• Ross University School of Veterinary Medicine Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Swansea University Featured Masters Courses
King’s College London Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Aberdeen University Featured Masters Courses
"biochemistry" AND "molec…×
0 miles

Masters Degrees (Biochemistry And Molecular)

We have 267 Masters Degrees (Biochemistry And Molecular)

  • "biochemistry" AND "molecular" ×
  • clear all
Showing 1 to 15 of 267
Order by 
Our graduate program provides an advanced education with the goal of preparing students for a career in research. We offer an MSc degree and a PhD degree program, with most of our master’s students transferring into the PhD track during their second year. Read more
Our graduate program provides an advanced education with the goal of preparing students for a career in research. We offer an MSc degree and a PhD degree program, with most of our master’s students transferring into the PhD track during their second year. As part of UBC’s Life Sciences Institute students have the opportunity to collaborate with researchers from a wide range of disciplines. We also offer students who do not secure external funding stipends of $19,000 to $21,000 per year. After graduation many of our students continue on to academic or industrial positions at UBC or other institutions.

Quick Facts

- Degree: Master of Science
- Specialization: Biochemistry and Molecular Biology
- Subject: Life Sciences
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Medicine

Read less
Starting in fall 2014, graduate students can enroll in the new Bioinformatics Specialization, as part of the Biochemistry & Molecular Biology Graduate Program. Read more
Starting in fall 2014, graduate students can enroll in the new Bioinformatics Specialization, as part of the Biochemistry & Molecular Biology Graduate Program. This unique program at the University of Calgary will provide students with advanced training in the development of computational approaches for understanding large-scale biomedical data.

Come study science in the Canadian Rocky Mountains! Research in our department is diverse, and at the forefront of many fields. Research interests span from biochemistry to molecular, cellular and developmental biology, genetics, immunology and bioinformatics, with applications to cancer and clinical research. Our departmental members are grouped into four "streams" with common research interests: Molecular and Developmental Genetics, Molecular Biology of Disease, Genomics Proteomics and Bioinformatics and Cell Signalling and Structure. Additionally our faculty are members of the Faculty of Medicine's research-based Institutes and Centres.

Our department offers outstanding graduate training leading to M.Sc. and Ph.D. degrees and postdoctoral training. Effective April 1, 2014, guaranteed minimum stipends will be $23,000 for Ph.D. students and $21,000 for M.Sc. students. All students admitted into the BMB graduate program during the 2013-2014 year, and receiving the guaranteed minimum stipend, will receive a BMB Entrance Award. This award is valued at $5,000 for PhD students ($2,500 to be paid in their first year, and $2,500 to be paid in their second year), and $2,500 for MSc students. Entrance Awards will be reduced by any amount a stipend is over the program's minimum levels.

Those with outstanding achievement or potential will be eligible for additional support through scholarships and subsidies.

New students may spend their first six months in the program doing rotations in up to three different laboratories, although they may also apply to directly enter a research laboratory.

Calgary, which has a population of approximately one million, is a youthful, dynamic and friendly city. Situated one hour's drive from the Rocky Mountains, Calgary offers a wide variety of cultural, sporting and outdoor activities. Come to Calgary to be stimulated by the science and the scenery!

Read less
Molecular biology is a key area underpinning modern biology in the post-genomic era. The science of molecular biology analyses the structure and function of organisms – viral, microbial and eukaryotic – at a molecular level. Read more
Molecular biology is a key area underpinning modern biology in the post-genomic era. The science of molecular biology analyses the structure and function of organisms – viral, microbial and eukaryotic – at a molecular level. The structure and function of nucleic acids, genes, proteins and cell-signalling molecules are also analysed by molecular biology. Molecular biology techniques can be used to investigate errors in cellular systems that are fundamental to an advanced understanding of disease aetiology. In addition, innovations in molecular biology permit sophisticated modification of organisms, and manipulation of their functions, to permit the production of novel products and the development of novel therapeutic technologies. The burgeoning global bioscience sector creates a continuing demand for the education of scientists at postgraduate level skilled in molecular biology.

The MSc Molecular Biology with Professional Experience, is an extended full-time Masters programme with a substantive professional experience component. Within the professional experience modules, students have the option of undertaking an internship with a host organisation or, alternatively, campus-based professional experience. Internships are subject to a competitive application and selection process and the host organisation may include the University.

Internships may be paid or unpaid, and this will depend on what is being offered and agreed with the host organisation. Students who do not wish to undertake an internship or are not successful in securing an internship will undertake campus-based professional experience, which will deliver similar learning outcomes through supervised projects and activities designed to offer students the opportunity to integrate theory with an understanding of professional practice.

WHY CHOOSE THIS COURSE?

This course is intended for life science graduates from both home and overseas courses who wish to develop their knowledge and skills in biosciences with an emphasis on molecular biology. The aim of the course is to produce scientists who will be able to contribute to a range of careers including academic, commercial, industrial and healthcare applications of molecular biology. This course is also an excellent foundation for those wishing to pursue research in molecular biology at PhD level.

You will have the opportunity to study a broad range of Molecular Biology at a theoretical and a practical level. You will have the opportunity to gain hands-on experience of molecular biology techniques. You will have the opportunity to develop a range of transferrable and research skills that will develop your knowledge and enhance your employment potential.

WHAT WILL I LEARN?

The course is focused on the key elements of molecular biology and comprises modules on the following topics:
-Genomes and DNA Technology
-Cell Culture and Antibody Technology
-Mammalian Cell and Molecular Biology
-Molecular Microbiology
-Molecular Biology of Disease

The course will also comprise a Research Skills module. In addition, a Research Project forms part of the MSc course.

Additionally, the understanding gained from these modules will be demonstrated and applied in either the University-based project (12 months full-time or 24 months part-time, on course HLST104), or the professional experience modules giving students the option of undertaking an internship with a host organisation or, alternatively, campus-based professional experience.

