• University of York Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
King’s College London Featured Masters Courses
University of Birmingham Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
University of Leeds Featured Masters Courses
"biochemical"×
0 miles

Masters Degrees (Biochemical)

  • "biochemical" ×
  • clear all
Showing 1 to 15 of 123
Order by 
Have you ever wondered how the latest life science discoveries - such as a novel stem cell therapy - can move from the lab into commercial scale production?… Read more
Have you ever wondered how the latest life science discoveries - such as a novel stem cell therapy - can move from the lab into commercial scale production? Would you like to know whether it is possible to produce bio-polymers (plastics) and biofuels from municipal or agricultural waste? If you are thinking of a career in the pharma or biotech industries, the Biochemical Engineering MSc could be the right programme for you.

Degree information

Our MSc programme focuses on the core biochemical engineering principles that enable the translation of advances in the life sciences into real processes or products. Students will develop advanced engineering skills (such as bioprocess design, bioreactor engineering, downstream processing), state-of-the-art life science techniques (such as molecular biology, vaccine development, microfluidics) and essential business and regulatory knowledge (such as management, quality control, commercialisation).

Three distinct pathways are offered tailored for graduate scientists, engineers, or biochemical engineers. Students undertake modules to the value of 180 credits. The programme offers three different pathways (for graduate scientists, engineers, or biochemical engineers) and consists of core taught modules (120 credits) and a research or design project (60 credits).

Core modules for graduate scientists
-Advanced Bioreactor Engineering
-Bioprocess Synthesis and Process Mapping
-Bioprocess Validation and Quality Control
-Commercialisation of Bioprocess Research
-Fluid Flow and Mixing in Bioprocesses
-Heat and Mass Transfers in Bioprocesses
-Integrated Downstream Processing
-Mammalian Cell Culture and Stem Cell Processing

Core modules for graduate engineers
-Advanced Bioreactor Engineering
-Bioprocess Validation and Quality Control**
-Cellular Functioning from Genome to Proteome
-Commercialisation of Bioprocess Research
-Integrated Downstream Processing
-Mammalian Cell Culture and Stem Cell Processing
-Metabolic Processes and Regulation
-Structural Biology and Functional Protein Engineering
-Bioprocess Microfluidics*
-Bioprocess Systems Engineering*
-Bioprocessing and Clinical Translation*
-Cell Therapy Biology*
-Industrial Synthetic Biology*
-Sustainable Bioprocesses and Biorefineries*
-Vaccine Bioprocess Development*

*Core module for graduate biochemical engineers; **core module for both graduate engineers and graduate biochemical engineers

Research project/design project
All MSc students submit a 10,000-word dissertation in either Bioprocess Design (graduate scientists) or Bioprocess Research (graduate engineers and graduate biochemical engineers).

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, and individual and group activities. Guest lectures delivered by industrialists provide a professional and social context. Assessment is through unseen written examinations, coursework, individual and group project reports, individual and group oral presentations, and the research or design project.

Careers

The rapid advancements in biology and the life sciences create a need for highly trained, multidisciplinary graduates possessing technical skills and fundamental understanding of both the biological and engineering aspects relevant to modern industrial bioprocesses. Consequently, UCL biochemical engineers are in high demand, due to their breadth of expertise, numerical ability and problem-solving skills. The first destinations of those who graduate from the Master's programme in biochemical engineering reflect the highly relevant nature of the training delivered.

Approximately three-quarters of our graduates elect either to take up employment in the relevant biotechnology industries or study for a PhD or an EngD, while the remainder follow careers in the management, financial or engineering design sectors.

Top career destinations for this degree:
-Mechanics of Material, Imperial College London
-PhD Biochemical Engineering, University College London (UCL)
-Bio-Pharmaceutical Engineer, GSK (GlaxoSmithKline)
-Associate Consultant, PwC
-Genetics Technician, Chinese Academy Of Sciences

Employability
The department places great emphasis on its ability to assist its graduates in taking up exciting careers in the sector. UCL alumni, together with the department’s links with industrial groups, provide an excellent source of leads for graduates. Over 1,000 students have graduated from UCL with graduate qualifications in biochemical engineering at Master’s or doctoral levels. Many have gone on to distinguished and senior positions in the international bioindustry. Others have followed independent academic careers in universities around the world.

Why study this degree at UCL?

