• Durham University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
De Montfort University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Leeds Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Aberdeen University Featured Masters Courses
"bio" AND "technology"×
0 miles

Masters Degrees (Bio Technology)

We have 119 Masters Degrees (Bio Technology)

  • "bio" AND "technology" ×
  • clear all
Showing 1 to 15 of 119
Order by 
Make future breakthroughs within healthcare with the MSc Biomedical Engineering with Healthcare Technology Management course. This course is for inquisitive students who want to design, develop, apply or even manage the use of cutting-edge methods and devices that will revolutionise healthcare. Read more
Make future breakthroughs within healthcare with the MSc Biomedical Engineering with Healthcare Technology Management course.

Who is it for?

This course is for inquisitive students who want to design, develop, apply or even manage the use of cutting-edge methods and devices that will revolutionise healthcare. It is open to science and engineering graduates and those working within hospitals or related industry who want to work in healthcare organisations, in the medical devices industry, or in biomedical engineering research.

The course will suit recent graduates and/or clinical engineers with a technical background or those working in healthcare who want to move into a management position.

Objectives

With several medical conditions requiring extensive and continuous monitoring and early and accurate diagnosis becoming increasingly desirable, technology for biomedical applications is rapidly becoming one of the key ingredients of today and tomorrow’s medical care.

From miniaturised home diagnostic instruments to therapeutic devices and to large scale hospital imaging and monitoring systems, healthcare is becoming increasingly dependent on technology. This course meets the growing need for biomedical and clinical engineers across the world by focusing on the design of medical devices from conception to application.

One of the few accredited courses of its kind in London, the programme concentrates on the use of biomedical-driven engineering design and technology in healthcare settings so you can approach this multidisciplinary topic from the biological and medical perspective; the technological design and development perspective; and from the perspective of managing the organisation and maintenance of large scale equipment and IT systems in a hospital.

This MSc in Biomedical Engineering with Healthcare Technology Management course has been created in consultation and close collaboration with clinicians, biomedical engineering researchers and medical technology industrial partners. The programme fosters close links with the NHS and internationally-renowned hospitals including St. Bartholomew's (Barts) and the Royal London Hospital and Great Ormond street so that you can gain a comprehensive insight into the applied use and the management of medical technology and apply your knowledge in real-world clinical settings.

Placements

In the last few years there have been some limited opportunities for our top students to carry out their projects through placements within hospital-based healthcare technology groups or specialist London-based biomedical technology companies. Placement-based projects are also offered to selected students in City’s leading Research Centre for Biomedical Engineering (RCBE). As we continue our cutting-edge research and industrial and clinical collaborations, you will also have this opportunity.

Academic facilities

As a student on this course you will have the opportunity to work with cutting-edge test and measurement instrumentation – oscilloscopes, function generators, analysers – as well as specialist signal generators and analysers. The equipment is predominantly provided by the world-leading test and measurement equipment manufacturer Keysight, who have partnered with City to provide branding to our electronics laboratories. You also have access to brand new teaching labs and a dedicated postgraduate teaching lab. And as part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

You will be taught through face-to-face lectures in small groups, where there is a lot of interaction and feedback. Laboratory sessions run alongside the lectures, giving you the opportunity to develop your problem-solving and design skills. You also learn software skills in certain modules, which are taught inside computer labs. We also arrange hospital visits so you gain hands-on experience of different clinical environments.

We arrange tutorials for setting coursework, highlight important subject areas, conduct practical demonstrations, and offer support with revision. You are assessed by written examinations at the end of each term, and coursework assignments, which are set at various times throughout the term.

You also work towards an individual project, which is assessed in the form of a written thesis and an oral examination at the end of the summer. The project can be based on any area of biomedical engineering, telemedicine or technology management and will be supervised by an academic or clinical scientist with expertise in the subject area. Many projects are based in hospital clinical engineering departments, or if you are a part-time student, you can base the project on your own workplace. You will have regular contact with the supervisor to make sure the project progresses satisfactorily. Some of the programme’s current students are working on a project focusing on devices that use brain signals to move external objects such as a remote control car and a prosthetic arm.

Some of the previous projects students have worked on include:
-A cursor controller based on electrooculography (EOG)
-Modelling a closed-loop automated anaesthesia system
-Design of a movement artefact-resistant wearable heart rate/activity monitor
-Review of progress towards a fully autonomous artificial mechanical heart
-Design of smartphone-based healthcare diagnostic devices and sensors.