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

Molecular biology is one of the most buoyant sectors of the biosciences jobs market. Indeed, molecular biology is a key area underpinning modern biology in the post-genomic era. Consequently, many different branches of biology in both the academic and industrial sectors make use of molecular biology skills and rely on analyses at the molecular level to drive developments. It is predicted that growth in the Molecular Biology employment market will be above average over the period 2010–20.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
Application period/deadline. November 1, 2017 - January 24, 2018. In-depth training in understanding structure-function relationships of proteins and their characterisation. Read more

Application period/deadline: November 1, 2017 - January 24, 2018

• In-depth training in understanding structure-function relationships of proteins and their characterisation

• Strong focus on practical skills and use of most modern equipment in protein expression and analysis

• Highly flexible degree aimed at students with an interest in a research career, taught by an international staff

The International Master’s Degree Programme in Protein Science and Biotechnology is a two-year programme planned around the early integration of M.Sc. students into research groups and the hands-on use of modern biochemical and molecular biology equipment by individual students. Early exposure to research work provides insights into cutting edge approaches in structural and enzymology characterisation as well as cell and molecular biology methods. A completion of a minimum of 120 study units equivalent to ECTS credits is required to complete the master’s degree studies. The flexible programme includes courses in:

• Protein production and analysis (compulsory)

• Biochemical methodologies (compulsory)

• 3-6 week orientation to research work periods in research groups (compulsory)

• Basic aspects of crystallographic methods

• Structural enzymology

• Biochemistry of protein folding

• Systems biology

• Bioinformatics and biocomputing

• Structure-based drug discovery

Additional optional studies include (but are not limited to):

• Advanced biotechnology/bioprocess engineering

• Immunology

• Animal use in research

• Yeast genetics and genomics

• Information skills for foreign degree students

• Bioreactor technology

• Molecular bases of disease

In addition, up to 15 credits can be taken from other suitable courses taught at the Oulu University or any other university, as long as they are of the appropriate level and connected to biochemistry or logically support some aspect of the Protein Science and Biotechnology programme.

Due to the range of courses available in the programme, a wide variety of expertise that can be obtained during M.Sc. level studies at FBMM. The official diploma title received after successful completion of our international M.Sc. programme will be M.Sc. in Protein Science and Biotechnology. Depending on the course choices, the training received may also provide you with excellent proficiency in molecular and cellular biology.

The duration of the M.Sc. thesis research work is flexible depending on the interest of the students and may be three months (more courses/lectures taken) or eight months (longer M.Sc. thesis research period).

Significant number of students spend orientation to research work periods outside the Faculty of Biochemistry and Molecular Medicine or carry out the research work for their MSc thesis abroad

The Faculty of Biochemistry and Molecular Medicine offers a highly international environment of cutting edge research in Protein Structure analysis, Enzymology, Proteomics, Bioimaging, Developmental Biology, Matrix Biology and Metabolism research. About fifty percent of our staff are native to other countries than Finland, and research groups are well connected globally to other specialists and research groups in their fields of study. Many students holding an M.Sc. from our faculty have gone on to Ph.D. programmes of other prestigious institutions all over the world, and many have stayed at FBMM Oulu to continue in our Ph.D. programme.

The skills gained in the programme offer you the academic training and expertise required to succeed in a research environment, but will also open opportunities in biomedical and related industries.

Successful applicants should hold a B.Sc. or higher degree in Biochemistry, Chemistry or a related field in the natural or life sciences and have a good command of technical English language in biochemistry and molecular biology.

For all enquiries, please refer to our enquiry form: http://www.oulu.fi/university/admissions-contact



Read less
If you have a Bachelors degree in the biosciences, biochemistry, pharmacy or biological chemistry and you want to develop specialist knowledge in molecular biology then this postgraduate programme is for you. Read more
If you have a Bachelors degree in the biosciences, biochemistry, pharmacy or biological chemistry and you want to develop specialist knowledge in molecular biology then this postgraduate programme is for you. It will allow you to gain new skills and enhance your employability in the pharmaceutical and biotechnology industries or allow you to progress to a research degree.

About the course

The MSc Molecular Biology will give you hands on practical experience of both laboratory and bioinformatics techniques. You will also be trained in molecular biology research strategies. A strong practical foundation is provided in the first semester (Semester A) when you will study two modules:
-Cellular Molecular Biology - This module aims to help you develop a systematic understanding and knowledge of recombinant DNA technology, bioinformatics and associated research methodology.
-Core Genetics and Protein Biology - This module will provide you with an advanced understanding of genetics, proteins, the area of proteomics and the molecular basis of cellular differentiation and development.

The second semester (Semester B) has a problem-based learning approach to the application of the knowledge you gained in Semester A. You will study two modules:
-Molecular Medicine - You will study the areas of protein design, production and engineering, investigating specific examples of products through the use of case studies.
-Molecular Biotechnology - You will gain an in-depth understanding of the application of molecular biological approaches to the characterisation of selected diseases and the design of new drugs for their treatment.

In semester C you will undertake a research project to develop your expertise further. The research project falls into different areas of molecular biology and may include aspects of fermentation biotechnology, cardiovascular molecular biology, cancer, angiogenesis research, diabetes, general cellular molecular biology, bioinformatics, microbial physiology and environmental microbiology.

Why choose this course?

-This course gives in-depth knowledge of molecular biology for biosciences graduates
-It has a strong practical basis giving you training in molecular biology research strategies and hand-on experience of laboratory and bioinformatics techniques
-It equips you for research and development positions in the biotechnology and pharmaceutical industries, as well as a wide range of non-research roles in industry
-Biosciences research facilities cover fermentation biotechnology, high performance liquid chromatography, (HPLC), cell culture, molecular biology and pharmacology
-There are excellent facilities for chemical and biomedical analysis, genetics and cell biology studies and students have access to the latest equipment for PCR, qPCR and 2D protein gel analysis systems for use during their final year projects
-The School of Life and Medical Science will move into a brand new science building opening in September 2016 providing us with world class laboratories for our teaching and research. At a cost of £50M the new building provides spacious naturally lit laboratories and social spaces creating an environment that fosters multi-disciplinary learning and research

Careers

Graduates of the programme will be qualified for research and development positions in the pharmaceutical and biotechnology industries, to progress to a research degree, or to consider non-research roles in industry such as management, manufacturing and marketing.