UCL was a founding laboratory of the discipline of biochemical engineering, established the first UK department and is the largest international centre for bioprocess teaching and research. Our internationally recognised MSc programme maintains close links with the research activities of the Advanced Centre for Biochemical Engineering which ensure that lecture and case study examples are built around the latest biological discoveries and bioprocessing technologies.

UCL Biochemical Engineering co-ordinates bioprocess research and training collaborations with more than a dozen UCL departments, a similar number of national and international university partners and over 40 international companies. MSc students directly benefit from our close ties with industry through their participation in the Department’s MBI® Training Programme.

The MBI® Training Programme is the largest leading international provider of innovative UCL-accredited short courses in bioprocessing designed primarily for industrialists. Courses are designed and delivered in collaboration with 70 industrial experts to support continued professional and technical development within the industry. Our MSc students have the unique opportunity to sit alongside industrial delegates, to gain deeper insights into the industrial application of taught material and to build a network of contacts to support their future careers.

Read less
Biochemical Engineering concerns the use of biological organisms or processes by manufacturing industries. Read more
Biochemical Engineering concerns the use of biological organisms or processes by manufacturing industries. It is a multidisciplinary subject, requiring the integration of engineering and bioscience knowledge to design and implement processes used to manufacture a wide range of products; from novel therapeutics such as monoclonal antibodies for treating cancer, vaccines and hormones, to new environmentally-friendly biofuels. It is also essential in many other fields, such as the safe manufacture of food and drink and the removal of toxic compounds from the environment..

This course will provide you with the skills you need to start an exciting career in the bioprocess industries, or continue research in the area of bioprocessing or industrial biotechnology.

Industry involvement

As this is a highly industrially-led subject area, we have secured guest lectures from Cobra Biologics (contract manufacturing), Biocats Ltd (Enzyme manufacture) and the Centre for Process Innovation Ltd (biological process development) and are currently seeking additional industrial lectures.

Academics working at Birmingham have strong links with industry, through collaborative projects, so allow students to make contact with companies. Graduates from the MSc programme have gone on to careers in biochemical engineering world-wide, in large and small companies working in diverse areas.

There are also guest lectures from academics working at other institutions.

Practical experience

You will gain practical experience of working with industrially applicable systems, from fermentation at laboratory scale to 100 litre pilot scale, in the Biochemical Engineering laboratories. Theory learned in lectures will be applied in practical terms. In addition, theoretical aspects will be applied in design case studies in a number of modules, including the Design Project.

All MSc students complete a summer research project, working on a piece of individual, novel research within one of the research groups in the school. These projects provide an ideal experience of life as a researcher, from design of experimental work, practical generation of data, analysis and communication of findings. Many students find this experience very useful in choosing the next steps in their career.

Special Features

The lecture courses are supplemented with tutorials, seminars and experimental work. Industrial visits and talks by speakers from industrial and service organisations are also included in the course programme.

Pilot Plant

The Biochemical Engineering building houses a pilot plant with large-scale fermentation and downstream processing equipment. The newly-refurbished facility includes state-of-the-art computer-controlled bioreactors, downstream processing equipment and analytical instruments.

Course structure

The MSc is a 12-month full-time advanced course, comprising lectures, laboratory work, short experimental projects and a research project. You will take an introductory module, four core modules, and then choose 50 credits of optional themed modules. The course can also be taken on a part-time basis. The Postgraduate Diploma (PGDip) lasts for 8 months from the end of September until June.

For the first eight months you have lectures, tutorials and laboratory work. Core module topics include:

Fermentation and cell culture
Bioseparations
Process monitoring and control
Systems and synthetic biology approaches
Optional module include:

Biopharmaceutical development and manufacture
Food processing
Business skills for the process industries
The programme is strongly design-orientatedand you complete a full process plant design exercise. You also have practical experience of working in the newly-refurbished pilot plant of the Biochemical Engineering building.

From June to September you gain research training on your own project attached to one of the teams working in the bioprocessing research section.

About the School of Chemical Engineering

Birmingham has one of the largest concentrations of Chemical Engineering expertise in the UK, with an excellent reputation in learning, teaching and research.
Investment totalling over £3.5 million in our buildings has resulted in some of the best teaching, computing and laboratory facilities anywhere in the UK.
We have achieved an excellent performance in the Research Excellence Framework (REF) – the system for assessing the quality of research in UK higher education institutions. 87% of the research in the School was rated as world-leading or internationally excellent. It was ranked joint fourth overall in the UK for its research prowess and first nationally for research impact.
The enthusiasm that the academic staff have for their research comes through in their teaching and ensures that they and you are at the cutting edge of chemical engineering.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The MEng program offers a course-based degree that may be a combination of course work and a project OR course work only. The MEng degree may be obtained either on a full-time or part-time basis. Read more
The MEng program offers a course-based degree that may be a combination of course work and a project OR course work only. The MEng degree may be obtained either on a full-time or part-time basis.