If you successfully complete eight modules and the dissertation you will be awarded 180 credits and a Masters level qualification. Alternatively, if you do not complete the dissertation but have successfully completed eight modules, you will be awarded 120 credits and a postgraduate diploma. Completing four modules (60 credits) will lead to a postgraduate certificate.

Modules

Along with the 60 credit dissertation eight core modules cover diverse subject areas including biomedical electronics and instrumentation, technology infrastructure management, as well as the latest advances in medical imaging and patient monitoring.

The course includes a special module which gives you an introduction to anatomy, physiology and pathology designed for non-clinical science graduates.

The most innovative areas of biomedical and clinical engineering are covered and the content draws from our research expertise in biomedical sensors, bio-optics, medical imaging, signal processing and modelling. You will learn from academic lecturers as well as clinical scientists drawn from our collaborating institutions and departments, which include:
-Charing Cross Hospital, London
-The Royal London Hospital
-St Bartholomew's Hospital, London
-Basildon Hospital
-Department of Radiography, School of Community and Health Sciences, City, University of London

Modules
-Anatomy, Physiology and Pathology (15 credits)
-Physiological Measurement (15 credits)
-Biomedical Instrumentation (15 credits)
-Medical Electronics (15 credits)
-Cardiovascular Diagnostics and Therapy (15 credits)
-Medical Imaging Modalities (15 credits)
-Clinical Engineering Practice (15 credits)
-Healthcare Technology Management (15 credits)

Career prospects

This exciting MSc programme offers a well-rounded background and specialised knowledge for those seeking a professional career as biomedical engineers in medical technology companies or research groups but is also uniquely placed for offering skills to clinical engineers in the NHS and international healthcare organisations.

Alumnus Alex Serdaris is now working as field clinical engineer for E&E Medical and alumna Despoina Sklia is working as a technical support specialist at Royal Brompton & Harefield NHS Foundation Trust. Other Alumni are carrying out research in City’s Research Centre for Biomedical Engineering (RCBE).

Applicants may wish to apply for vacancies in the NHS, private sector or international healthcare organisations. Students are encouraged to become members of the Institute of Physics and Engineering in Medicine (IPEM) where they will be put in touch with the Clinical Engineering community and any opportunities that arise around the UK during their studies. Application to the Clinical Scientist training programme is encouraged and fully supported.

The Careers, Student Development & Outreach team provides a professional, high quality careers and information service for students and recent graduates of City, University of London, in collaboration with employers and other institutional academic and service departments. The course also prepares graduates who plan to work in biomedical engineering research and work within an academic setting.

Read less
What is the Master of Food Technology all about?.  The Interuniversity Programme in Food Technology (IUPFOOD) focuses on . Read more

What is the Master of Food Technology all about?

 The Interuniversity Programme in Food Technology (IUPFOOD) focuses on two technological dimensions of prime and crucial importance in food processing and preservation:

  • the transformation (processing) of raw materials into products suited for human consumption
  • the role of postharvest and food preservation unit operations in delivering safe and nutritious foods to the end consumer.

These two concerns are directly translated in the focus points of the IUPFOOD programme.

The InterUniversity Programme in Food Technology (IUPFOOD) is jointly organised by KU Leuven and Ghent University (UGent). The programme builds on KU Leuven’s and UGent’s combined expertise in research and education in the field of food technology.

Structure

The Master of Science in Food Technology (120 ECTS) consists of four major segments:

  • In-depth education segment (60 ECTS)
  • Specialisation segment (18 ECTS)
  • Elective courses segment (12 ECTS)
  • Master’s thesis segment (30 ECTS) 

 In the first year of the Master's programme, students will spend the first semester in Ghent and the second semester in Leuven. The second stage courses of the majors 'Postharvest and Food Preservation Engineering' and 'Food Science and Technology' are taught respectively at KU Leuven and UGent; at both universities, optional courses and thesis research topics are offered.

Objectives

1. Has profound and detailed scientific knowledge and understanding of the (bio)chemical processes in biological raw materials during postharvest storage and their transformation into food products.

2. Has profound and detailed scientific knowledge and understanding of engineering principles of unit operations and their use in the transformation of raw materials into food products as a basis for qualitative and quantitative design, evaluation and optimization of food process and preservation unit operations.

3. Has profound and detailed scientific knowledge and understanding of ecology, physiology, detection, use and combat microorganisms in food systems.