Teaching methods

The course consists of five modules including a research project. All modules are 100% assessed by coursework including in-class tests.
-Cellular Molecular Biology
-Core Genetics and Protein Biology
-Molecular Biotechnology
-Molecular Medicine Research
-Biosciences Research Methods for Masters
-Methods and Project

Read less
Molecular chemistry is a creative science, where chemists synthesize molecules with new biological or physical properties to address scientific or societal challenges. Read more

Chemistry: Molecular Chemistry

Molecular chemistry is a creative science, where chemists synthesize molecules with new biological or physical properties to address scientific or societal challenges. Think of new catalytic conversions, lead compounds for future medicines or the next generation of conducting polymers. The specialisation Molecular Chemistry offers education in connection with top-level research in the Institute for Molecules and Materials (IMM), enabling you to develop in-depth knowledge of the design, synthesis and characterization of unprecedented functional molecular structures.

See the website http://www.ru.nl/masters/chemistry/molecular

Why study Molecular Chemistry at Radboud University?

- The IMM at Radboud University hosts an internationally renowned cluster of molecular chemistry groups, where you will participate in challenging research projects.
- The IMM Organic Chemistry department was recently awarded a 27 million euro NWO Gravity programme grant. Among the teaching staff are two ERC advanced grant and two ERC starting grant winners.
- Teaching takes place in small groups and in a stimulating, personal setting.

Admission requirements for international students

1. A completed Bachelor's degree in Chemistry, Science or a related area
In general, you are admitted with the equivalent of a Dutch Bachelor's degree in Chemistry, Science with relevant subjects, or a related programme in molecular science. In case of other pre-education, students must have passed preliminary examinations containing the subject matter of the following well-known international textbooks (or equivalent literature). Any deficiencies in this matter should be eliminated before you can take part in this specialisation. If you want to make sure that you meet our academic requirements, please contact the academic advisor.
- Organic chemistry: e.g. Organic Chemistry (Bruice)
- Biochemistry: e.g. Biochemistry (Lehninger)
- Physical chemistry: e.g. Physical chemistry (Atkins)
- 30 EC of chemistry or chemistry-related courses at third year Bachelor's level

2. A proficiency in English
In order to take part in this programme, you need to have fluency in both written and spoken English. Non-native speakers of English* without a Dutch Bachelor's degree or VWO diploma need one of the following:
- A TOEFL score of >575 (paper based) or >90 (internet based)
- An IELTS score of ≥6.5
- Cambridge Certificate of Advanced English (CAE) or Certificate of Proficiency in English (CPE) with a mark of C or higher

Career prospects

Approximately 40% of our graduates take up a PhD position, either in Nijmegen or elsewhere in the world. Our research institutes, in particular the Institute for Molecules and Materials, have vacancies for PhD projects every year. Our graduates also find work as researchers and managers in the chemical industry, or in one of our spin-off companies. A small proportion will not work in science, but for instance as a policymaker at a governmental organisation.

Our approach to this field

The Master's specialisation in Molecular Chemistry offers main stream chemistry courses and research topics, for those students that aim to deepen their knowledge and experimental skills in the heart of chemistry. The Institute for Molecules and Materials offers a state-of-the-art research infrastructure and hosts world-class research groups where you can conduct independent research, under the personal guidance of a researcher. Often, this leads to a scientific publication with you as a co-author.

Besides an internship in fundamental science, you can also chose to perform research in an industrial environment. Approximately one third of our students do one of their internships in a chemical company, both large (e.g. DSM, Synthon, AkzoNobel) and small (e.g. MercaChem, FutureChemistry, Chiralix).

Interested in going abroad? Contact one of our researchers, they can easily connect you to top groups elsewhere in the world. In the past few years, molecular chemistry students did internships in Oxford (UK), Princeton (US), Berkeley (US), Karolinska Institute (Sweden), ETH Zurich (Switzerland), etc.

Our research in this field

In the Master's specialisation Molecular Chemistry, the unique research facilities that Radboud University has to offer are coupled with the top level research within the Institute for Molecules and Materials (IMM). A selection of research groups for this specialisation are:
- Synthetic organic chemistry (Prof. Floris Rutjes): The group focuses on the development of new and sustainable synthetic (multistep)reactions by using bio-, organo- or metal-catalysts or combinations thereof, synthesis of druglike compound libraries, synthesis of bio-orthogonal click-reactions and chemical synthesis in continuous flow microreactors

- Analytical chemistry (Prof. Lutgarde Buydens): Research involves new chemometric methodologies and techniques for the optimisation of molecular structures. The research programme is designed around four areas: Methodological chemometrics, spectroscopic image analysis, molecular chemometrics, and analysis of genomics, metabolomics and proteomics data.

- Bio-organic chemistry (Prof. Jan van Hest): This groups uses Nature as inspiration for the design of functional molecules. Research lines that fit in this specialisation include: design and synthesis of modified peptides to alter their biological function, hybrid polymers containing biomolecules for use as antibacterial materials, and smart compartmentalisation strategies to enable multi-step reactions in a single reaction flask.

- Molecular materials (Prof. Alan Rowan): The aim of the group is the design and synthesis of novel polymers, self-organising molecules and ordered crystals and the subsequent investigation of their properties. Research topics related to his specialisation are: functional systems for application in catalysis, new OLEDS (organic LEDS), and liquid crystals.

See the website http://www.ru.nl/masters/chemistry/molecular

Read less
Biophysics provides structural and mechanistic insights into the biological world and uses this knowledge to create solutions for major global problems, such as food production, climate change, environmental damage and drug production. Read more
Biophysics provides structural and mechanistic insights into the biological world and uses this knowledge to create solutions for major global problems, such as food production, climate change, environmental damage and drug production. It spans the distance between the vast complexity of biological systems and the relative simplicity of the physical laws that govern the universe.

