds, including those working, or wanting to work, in other healthcare systems. The course is suitable for non-healthcare professionals too. In developing your knowledge and skills in genomics, the course will prepare you for work or PhD study in:
-Genomics
-Bioinformatics
-Medical-related research in academia or the pharmaceutical industry
-The medical application of genomics
-Introducing genomics as a new technology into a healthcare system

As a Newcastle University student, you will learn from world-leading experts in genomics. From the outset you will be encouraged to become an independent and self-motivated learner.

The course begins with an introduction to genomics. You'll focus on the basics of DNA, genes and genetics. It will bring you up to speed with the current understanding of whole-genome information. We will introduce you to:
-The technologies for generating genome-wide data
-How to analyse and integrated the vast quantity of information generated
-How to produce meaningful information for those with inherited conditions or diseases like cancer

You will learn how to:
-Interrogate genomic data using bioinformatic tools
-Identify and investigate the pathogenicity of genetic variants and relate them to real-life case-studies.

Other core modules consider the role of genomics in infectious disease and pharmacogenomics, while optional modules explore the ethical, legal and social issues that surround genomic medicine, and counselling skills.

Delivery

You can study full time, part time, or by module for continuous professional development. The courses are available as flexible blended learning. This means that in each taught module you will have three to four study days, in addition to a distance learning component.

We will challenge and encourage you to think for yourself within a supportive environment. Your personal and welfare tutor will support you with both academic and welfare issues.

You can start your studies in September (full time and part time courses) or January (part time courses).

Read less
RESEARCH STRENGTHS AND FACILITIES. The Department of Medical Genetics Graduate Program is a leading program that attracts students from all over Canada and the world. Read more

Graduate Program

RESEARCH STRENGTHS AND FACILITIES
The Department of Medical Genetics Graduate Program is a leading program that attracts students from all over Canada and the world. The Program offers Master’s and Doctoral programs that take place in Vancouver, one of the world’s most livable cities, at locations affiliated with the University of British Columbia, an institution which is consistently ranked among the world’s best universities.

The Department is composed of dozens of faculty members at the forefront of their fields who use cutting edge genetic, epigenetic, genomic, and bioinformatic methodologies to gain insight into diseases such as cancer, diabetes, obesity, neurodegenerative and neurological disorders, and other genetic diseases. Research is highly interactive and often involves local, national, and international collaborations which further enrich the research experience.

Individual labs conduct clinical and/or translational research and basic experimental research engaging a wide variety of approaches including the use of model organisms such as mice, flies (D. melanogaster), worms (C. elegans), and yeast (S. cerevisiae). Prospective students with interests in the investigative areas below have an opportunity to pursue world class research in labs affiliated with the Medical Genetics Graduate Program.

Areas of Research

- Developmental genetics and birth defects
- Epigenetics and chromosome transmission
- Genomics and bioinformatics
- Genetic epidemiology and human gene mapping
- Neurogenetics and immunogenetics
- Stem cells and gene therapy
- Pharmacogenomics
- Clinical genetics, genetic counselling, ethics and policy

Quick Facts

- Degree: Master of Science
- Specialization: Medical Genetics
- Subject: Life Sciences
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Medicine

Read less
The Global Burden of Disease Study predicts that by 2020 the top ten leading causes of disability-adjusted life years has ischaemic heart disease at number 1, chronic obstructive pulmonary disease (COPD) at number 5, and lower respiratory tract infections at number 6. Read more
The Global Burden of Disease Study predicts that by 2020 the top ten leading causes of disability-adjusted life years has ischaemic heart disease at number 1, chronic obstructive pulmonary disease (COPD) at number 5, and lower respiratory tract infections at number 6. COPD is predicted to quickly rise ‘up the charts’ after 2020 because it is unique in being currently untreatable, with four people a minute worldwide dying of this condition.

Consequently, study of respiratory and cardiovascular science is essential to improving our future health prospects. To that end, the Respiratory and Cardiovascular Science (RCVS) stream combines lectures and journal clubs covering the physiology and pathophysiology of the heart and lungs to provide a solid grounding on how dysfunction in physiology can lead to pathophysiology and clinical manifestations of severe heart or lung disease. The RCVS stream covers the main areas of respiratory physiology and cellular and molecular biology, and introduces the major disease-causing conditions, giving you a broad base of understanding of the heart and lungs.

Laboratory-based research projects will be directly related to advancing our understanding of heart and lung function and/or dysfunction. Dedicated RCVS sessions on data interpretation are designed to facilitate and complement the project experience.