4. Has profound and detailed scientific knowledge and understanding of (bio)-chemical, physical and microbiological methods for analysis of raw materials and foods including the skills to identify and use such methods in the context of research, process and product design and optimization and food control.

5. Has profound and detailed scientific knowledge in different fields of product technology such as vegetable products, dairy products, meat products, fish products, cereal derived products and fermented products including aspects of product development in relation to consumer behavior.

6. Can critically evaluate the functionality and safety of foods in the context of human health including the relation with raw materials and their processing into foods based on analytical data and scientific literature data.

7. Masters the skills and has acquired the problem solving capacity to analyze problems of food quality and safety along the food chain and to elaborate interdisciplinary and integrated qualitative and quantitative approaches and solutions (including implementation) appreciating the complexity of food systems and the processes used while taking into account technical limitations and socio-economic aspects such as feasibility, risks, and sustainability.

8. Has acquired a broad perspective to problems of food security, related to postharvest and food processing, in low income developing countries.

9. Can investigate and understand interaction with other relevant science domains and integrate them within the context of more advanced ideas and practical applications and problem solving.

10. Can demonstrate critical consideration of and reflection on known and new theories, models or interpretation within the broad field of food technology.

11. Can identify and apply appropriate research methods and techniques to design, plan and execute targeted experiments or simulations independently and critically evaluate and interpret the collected data.

12. Can develop and execute independently original scientific research and/or apply innovative ideas within research environments to create new and/or improved insights and/or solutions for complex (multi)disciplinary research questions respecting the results of other researchers.

13. Can convincingly and professionally communicate personal research, thoughts, ideas, and opinions of proposals, both written and oral, to different actors and stakeholders from peers to a general public.

14. Has acquired project management skills to act independently and in a multidisciplinary team as team member or team leader in international and intercultural settings.

Career perspectives

IUPFOOD's objective is to offer a programme that takes the specific needs and approaches of developing countries into account. The IUPFOOD programme prepares graduates for various tasks, including teaching and research. IUPFOOD alumni are mainly active in the following sectors:

  • academic institutions (as teaching and/or research staff)
  • research institutes (as research staff)
  • nongovernmental organisations (in different capacities)
  • governmental institutes (e.g. in research programmes, quality surveillance programmes or national nutritional programmes)
  • private industry (in particular jobs related to quality control)


Read less
Food Technology at Ghent. -Inter-university programme - Joint degree offered by the two leading universities in Flanders. -High-level research-based education to solve food security problems in developing countries. Read more
Food Technology at Ghent:
-Inter-university programme - Joint degree offered by the two leading universities in Flanders.
-High-level research-based education to solve food security problems in developing countries.
-Farm to fork multi-disciplinary approach.

Food should not only be produced, it should also be delivered to the ultimate consumer in an acceptable form if it is to fulfil its nutritional destiny. To bring foods to the consumer in an acceptable form, on the one hand processing technologies are used to convert edible raw materials into foods with decreased inherent stability; on the other hand preservation technologies are required to increase the stability and shelf life of foods.

Based on these considerations two technological dimensions are the key objectives: the transformation (processing) of raw materials into products suited for human consumption and the role of postharvest and food preservation unit operations in delivering safe and nutritious foods to the end consumer.

Structure

Semester 1 (Sept-Jan)
-Preceded by introduction courses.
-Food Science and Food Engineering at UGent.
Semester 2 (Febr-June)
-Food Science and Food Engineering at KULeuven.
Semester 3 (Sept-Jan) and Semester 4 (Febr-June)
-Major in Food Science and Technology (UGent).
OR
-Major in Postharvest and Food Preservation and Engineering (KULeuven).
-Tailor-made sub programme including elective courses.
-Master dissertation at the university of the major.

Learning outcomes

Our programme will prepare you to become professionals in areas of food technology to equip future personnel with the necessary technical and managerial knowledge, skills and attitudes, which is required to successfully contribute to solving problems related to food security. The programme particularly focuses on countries where food security is a current and future major concern and key challenge.

Other admission requirements

Each application will be evaluated by the Educational Committee for admission. Applicants are fluent in English (written and oral). Candidates from countries where English is not the language of instruction need to have obtained a score of at least 550 on the paper-based TOEFL test (or a score of at least 80 on a internet-based TOEFL test) or at least 6,5 on the IELTS test.