Our Biophysics and Molecular Life Sciences MSc provides interdisciplinary training by bringing together concepts from chemistry, physics and the life sciences. It is taught by staff actively pursuing research in these areas and from members of BrisSynBio, a flagship centre for synthetic biology research in the UK.

The programme gives you an opportunity to gain knowledge and practical experience by studying molecular interactions and mechanisms at the level of the cell to the single molecule. Topics for study include molecular structure determination, dynamic molecular mechanisms, molecular simulation, molecular design and single-molecule technologies. You can also choose an additional unit that reflects your personal interests, allowing you to broaden your knowledge of biomedical subjects whilst focusing on biophysics. You will also learn about the commercialisation of research outcomes, including intellectual property, setting up a business, getting investment, marketing and legal issues.

Graduates from this programme will be well-prepared for a PhD programme in biophysics or related fields. Additionally, the numerical, problem-solving, research and communication skills gained on this programme are highly desired by employers in a variety of industries.

Robust evidence is the cornerstone of science and on this programme you will gain research experience in laboratories equipped with state-of-the-art equipment, including atomic force and electron microscopy, biological and chemical NMR, x-ray crystallography and mass spectrometry.

Your learning will be supported throughout the programme in regular, small-group tutorials.

Programme structure

Core units
Biophysics and Molecular Life Sciences I
-The unit begins with a short series of lectures that introduce the general area of molecular life sciences for the non-specialist. The remaining lectures cover a variety of molecular spectroscopies, molecular structure determination, an introduction to systems approaches using proteomics, and the mechanistic characterisation of biomolecules using a variety of biophysical techniques.

Biophysics and Molecular Life Sciences II
-The unit describes highly specialised techniques at the interface of physics, chemistry and the life sciences. This includes techniques for studying biomolecules at the level of a single-molecule, synthetic biology, bioinformatics and molecular simulations.

Core Skills
-A series of practical classes, lecture-based teaching sessions, and tutorials that prepare you for the practical project, provide a foundation for further studies and develop a range of transferable skills.

Literary Project
-An extended essay on a subject chosen from an extensive list covering the topics described above. You work independently under the guidance of a member of staff.

Project Proposal and Research Project
-You work independently under the guidance of a member of staff to produce a written project proposal. This is followed by a 12-week research project investigating your chosen topic. The research project forms the basis for a dissertation.

Lecture-based option
You will study one lecture-based unit from:
-Cancer Biology
-Cardiovascular Research
-The Dynamic Cell
-Infection, Immunology and Immunity
-Neuroscience
-Pharmacology

Careers

Typically, biophysics careers are laboratory-based, conducting original research within academia, a government agency or private industry, although the transferable skills gained on the course are ideal for many other careers outside of science, including business and finance.

Read less
Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision. Read more
Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision.

Our expertise in disciplines such as biochemistry, microbiology and biomedical science allows us to exploit technology and develop groundbreaking ideas in the fields of genetics, molecular biology, protein science, biophysics and computational biologoy. Fields of enquiry encompass a range of molecular processes from cell division, transcription and translation through to molecular motors, molecular diagnostics and the production of biotherapeutics and bioenergy.

Visit the website https://www.kent.ac.uk/courses/postgraduate/1235/biochemistry

About the School of Biosciences

The School of Biosciences is among the best-funded schools of its kind in the UK, with current support from the BBSRC, NERC, MRC, Wellcome Trust, EU, and industry. It has 38 academic staff, 56 research staff (facility managers, research fellows, postdoctoral researchers and technicians), approximately 100 postgraduate research students and 20 key support staff. The school's vibrant atmosphere has expanded to become a flourishing environment to study for postgraduate degrees in a notably friendly and supportive teaching and research environment.

In addition to research degrees, our key research strengths underpin a range of unique and career-focused taught Master’s programmes that address key issues and challenges within the biosciences and pharmaceutical industries and prepare graduates for future employment.

Research areas

Research in the School of Biosciences is focused primarily on essential biological processes at the molecular and cellular level, encompassing the disciplines of biochemistry, genetics, biotechnology and biomedical research.

The School’s research has three main themes:

- Protein Science – encompasses researchers involved in industrial biotechnology and synthetic biology, and protein form and function

- Molecular Microbiology – encompasses researchers interested in yeast molecular biology (incorporating the Kent Fungal Group) and microbial pathogenesis

- Biomolecular Medicine – encompasses researchers involved in cell biology, cancer targets and therapies and cytogenomics and bioinformatics.

Each area is led by a senior professor and underpinned by excellent research facilities. The School-led development of the Industrial Biotechnology Centre (IBC), with staff from the other four other schools in the Faculty of Sciences, facilitates and encourages interdisciplinary projects. The School has a strong commitment to translational research, impact and industrial application with a substantial portfolio of enterprise activity and expertise.

Associated centres

- Kent Fungal Group

The Kent Fungal Group (KFG) brings together a number of research groups in the School of Biosciences that primarily use yeasts or other fungi as ‘model systems’ for their research. One strength of the KFG is the range of model fungi being exploited for both fundamental and medical/translational research. These include Bakers’ yeast (Saccharomyces cerevisiae) and Fission yeast (Schizosaccharomyces pombe) and yeasts associated with human disease, specifically Candida albicans and Cryptococcus neoformans.

In addition to studying key cellular processes in the fungal cell such as protein synthesis, amyloids and cell division, members of the KFG are also using yeast to explore the molecular basis of human diseases such as Alzheimer’s, Creutzfeldt-Jakob, Huntington’s and Parkinson’s diseases as well as ageing. The KFG not only provides support for both fundamental and medical/translational fungal research, but also provides an excellent training environment for young fungal researchers.