The MEng program provides an opportunity for qualified engineers to improve his/her theoretical and practical skills. The flexibility of the program enables students to be enrolled in courses directly related to their careers in different areas of chemical/biochemical engineering.

Visit the website: http://grad.uwo.ca/prospective_students/programs/program_NEW.cfm?p=26

Fields of Research

• Biomaterials and Biochemical Engineering
• Environmental and Green Engineering
• Particle Technology and Fluidization
• Reaction and Process Systems Engineering

How to apply

For information on how to apply, please see: http://grad.uwo.ca/prospective_students/applying/index.html

Financing your studies

As one of Canada's leading research institutions, we place great importance on helping you finance your education. It is crucial that you devote your full energy to the successful completion of your studies, so we want to ensure that stable funding is available to you.
For information please see: http://grad.uwo.ca/current_students/student_finances/index.html

Read less
This course blends biochemical engineering with business management to prepare you for a career in biopharmaceuticals or industrial biotechnology. Read more

About the course

This course blends biochemical engineering with business management to prepare you for a career in biopharmaceuticals or industrial biotechnology. We also cover:

Industrial applications
Industry-relevant applications of engineering analysis
Working in teams
Independent working and learning

The bioscience industries have a huge role to play in the search for sustainable energy, food production and medicine. They need managers who understand the science, the technology and the business. Our MSc is designed to produce graduates who are up to the challenge.

Take advantage of our expertise

Our teaching is grounded in specialist research expertise. Our reputation for innovation secures funding from industry,
UK research councils, the government and the EU. Industry partners, large and small, benefit from our groundbreaking work addressing global challenges.

You’ll have access to top facilities, including modern social spaces, purpose-built labs, the Harpur Hill Research Station for large-scale work, extensive computing facilities and a modern applied science library. There are high-quality research facilities for sustainable energy processes, safety and risk engineering, carbon capture and utilisation, and biological processes and biomanufacturing.

Read less
The Master of Engineering Science program is a thesis based Master's degree. This program is offered to applicants who hold a four-year Bachelor’s Degree. Read more
The Master of Engineering Science program is a thesis based Master's degree. This program is offered to applicants who hold a four-year Bachelor’s Degree. It is expected that graduate students will complete all program requirements within two years. There is no minimum residency period.

Visit the website: http://grad.uwo.ca/prospective_students/programs/program_NEW.cfm?p=25

Fields of Research

• Biomaterials and Biochemical Engineering
• Environmental and Green Engineering
• Macromolecular and Materials Engineering
• Particle Technology and Fluidization
• Reaction and Process Systems Engineering
• Water and Energy

How to apply

For information on how to apply, please see: http://grad.uwo.ca/prospective_students/applying/index.html

Financing your studies

As one of Canada's leading research institutions, we place great importance on helping you finance your education. It is crucial that you devote your full energy to the successful completion of your studies, so we want to ensure that stable funding is available to you.
For information please see: http://grad.uwo.ca/current_students/student_finances/index.html

Read less
This MRes programme aims to train students in the fast-growing area of synthetic bgiology, a discipline which takes the knowledge and understanding we now have of the individual parts of biological systems and uses them in a defined way to design and build novel artificial biological systems. Read more
This MRes programme aims to train students in the fast-growing area of synthetic bgiology, a discipline which takes the knowledge and understanding we now have of the individual parts of biological systems and uses them in a defined way to design and build novel artificial biological systems.

Degree information

Students develop an understanding of the areas making up synthetic biology, including engineering principles, mathematical modelling, molecular biology, biochemical engineering and chemistry. Modules also provide the necessary skills for acquisition and critical analysis of the primary scientific literature and transferrable research development skills. The programme includes a major research project that will give in-depth training in synthetic biology research methods.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (60 credits) and an extended research project (120 credits). There are no optional modules for this programme.

Core modules
-Synthetic Biology
-The Scientific Literature
-Biosciences Research Skills

Dissertation/report
All students undertake an independent laboratory-based extended research project which culminates in a dissertation of 15,000–18,000 words.