Most of the tutors on the RCVS stream work at the National Heart & Lung Institute, and represent the largest ‘critical mass’ of research-active, respiratory or cardiovascular science academics in Europe. For example, Professor Peter Barnes (FRS) is the most cited published author for COPD in the world. Consequently, students will be in a premier, cutting-edge environment of respiratory and cardiovascular teaching and research.

After completion of the RCVS stream the student will be able to:

-Describe the basic physiology of cardiac function
-Describe the pathophysiology of the major cardiovascular diseases (for example, cardiac ischaemia)
-Describe the pathophysiology of the major respiratory diseases, including asthma, COPD and cystic fibrosis
-Understand the advantages and limitations of animal models of respiratory and cardiovascular disease
-Understand the rationale behind the design of novel treatments for respiratory and cardiovascular disease
-Use library and other research sources effectively
-Design laboratory-based experiments to effectively test a specified hypothesis, incorporating use of appropriate controls
-Interpret data sets, depict data in an appropriate graphic format and apply appropriate statistical analysis
-Understand and be able to use bioinformatic approaches
-Be able to write a grant proposal for a research project
-Be able to present research project data in various formats, including as a poster, an oral presentation, a PhD-style write-up and a journal-based research paper write-up
-Be able to read, understand and critically evaluate research papers in peer-review journals

Please note that Postgraduate Diplomas and Certificates for part-completion are not available for this course.

A wide range of research projects is made available to students twice a year. The range of projects available to each student is determined by their stream. Students may have access to projects from other streams, but have priority only on projects offered by their own stream.

Read less
Our research aims to enhance understanding of disease processes in animals and to translate that understanding into improved therapies for both animal and human disease. Read more

Research profile

Our research aims to enhance understanding of disease processes in animals and to translate that understanding into improved therapies for both animal and human disease.

Research focuses on:

the improvement of health and welfare of domestic animal species;
the protection of public health;
alleviation of human poverty (in the context of tropical diseases).
providing holistic solutions to global challenges in human and veterinary medicine and the livestock industry.
Most of our research is carried out within The Roslin Institute, which is incorporated with the School and is the major centre of research.

Training and support

Studentships are of 3 or 4 years duration and students will be expected to complete a novel piece of research which will advance our understanding of the field. To help them in this goal, students will be assigned a principal and assistant supervisor, both of whom will be active scientists at the Institute.

Student progress is monitored in accordance with School Postgraduate (PG) regulations by a PhD thesis committee (which includes an independent external assessor and chair). There is also dedicated secretarial support to assist these committees and the students with regard to University and Institute matters.

All student matters are overseen by the Schools PG studies committee. An active staff:student liaison committee and a social committee, which is headed by our postgraduate liaison officer, provide additional support.

Students are expected to attend a number of generic training courses offered by the Transkills Programme of the University and to participate in regular seminars and laboratory progress meetings. All students will also be expected to present their data at national and international meetings throughout their period of study.

Facilities

The Veterinary Campus at Easter Bush includes the new “state-of- the-art” Roslin Institute Building, the Small Animal and Large Animal Hospitals, the Riddell-Swan Cancer Imaging Centre as well as the New Vet School. Our facilities include: rodent, bird and livestock animal units and associated lab areas; comprehensive bioinformatic and genomic capability; a range of bioimaging facilities; extensive molecular biology and cell biology labs; café and auditorium where we regularly host workshops and invited speakers.

Read less
Normal growth of an animal, from the fertilised egg through to end of life maturity, requires concerted action of all the genes found in the animal genome. Read more

Research profile

Normal growth of an animal, from the fertilised egg through to end of life maturity, requires concerted action of all the genes found in the animal genome. Not all genes are active at any one stage or in any one cell type. Gene expression is dynamic yet programmed. Sometimes this programming goes awry and disease ensues. Research in the Division of Developmental Biology aims to characterise, understand and ultimately exploit the ever changing profile of gene expression found in mammals. This will allow the development of a better understanding of biology which in turn will enable new biotech, agricultural and biomedical advances to become reality.

We believe that a supported, active and innovative post-graduate student community is essential if we are to deliver our goals. This community represents the scientists, entrepreneurs, communicators and regulators of the future.

Research in the Division of Developmental Biology aims to enhance fundamental knowledge of the control of cellular growth and differentiation aiming to underpin the development of better disease intervention strategies.

