• University of York Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Queen Margaret University, Edinburgh Featured Masters Courses
Cardiff University Featured Masters Courses
University of St Andrews Featured Masters Courses
Swansea University Featured Masters Courses
0 miles

Masters Degrees (Bio-Economy)

  • "bio-economy" ×
  • clear all
Showing 1 to 3 of 3
Order by 
Studying innovations and socio-economic transformations that enhance an environmentally sustainable economy, in particular the role of business and the market. Read more

Master's in Environmental and Society Studies

Master's specialisation in Corporate Sustainability

Studying innovations and socio-economic transformations that enhance an environmentally sustainable economy, in particular the role of business and the market.

The private sector plays a crucial role in shaping our sustainable society. Products and services and the way they’re developed, produced, and distributed put a considerable amount of pressure on the world’s resources. The private sector is therefore key to solving structural resource scarcity and environmental problems, notably related to fossil energy use and climate change.

More and more businesses believe they have a responsibility to tackle environmental challenges and, indeed, do so. But how can all businesses be gotten to think of both planet and profit? Does it work best when the pressure comes directly from governance in the form of economic sanctions and legislation? Or is it better that the pressure comes from consumers demanding sustainability? If so, how can public opinion be swayed in favour of the environment?

See on our website: http://www.ru.nl/masters/corporate

Innovations and socio-economic transformations

In the Master’s in Corporate Sustainability, we’ll look at all these aspects. Therefore, you can expect to learn about behavioural economics, organisational studies and innovation management as well as about different environmentally sustainable economies. Examples of sustainable economy include the we-economy, the bio-economy, the circular economy and the sharing economy. Another crucial question is whether these can exist in the current market where the main focus lies on economic growth.

You’ll be introduced to the latest scientific insights, which will be illustrated with numerous examples from the private sector: from cars and light bulbs to second-hand item web shops to coffee and chocolate. Because of the attention given to both strategy and policy, you’ll be able to work as an advisor for both the private and public sector. You could help governmental organisations and NGOs stimulate companies and consumers to make the needed change. Or you could work for a company in any sector and show them the power of environmental innovation.

Why study Corporate Sustainability at Radboud University?

The specialisation strongly focuses on the corporate level of sustainability transformations and corporate social responsibility.
There’s particular attention for innovation: not just technological innovations but also on innovating manufactory processes and new business models.
The main focus is on policies and the social-organisational aspects surrounding innovations rather than the concrete innovations themselves.
Related aspects of business administration will be incorporated in this specialisation. You can also take courses from the Master’s in Business Administration as electives for a multidisciplinary perspective.
You’ll also benefit from the advantages of the Master’s programme in Environment and Society Studies in general.

Environment and Society Studies: Towards a sustainable future

See on our website: http://www.ru.nl/masters/corporate

Read less
How do genes regulate the development and functioning of cells, tissues and organisms? How do molecules, cells and tissues function and communicate with each other, and how are their functions studied? These are the key issues for understanding molecular and cellular mechanisms, whose disruption can contribute to the onset and progression of various diseases. Read more
How do genes regulate the development and functioning of cells, tissues and organisms? How do molecules, cells and tissues function and communicate with each other, and how are their functions studied? These are the key issues for understanding molecular and cellular mechanisms, whose disruption can contribute to the onset and progression of various diseases. Researchers in the fields of genetics, genomics, cellular and developmental biology, biochemistry, structural biology, and biosciences of health are searching for the answers to these questions.