Teaching and learning
The programme is delivered through lectures, seminars and tutorials, combining research-led and skills based courses. The taught courses are assessed by assignments and coursework. The research project is assessed by an oral presentation, submission of a dissertation and is subject to oral examination.

Careers

Synthetic biology is a fast growing area of research and will have a major economic and social impact on the global economy in the coming decades. The involvement of engineers, physical scientists, chemists and biologists can create designed cells, enzymes and biological modules that can be combined in a defined manner. These could be used to make complex metabolic pathways for pharmaceuticals, novel hybrid biosensors or novel routes to biofuels. A future integration of biological devices and hybrid devices as components in the electronic industry might lead to a whole new high value industry for structured biological entities.

Top career destinations for this degree:
-Science Technician, King Richard's School
-Scientific consultant, Labcitec
-PhD Synthetic Biology, UCL
-PhD Biochemistry, University of Oxford
-PhD Bioenergy and Industrial Biotechnology, University of Cambridge

Employability
The Synthetic Biology MRes will qualify students to go on to work in the growing number of small companies engaged in synthetic biology both here in London and across the UK and the world. There are many large companies that are building their own synthetic biology potential and some of students are already working with these groups. Our students often go on to do further research in PhDs and EngDs globally. Our graduates have practical experience in unique facilities of generating novel research that makes them of great value to employers and collaborators.

Why study this degree at UCL?

UCL is recognised as one of the world's best research environments within the field of biochemical engineering and synthetic biology as well as biological and biomedical science.

UCL Biochemical Engineering is in a unique position to offer tuition and research opportunities in internationally recognised laboratories and an appreciation of the multidisciplinary nature of synthetic biology research.

Students on this new MRes programme undertake a major research project where topics can be chosen spanning the expertise in six departments across UCL.

Read less
The program deepens your scientific training and gives you business skills, preparing you for a fulfilling career in Canada or internationally. Read more
The program deepens your scientific training and gives you business skills, preparing you for a fulfilling career in Canada or internationally. You’ll be qualified to work in sectors including agribusiness and food industries, plant biotechnology, pharmaceuticals, health management and environmental management and research.

First semester includes courses in molecular approaches to biotechnology as well as commercializing innovations, pairing you with a faculty supervisor. In second semester you’ll write and present your research proposal, and in third semester you’ll work on your research project. You may choose to extend your project to a fourth semester — supported by a stipend.

The full-spectrum training you receive in this program draws on the expertise of two University of Guelph departments

Department of Molecular & Cellular Biology

Our 40 faculty members direct multidisciplinary research programs that address novel biological questions on molecular and cellular scales. Part of the College of Biological Science, the Department provides a stimulating, challenging environment for graduate students. Here are just a few examples of the groundbreaking research being led by our professors:
-Using molecular genetic, biochemical and genomic information to solve fundamental problems in plant biology and to improve crop performance
-Delving deep into the array of compounds made by plants and their underlying molecular and biochemical biosynthetic bases
-Taking a multidisciplinary approach to the study of bacterial processes
-Using high-resolution imaging techniques alongside biochemical analysis to model, understand and treat neurodegenerative diseases with stem cell technology

Department of Management

Our Department, part of the College of Business and Economics, develops leadership skills through engaging teaching and research — understanding that success requires a strategic outlook, entrepreneurial attitude, global perspective and commitment to sustainability. Our faulty-led biotechnology-related research projects include:
-Research into the ways new, university-developed technologies enter into commercial use
-An examination of the creativity of interdisciplinary product development teams working on the technical, marketing and financial viability of new ideas
-Research on accountability, performance management, innovation and entrepreneurship

Read less
This research-based course provides a highly specialised biochemical education and practical training. It will give you the fundamental skills to enable you to enter a research career in modern biochemical research in industry or academia. Read more
This research-based course provides a highly specialised biochemical education and practical training.

It will give you the fundamental skills to enable you to enter a research career in modern biochemical research in industry or academia.

There is considerable flexibility and you will be able to focus on specialist subjects consistent with your interests and career intentions.

This course will be of great benefit to graduates in biochemistry, biology, structural biology and related disciplines

Read less
This masters programme is designed to prepare you for a career in research in molecular and cellular biology and its applications. Read more
This masters programme is designed to prepare you for a career in research in molecular and cellular biology and its applications.

It comprises a year of intensive training and research experience leading to the award of an MRes degree which will give you a ‘flying start’ to a subsequent PhD programme, if this is your chosen career path.