- Industrial Biotechnology Centre

The School houses one of the University’s flagship research centres – the Industrial Biotechnology Centre (IBC). Here, staff from Biosciences, Mathematics, Chemistry, Physics, Computing and Engineering combine their expertise into a pioneering interdisciplinary biosciences programme at Kent, in order to unlock the secrets of some of the essential life processes. These approaches are leading to a more integrated understanding of biology in health and disease. In the Centre, ideas and technology embodied in different disciplines are being employed in some of the remaining challenges in bioscience. With such an approach, new discoveries and creative ideas are generated through the formation of new collaborative teams. In this environment, the IBC is broadening and enriching the training of students and staff in science and technology.

- The Centre for Interdisciplinary Studies of Reproduction (CISoR)

The centre comprises several like-minded academics dedicated to the study of reproduction in all its forms. Drawing on a range of academic disciplines, CISoR's core philosophy is that the study of this fascinating field will advance further through a multidisciplinary approach. Impactful, excellent research forms the basis of CISoR’s activities including scientific advance, new products and processes, contribution to public policy, and public engagement.

Careers

A postgraduate degree in the School of Biosciences is designed to equip our graduates with transferable skills that are highly valued in the workplace. Our research-led ethos ensures that students explore the frontiers of scientific knowledge, and the intensive practical components provide rigorous training in cutting edge technical skills that are used in the modern biosciences while working in areas of world-leading expertise within the School.

Destinations for our graduates include the leading pharmaceutical and biotechnological companies within the UK and leading research institutes both at home and abroad.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/index.html

Read less
What is the Master of Biophysics, Biochemistry and Biotechnology all about?. The programme provides in-depth training in the multidisciplinary fields of biophysics and biochemistry, with particular emphasis on subfields in which KU Leuven's research expertise is internationally recognised. Read more

What is the Master of Biophysics, Biochemistry and Biotechnology all about?

The programme provides in-depth training in the multidisciplinary fields of biophysics and biochemistry, with particular emphasis on subfields in which KU Leuven's research expertise is internationally recognised: the determination of molecular structures, molecular and supramolecular modelling, the spectroscopy of biomolecules, the physical modelling of complex systems and the study of these models, the transport through ion channels in membranes, and the study of molecular interactions and physical principles in vitro, in complex biological machineries and in the living cell.

This is an initial Master's programme and can be followed on a full-time or part-time basis.

Structure

Students may select one of two tracks - Biophysics or Biochemistry and Biotechnology. The track Biochemistry and Biotechnology has three orientations: Physiological, Molecular and Cellular. 

Alternatively, students who are not considering a research career can opt for Applied Biophysics.

Elective Courses 

Students choose courses from an additional list, which are different from their research orientation. Students may select courses from the entire programme offered by the university if they have the approval of the programme director. Students have to make sure that the entire programme of the master contains at least 120 credits.

International

We encourage students to complete part of their Master's training at another European university, preferably during the second year, when they can work on their Master's thesis or take specific subjects at one of the universities in our Erasmus exchange programme.

Department

The Department of Biology is committed to excellence in teaching and research and is comprised of four divisions with diverse research activities ranging from molecular and physiological research at the level of cells and organisms to ecological research on populations, communities, and ecosystems. Although many research groups conduct in-depth analyses on specific model organisms, as a whole the department studies an impressive diversity of lifeforms.

Our research is internationally renowned and embedded in well-established worldwide collaborations with other universities, research institutes, and companies. Our primary goal is to obtain insight into patterns and processes at different levels of biological organisation and to understand the basis and evolution of the mechanisms that allow organisms to adapt to their constantly changing environment. This knowledge often leads to applications with important economic or societal benefits. The department attracts many students and hosts approximately 250 staff members.

Objectives

Upon completing the programme, the graduate will have acquired:

  • thorough understanding of the properties of biomolecules, their functions and interactions with other molecules at a cellular and higher level, and particularly their structure-function relationship;
  • profound knowledge of recent developments in disciplines such as biophysical modelling, bioinformatics, genome and proteome analysis, and ability to integrate this knowledge and to apply it to new problems;
  • abilities to thoroughly familiarise oneself in a reasonably short time with several subject areas of biophysics and biochemistry, and to keep oneself informed of relevant developments in the field of study; this implies the abilities to consult and understand relevant literature, to acquire new insights and to formulate new hypothesis based on these sources;
  • abilities to independently identify and analyse physical and molecular aspects of a biophysical problem, to plan a strategy for the solution and to propose and perform appropriate experiments;
  • appropriate attitudes to work in a team environment and to make a constructive contribution to scientific research at an international level, at the university, in the biotechnological and pharmaceutical industries, at research institutions or public services;
  • abilities to make a systematic and critical report of personal biophysical or (applied) biochemical research and to present this to an audience of specialists;
  • attitudes of continued attention to the risks associated with the conducted experiments, with respect to safety and the environment, and to thoroughly analyse these risks.

Career perspectives

A range of career options are available in the pharmaceutical and bioscience industries, where structure determination, modelling and the direct study of molecular interactions in the living cell play a major role. Because of the growing importance of the bioscience industry in today's society and the increasing need for sophisticated high-tech instruments and research methods, the demand for biophysicists and biochemists is expected to exceed supply in the near future.

Graduates may also pursue a career in medical sciences research or academic research. A considerable number of graduates, particularly those who choose for a research route, go on to undertake a PhD at one of our associated research laboratories.



Read less
Advanced Biochemistry (MSc) has a special focus on how cells work at molecular level. Together with the related field of molecular biology, biochemistry provides important advances in understanding the molecular basis of life, and how alteration or disruption of these molecular pathways leads to disease processes. Read more
Advanced Biochemistry (MSc) has a special focus on how cells work at molecular level. Together with the related field of molecular biology, biochemistry provides important advances in understanding the molecular basis of life, and how alteration or disruption of these molecular pathways leads to disease processes.