Direct access is given to students who are, based on the specific entrance requirements of those programmes, directly admitted to the Master of Science in Bioscience Engineering: Food Science and Technology (Master of Science in de Bio-ingenieurswetenschappen: Levensmiddelentechnologie) at KU Leuven or to the Master of Science in Bioscience Engineering: Food Science and Nutrition (Master of Science in de Bio-ingenieurswetenschappen: Levensmiddelenwetenschappen en Voeding) at UGent.

Access is given to students who are, based on the specific entrance requirements of those programmes, admitted to the Master of Science in Bioscience Engineering: Food Science and Technology (Master of Science in de Bio-ingenieurswetenschappen: Levensmiddelentechnologie) at KU Leuven or to the Master of Science in Bioscience Engineering: Food Science and Nutrition (Master of Science in de Bio-ingenieurswetenschappen: Levensmiddelenwetenschappen en Voeding) at UGent after successful completion of a preparatory programme (15 to 60 credits) or transitional programme (45 to 90 credits).

Read less
. What is the Master in Biochemical Engineering Technology all about?. This master's programme incorporates knowledge from various sectors (food, biomedical, pharmaceutical, environmental, etc.) to provide a well-rounded graduate-level curriculum in biomechanical engineering. Read more

What is the Master in Biochemical Engineering Technology all about?

This master's programme incorporates knowledge from various sectors (food, biomedical, pharmaceutical, environmental, etc.) to provide a well-rounded graduate-level curriculum in biomechanical engineering. In addition to fundamental (bio)chemical-scientific course units, you will take courses in socio-economics (company management, economics) and biotechnology (engineering, separation techniques, fermentation technology, molecular biology techniques, industrial biochemistry and microbiology, environmental technology, bioreactor design, etc.). A flexible cross-campus elective package and a master's thesis conducted in either a research-specific or industrial context enable you to focus your studies according to your specific interests and career goals.

Medical Bioengineering option

This option relates to biotechnological developments in the medical sector. Knowledge of human physiological systems (the cardiovascular system, neurophysiology, etc.) and medical engineering techniques form the foundation of developments in the area of artificial organs, tissue engineering, biomaterials, bioelectronics and new diagnostic techniques (microarray technology, PCR technology).

Add an in-company or project-based learning experience to your master's programme

You can augment your master's programme with the Postgraduate Programme Innovation and Entrepreneurship in Engineering. This programme is made up by a multifaceted learning experience in and with a company, with an innovative engineering challenge as the central assignment. It is carried out in a team setting, has a distinct international dimension, and usually requires a multidisciplinary approach. Entrepreneurs and students alike are encouraged to innovate, transfer knowledge and grow. It is a unique cross-fertilisation between company and classroom.

International Campus Group T

The Faculty of Engineering Technology maintains close ties with universities around the world. At Campus Group T, more than 20% of the engineering students are international students. They represent 65 different nationalities from all over the world. This international network extends not just to Europe, but also to China, Southeast Asia, India, Ethiopia and beyond.

Campus Group T is the only campus of the faculty who offers all the degree programmes in the business language par excellence: English. The language is ubiquitous both inside and outside the classroom. If you've mastered English, you feel right at home. And if you want to explore more of the world, you can do part of your training at a university outside Belgium as an exchange student.#

This is an initial master's programme and can be followed on a full-time or part-time basis.

Objectives

This master's programme brings students to the advanced level of knowledge and skills that is associated with scientific work in the broad sense, and more particularly to those areas of the engineering sciences that are related to biochemistry. The programme seeks to offer a broad academic training in biochemistry and biochemical technology, with a distinct emphasis on production, quality management and research in the food industry and related sectors.

Degree holders are able to apply the acquired scientific knowledge independently in a broad social context. Furthermore, they have the necessary organisational skills to hold executive positions.

Career paths

Our graduates find broad employment opportunities in the food and biotechnology sector, the environmental sector, the pharmaceutical industry and in the life sciences. On completion of the programme, you will be equipped with the skills to lead and coordinate industrial production units and research, analysis and screening laboratories in technical-commercial, administrative and educational environments.



Read less
Health Technology Assessment (HTA) is the assessment of relevant evidence and knowledge on the effects and consequences of healthcare technologies. Read more
Health Technology Assessment (HTA) is the assessment of relevant evidence and knowledge on the effects and consequences of healthcare technologies. It contributes to priorities and decisions in relation to prevention, diagnosis, treatment and rehabilitation. This Masters in HTA focuses on the production, critical appraisal and use of scientifically rigorous research evidence, applied to a range of health-related areas.