This programme is designed to prepare you for a career in research in molecular and cellular biology and its applications. It comprises a year of intensive training and research experience leading to the award of an MRes degree which will give you a ‘flying start’ to a subsequent PhD programme, if this is your chosen career path.

The programme aims to provide training in the practical aspects that underlie research science in this field. To achieve this aim the course contains a very high level of hands-on research, as it is our view there is no better training than lab experience.

Programme content

Two-thirds of the programme is taken up by two approximately 18-week research projects, which are undertaken in different laboratories and with different supervisors. A very wide range of research topics falling within the scope of molecular and cellular biology is available within the School; this range extends from structural biology at one extreme to multicellular systems at the other.

In addition to this direct research experience, there are two compulsory taught modules which provide training in:

- Science Funding and Enterprise Skills in Biosciences
- Techniques in Molecular and Cellular Biology
These modules cover the basic principles underlying scientific research methods and the design of biological/biochemical experiments, and discussion of modern techniques in molecular and cellular biology. In addition, the science funding and enterprise module provides the skills required to obtain funding for sciences. This includes grant and business case writing and scientific presentation skills. You can also take courses to develop general research skills arranged through the Biosciences Graduate Research School.

The taught modules consist of a combination of seminars and lectures. The lab work that is carried out during the course is student-led. You will be able to choose areas of molecular and cellular biology that fit with your career aspirations.

Assessment

The two taught modules are assessed via examination, essays and oral presentations. The two research projects are assessed via written thesis and an oral examination.

Skills gained

This programme offers the following advantages:

Broad training in the skills and techniques of contemporary research in molecular and cellular biology
The opportunity to experience research in at least two different areas
Increased breadth and experience, which will enhance subsequent employability
The course will also enable you to:

Conduct and fund independent research
Present research results in an appropriate manner both written and orally
Have an appreciation and knowledge of the use of modern techniques in molecular and cellular biology
Build and develop scientific research projects in the public and private sector
Careers

Those who perform effectively in the MRes often continue at Birmingham to a PhD; however, the MRes also provides a very good qualification to move into research and a wide range of professions.

About the School of Biosciences

As one of the top biosciences departments in the UK, our research covers the entire spectrum of cutting-edge biosciences. We are home to the Institute of Microbiology and Infection and part of the University’s Systems Science for Health initiative.
Our research focuses on a number of important themes that run through modern biological and biochemical research: Biosystems and Environmental Change; Microbiology and Infection; Molecules, Cells, Signalling and Health; and Plant Science.
Our postgraduate students join a diverse international community of staff and students. For students on research degrees, the annual Biosciences Graduate Research Symposium, organised by PhD students, is an example of an event where the whole School comes together to talk about science.
We have extensive high-technology facilities in areas such as functional genomics, proteomics and metabolomics, including a world-class Advanced Mass Spectrometry Facility. Our cutting-edge facilities extend to protein structure determination and analysis, confocal microscopy, drug discovery, horticulture, structural biology and optical imaging. The £8 million Phenome Centre Birmingham is a large metabolic phenotyping facility led by internationally recognised metabolomics and clinical experts at the University of Birmingham, in collaboration with Birmingham Health Partners.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
This programme offers you an academically-challenging and career-developing study of biological systems at the molecular and cellular level. Read more

Programme description

This programme offers you an academically-challenging and career-developing study of biological systems at the molecular and cellular level.

Biochemistry is fundamental to most areas of life-science; it has a major impact on modern medical research and is essential in the pharmaceutical, nutrition, forensic, bioengineering, agricultural and environmental industries.

The programme is designed to produce highly skilled and motivated biochemists that are suitable for employment in the life-sciences or for further academic research.

You will be taught to apply chemical and physical principles to biological molecules in complex living systems in order to expand your understanding of the molecular basis of the processes which take place within these organisms.

Through a combination of taught courses, practical skills training and laboratory-based research, you will explore the structures, dynamics, interactions and metabolic pathways of biological molecules, from small molecules to large macromolecular complexes.

Programme structure

Teaching and learning activities include:

lectures
tutorials
workshops
presentations
laboratory work
practical skills training and a research project
literature and database searching
discussion groups and project groups
seminars

Students will have practical skills training and will attend problem and computer-based tutorials and workshops.

Research:
Those students progressing to MSc level will carry out their own research project at the frontier of knowledge and can make a genuine contribution to the progress of original research. This also involves reviewing relevant papers, analysing data, writing a dissertation and giving a presentation.