What you’ll study

This course will provide you with comprehensive postgraduate life sciences training. You'll receive dedicated training in a broad range of practical laboratory skills. This is complemented by classes that develop your transferable skills in:
-Statistics
-Presentations
-Career development
-Ethics
-Science writing skills
-Your ability to design experiments and analyse sophisticated datasets

Our taught classes capture the excitement of cutting-edge research fields. You'll be taught by active researchers or practising clinical professionals.

Course structure

You'll have two semesters of postgraduate laboratories. You'll attend short optional classes in:
-In Vivo biology
-Drug discovery
-Haematology

You'll also choose two classes from the following:
-Biochemistry
-Clinical biochemistry
-Applied biochemistry

Finally, you'll undertake a summer project in an active research laboratory.

Future prospects

This course is the perfect route to future training at PhD level. It also gives you a range of skills and experience that employers from industry or in health care are looking for.

Course content

Compulsory classes
-Generic Skills for Biomedical & Pharmaceutical Students
-Entrepreneurship
-Postgraduate Studies in Biochemistry
-Advanced Topics in Biomedical Research
-Statistics
-Research project

Elective classes
-In Vivo Biology
-Drug Discovery
-Postgraduate Studies in Haematology
-Postgraduate Studies in Clinical Biochemistry
-Postgraduate Studies in Applied Biochemistry

The course is delivered through lectures, tutorials and hands-on practical sessions.

If you successfully complete the required taught classes you can undertake a laboratory project for the MSc.

Assessment of taught classes is through multiple choice tests, computer quizzes, problem-solving scenarios, poster and oral presentations, essays, and formal written exams.

The laboratory project is assessed through a written thesis.

Read less
The MSc in Molecular Cell Biology with Bioinnovation is a unique course aimed at highly-motivated students with an interest in biomedical research in the areas of cancer biology, infection/immunity or molecular neuroscience and entrepreneurial thinking. Read more
The MSc in Molecular Cell Biology with Bioinnovation is a unique course aimed at highly-motivated students with an interest in biomedical research in the areas of cancer biology, infection/immunity or molecular neuroscience and entrepreneurial thinking. The course will provide you with a truly interdisciplinary educational experience by combining advanced discipline-specific training with core scientific research, technical expertise and business skills.

Visit the website: http://www.ucc.ie/en/ckr44/

Course Details

A distinctive feature of the MSc in Molecular Cell Biology with Bioinnovation is that you will receive formal innovation and technology commercialisation training through modules from the College of Business and Law at UCC.

With three primary research themes – cancer biology, infection/immunity and molecular neuroscience, you will select projects with internationally-renowned research groups from the Schools of Biochemistry, Microbiology and Department of Anatomy/Neuroscience, following the completion of discipline-specific modules.

You will not only possess excellent research and technical skills on graduation but also the necessary business development and commercialisation skills for life science innovation.

Format

The course will consist of lectures, tutorials, hands-on workshops and a research dissertation based on individual research.

Core Scientific Modules (25 credits)

- Cell and Molecular Biology
- Human Molecular Genetics and Genetic Engineering Techniques
- Biological and Clinical Perspectives of Human Disease

Scientific Skills-Development Modules (10 credits)

- Biotechniques
- Scientific Communication of Current Topics in Molecular Cell Biology Core Business Modules (10 credits)
- Marketing for High Technology Entrepreneurs
- Technology and Business Planning

Elective modules (5 credits)

- Creativity and Opportunity Recognition
- Innovation Finance
- Intellectual Property Law for High-Tech Entrepreneurs

Research Project (40 credits)

You will select a project offered by internationally-renowned research groups from the Schools of Biochemistry and Cell Biology, Microbiology and Anatomy/Neuroscience. With three primary research themes – cancer biology, infection/immunity and molecular neuroscience, you will complete a six month project based on individual research in one of these themes and compile the results into an MSc dissertation on completion.

You will gain invaluable hands-on, practical experience in experimental design, implementation and data interpretation and develop a wide array of transferable skills, including written and verbal communication; data recording, analysis and presentation; critical evaluation of published material; learning to work collaboratively and independently as well as project and time-management.

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page04.html#molecular

Assessment

Taught modules are examined by formal written examination and continuous assessment. The research dissertation for the six-month research project must be submitted by the end of the first academic year of registration for examination by internal and external examiners.

Careers

You will be ideally positioned to enter into a PhD after graduation, but could also pursue a number of career paths including: technology transfer officer within higher education institutions and national agencies, R&D project manager, commercialisation manager within a life science start-up, or development manager within the pharmaceutical sector. The course will also equip you with the skills required to develop your own start-up venture.

A first destination surveys from 2012 - 2014 have revealed that 100% of our graduates are in employment or further education within one-year of completing the MSc in Molecular Cell Biology with Bioinnovation.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
Do you want to unravel the fundamental processes in living cells? Do you want to understand 'life' at a molecular level? Do you want to explore applications based on basic molecular research?. Read more
Do you want to unravel the fundamental processes in living cells? Do you want to understand 'life' at a molecular level? Do you want to explore applications based on basic molecular research?

Molecular Biology and Biotechnology are internationally oriented research and business areas that profit from a strong multidisciplinary knowledge on structural biology, biochemistry, molecular cell biology, genetics, microbiology and systems biology. During this programme, you acquire in-depth knowledge and skills via upperlevel theoretical and practical training. You become highly competent in the field of Molecular Biology and Biotechnology, with excellent perspectives for an independent career in an academic or industrial research environment.

The programme is mainly organized by the Groningen Biomolecular Sciences and Biotechnology Institute (GBB) and is closely related to research institute. Research is fundamental and curiosity-driven and contains specialisation in the following areas:
- Molecular Systems Biology
- Molecular Cell Biology of Complex Biological Processes
- Membrane Proteins
- Structure-function Relationships of Proteins
- Microbial Biotechnology and Biocatalysis
- Chemical and Synthetic Biology

Why in Groningen?