We will advance our understanding of function in these essential biological processes through mechanistic studies at the cell, tissue and whole animal level with particular focus on:

animal biotechnology and stem cells
tissue and organ development
tissue damage and repair
regulatory networks in development

Within the Division of Developmental Biology we have 19 Group Leaders plus 2 Career Track Fellows who supervise about 30 students at any one time.

Training and support

Studentships are of 3 or 4 years duration and students will be expected to complete a novel piece of research which will advance our understanding of the field. To help them in this goal, students will be assigned a principal and assistant supervisor, both of whom will be active scientists at the Institute. Student progress is monitored in accordance with School Postgraduate (PG) regulations by a PhD thesis committee (which includes an independent external assessor and chair). There is also dedicated secretarial support to assist these committees and the students with regard to University and Institute matters.

All student matters are overseen by the Schools PG studies committee. The Roslin Institute also has a local PG committee and will provide advice and support to students when requested. An active staff:student liaison committee and a social committee, which is headed by our postgraduate liaison officer, provide additional support.

Students are expected to attend a number of generic training courses offered by the Transkills Programme of the University and to participate in regular seminars and laboratory progress meetings. All students will also be expected to present their data at national and international meetings throughout their period of study.

Facilities

In 2011 The Roslin Institute moved to a new state-of-the-art building on the University of Edinburgh's veterinary campus at Easter Bush. Our facilities include: rodent, bird and livestock animal units and associated lab areas; comprehensive bioinformatic and genomic capability; a range of bioimaging facilities; extensive molecular biology and cell biology labs; café and auditorium where we regularly host workshops and invited speakers.

Read less
Research in the Division of Genetics and Genomics aims to advance understanding of complex animal systems and the development of improved predictive models… Read more

Research profile

Research in the Division of Genetics and Genomics aims to advance understanding of complex animal systems and the development of improved predictive models through the application of numerical and computational approaches in the analysis, interpretation, modelling and prediction of complex animal systems from the level of the DNA and other molecules, through cellular and gene networks, tissues and organs to whole organisms and interacting populations of organisms.

The biology and traits of interest include: growth and development, body composition, feed efficiency, reproductive performance, responses to infectious disease and inherited diseases.

Research encompasses basic research in bioscience and mathematical biology and strategic research to address grand challenges, e.g. food security.

Research is focussed on, but not restricted to, target species of agricultural importance including cattle, pigs, poultry, sheep; farmed fish such as salmon; and companion animals. The availability of genome sequences and the associated genomics toolkits enable genetics research in these species.

Expertise includes genetics (molecular, quantitative), physiology (neuroendocrinology, immunology), ‘omics (genomics, functional genomics) with particular strengths in mathematical biology (quantitative genetics, epidemiology, bioinformatics, modelling).

The Division has 18 Group Leaders and 4 career track fellows who supervise over 30 postgraduate students.

Training and support

Studentships are of 3 or 4 years duration and students will be expected to complete a novel piece of research which will advance our understanding of the field. To help them in this goal, students will be assigned a principal and assistant supervisor, both of whom will be active scientists at the Institute. Student progress is monitored in accordance with School Postgraduate (PG) regulations by a PhD thesis committee (which includes an independent external assessor and chair). There is also dedicated secretarial support to assist these committees and the students with regard to University and Institute matters.

All student matters are overseen by the Schools PG studies committee. The Roslin Institute also has a local PG committee and will provide advice and support to students when requested. An active staff:student liaison committee and a social committee, which is headed by our postgraduate liaison officer, provide additional support.

Students are expected to attend a number of generic training courses offered by the Transkills Programme of the University and to participate in regular seminars and laboratory progress meetings. All students will also be expected to present their data at national and international meetings throughout their period of study.

Facilities

In 2011 The Roslin Institute moved to a new state-of-the-art building on the University of Edinburgh's veterinary campus at Easter Bush. Our facilities include: rodent, bird and livestock animal units and associated lab areas; comprehensive bioinformatic and genomic capability; a range of bioimaging facilities; extensive molecular biology and cell biology labs; café and auditorium where we regularly host workshops and invited speakers.

The University's genomics facility Edinburgh Genomics is closely associated with the Division of Genetics and Genomics and provides access to the latest genomics technologies, including next-generation sequencing, SNP genotyping and microarray platforms (genomics.ed.ac.uk).

In addition to the Edinburgh Compute and Data Facility’s high performance computing resources, The Roslin Institute has two compute farms, including one with 256 GB of RAM, which enable the analysis of complex ‘omics data sets.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X