Learning outcomes

The programme aims to develop:

knowledge and understanding of biochemistry and awareness of the current state of research
enhanced practical skills in biochemical methods
ability to design, perform and record experiments independently
analytical skills to interpret data accurately and critically
ability to communicate biochemical information effectively in a wide range of contexts

Career opportunities

You will enhance your career prospects by acquiring knowledge of contemporary biochemistry from world experts in the field, by being trained in advanced analytical and presentation skills, and by having independent research experience in a modern, world-class laboratory.

Read less
The course leading to the degree of MPhil is predominantly research-based. Students are based in a research group and undertake research on a topic agreed with the principal investigator (supervisor). Read more
The course leading to the degree of MPhil is predominantly research-based. Students are based in a research group and undertake research on a topic agreed with the principal investigator (supervisor). MPhil students also have an advisor and a Graduate Thesis Panel (GTP). Students write a MPhil thesis, which is examined via an oral examination. A successful student gains a pass and there are no grades. There is no examined course work. However, as part of the course candidates must complete a short lecture-based course in Michaelmas Term called “Postgraduate Course in Biochemistry”. The educational aim of the MPhil is to give candidates a grounding in biochemical and biomedical research techniques and practical experience of a year long experimental research project. The course also aims to give experience working as part of a team in an academic environment and gaining skills in scientific presentations and writing.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/blbcmpbsc

Format

There is no examined course work. However, as part of the course candidates must complete a short lecture-based course in Michaelmas Term called “Postgraduate Course in Biochemistry”. This course involves a series of lectures covering a variety of useful experimental techniques used in biochemistry and molecular biology. The aim is to familiarize students with a wide range of techniques extending well beyond those that they will immediately encounter in their own research project. Students must also attend a weekly seminar series throughout the year and present their work to the group at one point during this series. We encourage students to take part in a wide range of skills training opportunities available to both Masters and PhD research students.

Students are expected to have regular (usually weekly) meetings with their supervisor. Each research group also typically has a weekly group meeting in which the student is expected to take part in presentations of research progress and in journal clubs. In addition, all students are assigned an ‘advisor’. This is a separate research group head, who is not directly involved in the student’s research project, but who can provide independent monitoring of progress, provide general advice, and serve as a first port-of-call if any problems arise. All students also have a Graduate Thesis Panel (GTP) consisting of three principal investigators, but excluding the supervisor. The role of the GTP is to provide additional support and mentoring for the student (through formal feedback), assess the tractability of the project and review the adequacy of supervision.

Learning Outcomes

The successful completion of the highly regarded MPhil in Biochemistry by research prepares the graduate for a wide range of future career opportunities ranging from PhD studies, to industrial research and ancillary work such as intellectual property and patents. The graduate will have a attained a high level of expertise in biochemical methodology and research strategy.

Assessment

The examination for the MPhil in Biological Science consists of a thesis, of not more than 20,000 words in length, excluding figures, tables, footnotes, appendices and bibliography, on a subject approved by the Degree Committee for the Faculty of Biology. The examination includes an oral examination on the thesis and on the general field of knowledge within which it falls.

Continuing

This course will lead to the degree of MPhil. We offer the PhD as a separate course.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
We offer research programmes in a variety of areas including Advanced Separations Engineering, Bioprocessing Research Unit, Reaction and Catalytic Engineering and Water and Wastewater engineering. Read more
We offer research programmes in a variety of areas including Advanced Separations Engineering, Bioprocessing Research Unit, Reaction and Catalytic Engineering and Water and Wastewater engineering.

Our philosophy

The Department of Chemical Engineering is a multidisciplinary centre focusing on research into future sustainable materials and technologies. Chemical engineering research is crucial and supports development and production of new materials, fuels, drugs, consumer products, health care products, foods and beverages, electronic components, medical implants, and more.

As the number and complexity of chemical, biochemical and biological materials used in consumer products and supporting technologies increases, this research will play an increasingly vital role in the development of modern societies across the world.

Our applicants

We seek applications from outstanding individuals from anywhere in the world who are strongly committed to and potentially capable of high-quality academic research in any of the disciplinary areas covered by our Research Centres. You can apply for one of our pre-defined research projects or develop your own proposal. Our academic staff are always open to ideas that extend existing work or introduce new topics to their subject areas.

The dissemination of research findings is seen as a vital component of the research process and graduate students are encouraged to prepare papers for publication as part of their research training.