Upon completing the Master’s Programme in Genetics and Molecular Biosciences:
-You will have in-depth knowledge of genetics and molecular biosciences and of the experimental methods used in them.
-You will understand the characteristics and functions of genes and biomolecules at the cellular, tissue and organism levels.
-You will be able to analyse scientific knowledge critically and communicate it to different audiences.
-You will have the ability to produce new scientific information about the properties of genes, biomolecules and cells by means of experimental studies.
-You will be able to take advantage of existing research data and biological databases.
-You will have mastered good scientific practice and know how to act accordingly.
-You will have the capacity for independent project management and problem solving, as well as for maintaining and developing your own expertise.
-You will have the ability to work in multi-disciplinary and multicultural communities.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The Master's programme is based on basic scientific research. In the programme you will acquire knowledge and skills in modern genetics and molecular biosciences, which you will deepen in your chosen field of specialisation. The programme is tightly integrated with the experimental research carried out at the University of Helsinki in genetics, genomics, biochemistry, structural biology, and cellular and developmental biology. By combining course units, you will be able to acquire a broad-based understanding of biological phenomena and of the molecules that have an effect on health, including their interactions and functions at the levels of cells, tissues and organisms.

Courses include a variety of working methods: seminars, lectures, laboratory work, oral and written presentations, project work in small groups, independent studies and study circles formed by the students. The instruction will utilise digital learning environments.

These diverse teaching methods require active involvement from you. They will develop your ability to search, structure and present new information, as well as to draw conclusions. You will learn about the principles and methods of research during laboratory exercises, and about practical work in research groups and when writing your Master's thesis. In addition to academic excellence, you will acquire general working life skills such as fact-finding, problem solving, communication, project management and teamwork. You will acquire competence both for post-graduate studies in a Doctoral Programme and for expert positions immediately after gaining your Master's degree.

Programme Structure

You will need 120 credits (ECTS) for the Master’s degree, according to your personal study plan. The degree consists of:
-60 credits of advanced studies, including your Master’s thesis (30 credits).
-60 credits of other studies chosen from your own programme or from other programmes (such as Translational Medicine, Microbiology and Microbial Biotechnology or Neuroscience).

You will be able to complete the Master’s programme in two years. The degree always includes a personal study plan as well as studies in labour market orientation, career planning, and possibly also international activities. If you are aiming for qualification as a biology teacher, you will need 60 credits of teacher’s pedagogical studies in your degree (this applies only to Finnish or Swedish speaking students).

Career Prospects

After graduating from the Master’s programme in Genetics and Molecular Biosciences, you will be well-prepared to move on to a career or to continue your studies at the postgraduate level for a PhD degree (see Postgraduate study opportunities). Doctoral studies are a prerequisite if you wish to become a researcher in the academic sector, for example.

The Master of Science (MSc) is a generalist degree, giving you the ability to work in basic and applied research and to act as an expert in public administration, the private sector and biotechnology companies. Your choice of specialisation and optional courses allows you to profile your skills in the direction you aim to follow for your future career. You can also take courses from other Master’s programmes at the University of Helsinki or other universities in Finland or abroad.

The professional titles of graduates in molecular biosciences include senior researcher, entrepreneur, forensic chemist, research and development chemist, product manager, senior officer, editor and teacher, so your future profession and employment can be as unique as you are. The teaching in the Master’s programme is based on cutting-edge research, so your education will be closely related and applicable to emerging fields such as bio-economy, nanotechnology, personal health and biological drugs. Some hot development areas in biotechnology include renewable energy and environmental technology. These sectors will require new kinds of specialists, who possess a wide and comprehensive understanding of molecular life sciences. After graduation, you could act, for example, in health life sciences as a quality manager or a laboratory specialist, scientific writer, clinical research monitor, or as an expert in administration.


The Master's programme in Genetics and Molecular Biosciences has a multidisciplinary and international teaching staff and research environment, giving you an excellent opportunity to create interdisciplinary and international contacts which will be of great importance for your future career. The Master's programme enables you to participate in international research projects from the beginning of your studies. You will communicate in English, allowing for a smooth transition between international research and specialist environments.

You can carry out the research and internship periods included in the Master's programme abroad. You will also have the possibility to take courses for the Master’s degree as an exchange student in foreign collaborating universities.