- Connected to research institute GBB, which maintains a strong international reputation and covers the field of systems, chemical, and synthetic biology
- Internationally oriented research and business area
- Excellent MSc students from Molecular Biology & Biotechnology may apply during their first year for the selective Top programme Biomolecular Sciences

Job perspectives

Biomolecular scientists, graduates of the Master's degree programme in Molecular Biology and Biotechnology, can pursue a career in:
- PhD in the areas of Biomolecular Sciences, Life Science, Biochemistry, Biomedical Sciences, and Bio(nano-)technology
- R&D position within Life Sciences Industry
- Scientific Advisor within a company

Read less
How do genes regulate the development and functioning of cells, tissues and organisms? How do molecules, cells and tissues function and communicate with each other, and how are their functions studied? These are the key issues for understanding molecular and cellular mechanisms, whose disruption can contribute to the onset and progression of various diseases. Read more
How do genes regulate the development and functioning of cells, tissues and organisms? How do molecules, cells and tissues function and communicate with each other, and how are their functions studied? These are the key issues for understanding molecular and cellular mechanisms, whose disruption can contribute to the onset and progression of various diseases. Researchers in the fields of genetics, genomics, cellular and developmental biology, biochemistry, structural biology, and biosciences of health are searching for the answers to these questions.

Upon completing the Master’s Programme in Genetics and Molecular Biosciences:
-You will have in-depth knowledge of genetics and molecular biosciences and of the experimental methods used in them.
-You will understand the characteristics and functions of genes and biomolecules at the cellular, tissue and organism levels.
-You will be able to analyse scientific knowledge critically and communicate it to different audiences.
-You will have the ability to produce new scientific information about the properties of genes, biomolecules and cells by means of experimental studies.
-You will be able to take advantage of existing research data and biological databases.
-You will have mastered good scientific practice and know how to act accordingly.
-You will have the capacity for independent project management and problem solving, as well as for maintaining and developing your own expertise.
-You will have the ability to work in multi-disciplinary and multicultural communities.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The Master's programme is based on basic scientific research. In the programme you will acquire knowledge and skills in modern genetics and molecular biosciences, which you will deepen in your chosen field of specialisation. The programme is tightly integrated with the experimental research carried out at the University of Helsinki in genetics, genomics, biochemistry, structural biology, and cellular and developmental biology. By combining course units, you will be able to acquire a broad-based understanding of biological phenomena and of the molecules that have an effect on health, including their interactions and functions at the levels of cells, tissues and organisms.

Courses include a variety of working methods: seminars, lectures, laboratory work, oral and written presentations, project work in small groups, independent studies and study circles formed by the students. The instruction will utilise digital learning environments.

These diverse teaching methods require active involvement from you. They will develop your ability to search, structure and present new information, as well as to draw conclusions. You will learn about the principles and methods of research during laboratory exercises, and about practical work in research groups and when writing your Master's thesis. In addition to academic excellence, you will acquire general working life skills such as fact-finding, problem solving, communication, project management and teamwork. You will acquire competence both for post-graduate studies in a Doctoral Programme and for expert positions immediately after gaining your Master's degree.

Programme Structure

You will need 120 credits (ECTS) for the Master’s degree, according to your personal study plan. The degree consists of:
-60 credits of advanced studies, including your Master’s thesis (30 credits).
-60 credits of other studies chosen from your own programme or from other programmes (such as Translational Medicine, Microbiology and Microbial Biotechnology or Neuroscience).

You will be able to complete the Master’s programme in two years. The degree always includes a personal study plan as well as studies in labour market orientation, career planning, and possibly also international activities. If you are aiming for qualification as a biology teacher, you will need 60 credits of teacher’s pedagogical studies in your degree (this applies only to Finnish or Swedish speaking students).

Career Prospects

After graduating from the Master’s programme in Genetics and Molecular Biosciences, you will be well-prepared to move on to a career or to continue your studies at the postgraduate level for a PhD degree (see Postgraduate study opportunities). Doctoral studies are a prerequisite if you wish to become a researcher in the academic sector, for example.

The Master of Science (MSc) is a generalist degree, giving you the ability to work in basic and applied research and to act as an expert in public administration, the private sector and biotechnology companies. Your choice of specialisation and optional courses allows you to profile your skills in the direction you aim to follow for your future career. You can also take courses from other Master’s programmes at the University of Helsinki or other universities in Finland or abroad.

The professional titles of graduates in molecular biosciences include senior researcher, entrepreneur, forensic chemist, research and development chemist, product manager, senior officer, editor and teacher, so your future profession and employment can be as unique as you are. The teaching in the Master’s programme is based on cutting-edge research, so your education will be closely related and applicable to emerging fields such as bio-economy, nanotechnology, personal health and biological drugs. Some hot development areas in biotechnology include renewable energy and environmental technology. These sectors will require new kinds of specialists, who possess a wide and comprehensive understanding of molecular life sciences. After graduation, you could act, for example, in health life sciences as a quality manager or a laboratory specialist, scientific writer, clinical research monitor, or as an expert in administration.

Internationalization

The Master's programme in Genetics and Molecular Biosciences has a multidisciplinary and international teaching staff and research environment, giving you an excellent opportunity to create interdisciplinary and international contacts which will be of great importance for your future career. The Master's programme enables you to participate in international research projects from the beginning of your studies. You will communicate in English, allowing for a smooth transition between international research and specialist environments.

You can carry out the research and internship periods included in the Master's programme abroad. You will also have the possibility to take courses for the Master’s degree as an exchange student in foreign collaborating universities.

Read less
Taught at our Parkgate Road Campus in Chester, this course is designed to give a comprehensive training in the research and analytical skills in cell and molecular biology. Read more
Taught at our Parkgate Road Campus in Chester, this course is designed to give a comprehensive training in the research and analytical skills in cell and molecular biology.

This MRes has been designed to enhance knowledge of recent advancements in cellular and molecular biology, as well as to develop subject-specific practical and analytical skills. In addition, you will gain experience of undertaking an extended period of research (6-7 months), which will aid your career progression as a molecular bio-scientist.