Successful applicants are welcomed very much as junior academic colleagues rather than students, and are expected to play a full and professional role in contributing to the Department’s objective of international academic excellence.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/research-programmes/chemphd/index.html

Structure

The MPhil programme combines taught research training and applied research practice.

Candidates join the Department as a member of the Research Centre (http://www.bath.ac.uk/chem-eng/research/index.html) in which they initially have a broad research interest and that will have overseen their acceptance into the Department.

Candidates are expected to carry out supervised research at the leading edge of their chosen subject, which must then be written up as a substantial thesis.

International students

Please see the International students website (http://www.bath.ac.uk/study/international/) for details of entry requirements based on qualifications from your country.

In addition all non-native speakers of English are required to have passed English language tests as follows.

If you need to develop your English language skills, the University’s Academic Skills Centre (http://www.bath.ac.uk/asc/) offers a number of courses.

Only English language tests taken in the last two years are valid for entrance purposes.

About the department

This is a dynamic department, actively pursuing advanced research in many areas of chemical, biochemical and biomedical engineering, and also offering taught Masters courses. The Department is internationally recognised for its contributions to research, many of which are achieved in partnership with industry and prestigious research organisations. Our staff are highly skilled with excellent international reputations, and our facilities are amongst the best in the country.

Facilities and equipment
The Department has a full range of research facilities with pilot plants for all major areas of research. Our analytical facilities include gas chromatography, mass spectrometry, high performance liquid chromatography (HPLC), UV-VIS, FTIR and Raman, photon correlation spectroscopy (PCS), microcalorimetry, adsorption measurement systems, surface and pore structure analysis systems and particle sizing equipment. Within the University, there is access to atomic force, scanning and transmission electron microscopes.

International and industrial links
We have active links with UK universities - Bristol, Durham, Glasgow, Leeds, Imperial College, Liverpool, Oxford, Cambridge, Southampton, Edinburgh - and with European institutions including the CNRS laboratory at Toulouse and Lappeenranta University of Technology in Finland together with the Universities of Alicante, Delft, Oveido, Porto, Paris, Aachen and Wroclaw.

Research Excellence Framework 2014
We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

Careers information
We are committed to ensuring that postgraduate students acquire a range of subject-specific and generic skills during their research training including personal effectiveness, communication skills, networking and career management. Most of our graduates take up research, consultancy or process and product development and managerial appointments in the commercial sector, or in universities or research institutes.

Other resources
Postgraduate students are encouraged to become members of professional societies and to present the results of their research at national and international scientific meetings. The Department runs a vibrant weekly research seminar programme where students are given the opportunity to present their research.

Find out how to apply here - http://www.bath.ac.uk/engineering/graduate-school/research-programmes/how-to-apply/index.html

Read less
The MSc by Research in the Faculty of Social and Applied Sciences has been designed to offer a range of pathways for you to research your chosen subject interests within Social and Applied Sciences, whilst sharing in the multi-disciplinary nature of the taught component of the course. Read more
The MSc by Research in the Faculty of Social and Applied Sciences has been designed to offer a range of pathways for you to research your chosen subject interests within Social and Applied Sciences, whilst sharing in the multi-disciplinary nature of the taught component of the course.

You’ll share a breadth of experience – the multi-disciplinary nature of the taught component means you will share a broad experience of methodological and research issues. Allied with subject specific supervision, this will allow you to develop a unique awareness of knowledge and experiences across the natural and social sciences in addition to a focus on your own research topic.

Biosciences pathway:
Students pursuing the bioscience pathway would be expected to have research which falls within the areas of the members of the biomolecular research group (BMRG). The BMRG have specialities in cell and molecular biology, protein science, chemical and structural biology, cancer biology, bioinformatics, metabolomics and evolutionary genetics. A selection of current research projects include:

*Development of fluorescent chemosensors for medical applications, biochemical investigations, environmental monitoring, biotechnology and drug discovery.
*Investigating the protein structure and biological control potential of plant lectins.
*Studying organism development and ageing with respect to environmental stimuli.
*Studying prion protein development and maintenance in yeast.
*Investigating the therapeutic potential of novel animal venoms as anti-microbial, anti-parasitic and anti-cancer agents.
*Computationally investigating the molecular dynamics of cell skeletal components.
*Investigating mammalian embryology and comparative genomic studies in a variety of avian species.
*Investigating the biochemical and biophysical properties of muscle proteins.
*Investigating alternative splicing and the circadian clock in plant stress responses.
*Deployment of molecular techniques an attempt to understand the patterns in the spatial distribution of organisms.