Read less
January, May or September. The time is ripe to develop low carbon alternatives to petroleum-based products both in terms of what society wants and what economics demand. Read more

Start dates

January, May or September


The time is ripe to develop low carbon alternatives to petroleum-based products both in terms of what society wants and what economics demand. This makes it’s an exciting time to be part of the rapidly developing Biotech Industries. However, biorefining is a highly technical field and the successful growth of the industry is resulting in a lack of sufficient staff with the technical knowledge necessary to support its expansion. This course has been designed in consultation with existing UK industries to address this skills shortage. Since this programme is aimed at people who are already working, training is via distance learning and we hope to complement these with workshops.

Taught by experts at both Aberystwyth University (AU) and Bangor University (BU) through AU, the Industrial Biotechnology course offers you a highly vocational option.

The MSc comprises five core modules and four complementary modules which have been selected to allow students to study the main components of the biorenewable pipeline, from raw materials through extraction and processing to products; and to carry out your own work-based research. They are:

Core Modules

Biorenewable Feedstocks - each January

Students will learn about dedicated crops, agricultural waste and food waste streams and look at how to match feedstock to end-use. The module will examine: the scale of the challenge facing land-based crop production in the 21st century; the role of emerging technologies to meet these needs sustainably; and practical and economic considerations to scaling up production.

Biorefining Technologies - each January

This module will equip students with a detailed fundamental and practical knowledge of biorefining including pre-processing, processing and product isolation. It will teach them to evaluate the relative limitations and merits of different extraction, microbial biotechnology & fermentation technologies

Biobased Product Development - each September

This module will focus on potential end-products from bio-refineries including the relevant performance tests and the available processing/manufacturing technologies; both current and emerging technologies will be discussed. The module will also pay attention to the product innovation chain including commercial elements, life-cycle analysis and regulatory considerations.

Waste Stream Valorisation - each May

This module explores the potential to valorise a range of waste streams and will include case studies of exemplary waste streams as well as from students’ own chosen areas of interest.

Drivers of the Bioeconomy - each September

This module examines the societal drivers that shape the bio-economy and looks at what makes production viable. The need for energy efficient will be highlighted, along with vertically integrated production pipelines.

Research Methodologies and Advances in Bioscience

This module provides a framework for developing your research skills in the context of your own research question. You will be paired you up with a supervisor whose research field is in your area of interest and your supervisor will then guide you as you develop your ideas.

Work-based Dissertation

You may start your dissertation in any semester but should only be taken when Research Methodology and Advances in Biosciences has been completed and will involve a work-plan developed with your ATP tutor, academic supervisor and employer (if relevant). Working at a rate of 10-15 hrs per week we would expect the dissertation to take a year to complete.

Complementary Modules

Carbon Footprinting and Life Cycle Assessment - each January

(BU) This module will provide a theoretical and critical analysis of the practice and application of Carbon Footprinting (CF) and Life Cycle Assessment (LCA) as key tools in assessing the environmental impact of agricultural systems.

Genetics and Genomics - each May

(AU) This module focuses on the challenges facing land based production and the role of emerging technologies to meet these challenges sustainably.

Anaerobic Digestion - each May

(BU) This module covers not only the technological aspects of AD, but also the opportunities and consequences of different feed-stocks, the alternative uses of the produced energy and digestates.

Climate Change - each September

(BU) After an introduction to the science and effects of greenhouse gases in the atmosphere, the module will assess historical climate change and will look at current predictions of future change. Methods by which agriculture and industry could adapt to the consequences of – and mitigate its effect on – climate change will be discussed.

Each distance learning module runs for 12 to 14 weeks. Students can start with whichever module they like and take as many or as few as they are able to over the five years of registration.

To achieve a PGCert, students must complete three taught core modules
To achieve a PGDiploma students must complete any six taught modules
To achieve an MSc, students must complete four core modules, two complementary modules and a work-based dissertation.

Read less

  • 1
Show 10 15 30 per page

Share this page:

Cookie Policy    X