The programme will involve undertaking two core 20 credit taught modules, followed by an extended period of laboratory research, and submission of a Research report and review, 140 credits.

Why Study Cell and Molecular Biology Pathway with us?

Our lecturers range from enthusiastic early career academics through to internationally acknowledged senior researchers. We are actively involved in undertaking innovative research projects using ‘cutting-edge’ approaches, within the field of molecular and cellular life sciences.

Some of our current projects are listed below:
- Environmental toxicology
- Protection against the ageing
- Calcium signalling
- Biochemistry & pharmacology of intracellular Ca2+ transporters
- Stem cells
- Tissue regeneration
- Pathology of bone disease
- Progression of kidney and bladder cancers
- Novel drug delivery systems via nanoparticles and cell penetrating peptides
- Molecular basis of cancer development
- Novel approaches to cancer therapies
- Molecular immunology
- Development of analytical approaches to detect biomarkers of disease

What will I learn?

The MRes will involve undertaking two core 20 credit taught modules which consists of a mixture of lectures, workshops and practical classes in:
- Advances in Cell and Molecular Biology (BI7144)
- Skills for Molecular and Cellular Bioscientists (BI7145)

Followed by an extended period of laboratory research (140 credits) in an area that allies with the interests of our academic staff.

How will I be taught?

The two taught modules will each comprise of a series of lectures, small group discussion sessions, workshops and practical classes. Nominally each taught module has about 30-40 of contact hours associated with them. The rest of the time allocated for these modules will be for further reading, coursework preparation and revision.

The remainder of the programme will comprise of the 6 to 7 month research project which will involve regular meetings and guidance with your research supervisor. This is followed by the preparation of two reports.

How will I be assessed?

The research dissertation will be assessed by the production of a research report in the format of a scientific paper and a research review (80%).

The taught modules will be assessed by the production of practical and theoretical reports and class tests (20%).

Postgraduate Visit Opportunities

If you are interested in this courses we have a number of opportunities to visit us and our campuses. To find out more about these options and to book a visit, please go to: https://www1.chester.ac.uk/study/postgraduate/postgraduate-visit-opportunities

Request a Prospectus

If you would like to know more about the University please request a prospectus at: http://prospectus.chester.ac.uk/form.php

Read less
The Molecular Life Sciences programme focuses on the molecular aspects of the fields of nutrition, health, nature and the living environment and works in close coordination with colleagues from different disciplines. Read more

MSc Molecular Life Sciences

The Molecular Life Sciences programme focuses on the molecular aspects of the fields of nutrition, health, nature and the living environment and works in close coordination with colleagues from different disciplines.

Programme summary

The Molecular Life Sciences programme focuses on molecules and their properties. It seeks to discover relationships between the physical and chemical properties of molecules, particularly the role of complex molecules in living systems. It is an interdisciplinary programme that combines chemistry, physics and biology. The aim of the programme is to enable students to conduct independent research at the interface of chemistry, biology and physics, or in an applied field such as medicine, the environment, food sciences or (bio) nanotechnology. The programme is tailormade and thesis-oriented, with the thesis being the culmination of the study.

Specialisations

Biological Chemistry
By combining the principles of chemistry, biochemistry, molecular biology, cell biology, microbiology, genetics and bioinformatics, this specialisation enables students to contribute new insights to the life sciences. Increasingly complex areas are studied, such as the molecular regulation of growth and cell differentiation, gene control during development and disease, and the transfer of genetic traits. Another important field is enzymology where enzyme mechanisms are studied with the aim of understanding and modifying their properties to make new compounds or biological membranes.

Physical Chemistry
This specialisation uses the most advanced technologies to focus on the chemical and physical properties of molecules and their behaviour in chemical and biochemical processes. The processes in nature are used as models for studying and synthesising new compounds with interesting chemical or physical properties for applications such as LCDs, biosensors or food science. Students can major in the fields of biophysics, organic chemistry or physical chemistry and colloid science.

Biomedical Research
This specialisation equips graduates with key skills in the natural sciences and enables them to use these skills as part of an integrated approach. Many recent breakthroughs in biomedical research have taken place at the interface between chemistry, biology and physics, so it is logical that many of our graduates enter careers in biomedical research. The explicit aim of this specialisation is to prepare students for careers at a medical research institute, academic hospital or a company in the pharmaceutical industry. As a result, students also complete their internships at such locations.

Physical Biology
Students in this specialisation learn to view biomolecules from a physical point of view. They use techniques in biophysics, physical chemistry, microspectroscopy and magnetic resonance (MRI) to contribute to areas such as cell-cell communication, transformation of light into chemical energy, and protein interactions. Students can major in fields such as biochemistry, biophysics, microbiology, molecular biology, plant physiology, physical chemistry and colloid science.

Your future career

By combining the power of chemistry, physics and biology, graduates are able to make a significant contribution to fundamental and/or applied research in fields such as (bio) nanotechnology, biotechnology, environmental research, biomedical research, nutrition and the food sciences. Our graduates enter careers at universities, research institutes and industrial laboratories. The first job for many of our graduates is a four year PhD project at a university or research institute. This is not only an excellent preparation for a research career, but it also prepares you for management positions. Others become science journalists, teachers or consultants in government or industry.

Project Flu Vaccination for bacteria.
Together with his colleagues of the Laboratory of Microbiology, professor John van der Oost unravelled part of the working of the immune systems of bacteria that had been infected by a virus. Theoretically, this knowledge allows for other bacteria to be protected against specific viruses and, thus, may be considered to be a flu vaccination for bacteria. Understanding this process in simple organisms on a molecular level, is the first step in revealing the mechanism of viral infection in the human body. This can be the starting point for a whole new line of medicines.

Related programmes:
MSc Biotechnology
MSc Food Technology
MSc Bioinformatics
MSc Nutrition and Health
MSc Plant Biotechnology
MSc Biology

Read less

Show 10 15 30 per page



Cookie Policy    X