Members also have collaborative interests with external partners including local schools and biotechnology businesses. For more information on member’s research activities or for contact details, please click on a member’s individual Staff Profile.

We are a close-knit community of academics, researchers and students dedicated to the study of Life Sciences. You would be joining an active and dynamic post-graduate community and would have the opportunity to contribute to and benefit from this community.

Find out more about the section of Life Sciences at https://www.canterbury.ac.uk/social-and-applied-sciences/human-and-life-sciences/life-sciences/about-us.aspx. You can also find out more about our research https://www.canterbury.ac.uk/social-and-applied-sciences/human-and-life-sciences/life-sciences/research/research.aspx.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Chemical Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Chemical Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

From authoring definitive text books on chemical engineering to finding solutions to the world's water shortages, Swansea University has a proud tradition of delivering pioneering innovative process engineering solutions. As we have a wide range of research in chemical engineering, Swansea University provides an excellent base for your research as an MSc by Research student in Chemical Engineering.

Key Features of MSc by Research in Chemical Engineering

There is a wide range of research in chemical engineering at Swansea University. This includes:

Membrane separation
Biochemical engineering
Biomanufacturing
Engineering applications of nanotechnology
Bioengineering, biomedical engineering
Cell and tissue engineering
Colloid science and engineering
Desalination
Pharmaceutical engineering
Polymer engineering
Rheology
Separation processes
Transport processes
Water and wastewater engineering

The MSc by Research in Chemical Engineering at Swansea University provides an opportunity to work with a member of academic staff in one of the above, or related, area of research.

The MSc by Research in Chemical Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Links with industry

One of the major strengths of Chemical Engineering at Swansea University is the close and extensive involvement with local, national and international engineering companies. The companies include:

Acordis
Astra Zeneca
Avecia
BP Chemicals
Bulmers
Dow Corning
GlaxoSmithKline
Nestle
Murco
Phillips 66
Unilever
Valero

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Swansea University has resources specific to Chemical Engineering.

Research

Research in Chemical Engineering at Swansea is located within the Systems and Process Engineering Research Centre which has a number of focused research groups including the Centre for Water Advanced Technologies and Environmental Research (CWATER), the Centre for Complex Fluids Processing and the Multidisciplinary Nanotechnology Centre.

The Centre for Water Advanced Technologies and Environmental Research (CWATER) is an internationally leading centre of excellence for the development of advanced technologies in water treatment. The Centre benefits from world-leading expertise in the areas of desalination and membrane technologies for water treatment.

The Centre for Complex Fluids Processing is internationally recognised for its leading and innovative research on the processing of complex fluids which is a major feature of modern industry. Such fluids are extremely diverse in origin and composition - ranging, for example, from fermentation broths and food products to inks and mineral slurries. However, underlying this diversity are certain properties that must be understood if the processing is to be effective and efficient. These include flow behaviour in process equipment, how the components of the fluid determine its overall properties and how individual components may be selectively separated.

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

Read less
Our modular distance learning programme provides you with a grounding in the structure of proteins, and the main techniques that are used to study protein structure. Read more
Our modular distance learning programme provides you with a grounding in the structure of proteins, and the main techniques that are used to study protein structure.

Structural biology allows you to understand how macromolecules work at the atomic level of detail. This is important, particularly in designing drugs which act at the molecular level to affect macromolecules. Increasingly, research uses a range of complementary biophysical and structural techniques to study protein-protein interactions. This requires that researchers have some understanding of what all these techniques can achieve. This programme is designed to give the theoretical background required to use this range of methods.

Why study this course at Birkbeck?

Study by distance learning, wherever you are in the world, with our internet-based teaching.
Graduates are well placed to study for PhDs, start professional research careers, or change disciplines to encompass this important area of modern molecular biology.
Part of the Institute of Structural and Molecular Biology, a joint initiative with University College London.
Birkbeck houses state-of-the-art equipment for X-ray crystallography, cryo-electron microscopy and tomography and associated image processing. We have excellent facilities for UV and CD spectroscopy, calorimetry, fluorescence spectroscopy, ultracentrifugation, and protein expression and purification in the biochemical and molecular biology laboratories. We have a 158 processor cluster for intensive data processing. All areas have specialised computer equipment for data analysis, molecular graphics and molecular modelling and programming.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X