Why this programme

◾Our postgraduate taught courses provide a solid grounding in all the major disciplines within the field of Health Technology Assessment. This is unique within Scotland, and is one of few such programmes worldwide.
◾Our faculty are world-class experts in their fields, who are active not only in research and teaching, but also involved in HTA decision-making at a national level (e.g. through NICE, SHTAG).
◾Our teaching is research-led. The courses have been developed to reflect the latest academic research and up-to-date challenges in HTA decision-making.
◾You will gain a comprehensive understanding and hands-on experience of the interconnected disciplines that are core to Health Technology Assessment. These include health economics, statistics, evidence synthesis, modelling and patient-reported outcome measures.
◾During a course, from week to week you will interact with your teachers and fellow students using online discussion boards. Your teachers will direct and observe the discussion, and respond to student questions about the course content.
◾You will have the opportunity to collaborate on a research project under the supervision of a member of academic staff or an external supervisor.

Programme structure

Core courses
◾HTA: Policy and Principles (20 credits)
◾Statistical methods for HTA and evidence based medicine (20)
◾Health economics for HTA (20)

Optional courses
◾Foundations of decision analytic modelling (10)
◾Evidence synthesis (20)
◾Outcome measurement and valuation for HTA (10)
◾Analysis of linked health data (20)
◾HTA in a global context (20)
◾Survival analysis for HTA (10)
◾Qualitative research methods for HTA (10)

Optional course (delivered as face-to-face in Glasgow)
◾Decision analytic modelling methods for economic evaluation (20)

Career prospects

HTA has growing importance internationally for informing health care decision making and there is increasing demand for employees with HTA relevant skills. Outside of the field of HTA, students would be well equipped with qualitative and quantitative research skills for jobs in academia, the pharmaceutical industry, and Government Information Services/Statistical agencies.

Potential employers & roles
◾Academic/research centres or universities – undertake HTA research projects funded by HTA agencies, national research bodies or health technology companies to support reimbursement or develop HTA methods.
◾Private industry including pharmaceutical companies, bio-technology companies and health insurance companies – design and undertake evaluations (effectiveness and/or cost-effectiveness) for presentation to reimbursement agencies in support of health technology products.
◾Local or national government agencies, regulators, health service providers, international health organisations (e.g. WHO) – commission and review assessments submitted to support reimbursement of health technologies; undertake systematic reviews, evidence synthesis and evaluations to focus and direct health care policy; evaluate policy and programmes previously funded.
◾National or international consultancy companies – undertake HTA projects for governments, HTA agencies or industry clients.

Read less
The world is facing increasing environmental threats which are posing severe scientific, social and economic challenges to the human race. Read more

Overview

The world is facing increasing environmental threats which are posing severe scientific, social and economic challenges to the human race. These challenges include: the depletion of natural resources, the loss of diversity and the need to develop new forms of energy generation whilst efficiently utilising existing energy sources.
Tackling these environmental problems and establishing a sustainable environment requires the adoption of appropriate policies and managerial strategies. The interdisciplinary nature of this postgraduate course provides a broad understanding of these environmental problems whilst embedding the appropriate specialist scientific, managerial and generic skills for a career in the environmental sustainability sector.
The course incorporates Keele University’s internationally recognised expertise in research and teaching on environmental issues. It is taught by a team of environmental specialists working in the fields of environmental technologies, biological sciences, chemical science, project management, and environmental policy and politics.

See the website https://www.keele.ac.uk/pgtcourses/environmentalsustainabilityandgreentechnology/

Keele University Sustainability Hub

Keele University’s campus has unrivalled potential to form a unique hub for research, development and demonstration of a range of environmental and sustainable technologies.

The Keele Sustainability Hub site contains both academic buildings and buildings for technological companies. Renewable energy sources are integrated into these buildings, incorporating:
- Solar thermal
- Solar PV
- Climate control and underfloor heating
- Smart lighting systems
- Rainwater harvesting
- Ground source heat
- Bio-fuel woodchip burner
- Wind turbine

The main focus of the site is the specialist Hub for Sustainability building. The Sustainability Hub acts as a focus for the research into, teaching of, and management of sustainability and green technology that takes place at Keele University. It’s a means to bring all these different activities together and then to communicate the innovations and implications out to the rest of campus, schools, businesses and the wider community.

As a student on the MSc in Environmental Sustainability & Green Technology programme a lot of your teaching will take place at the Hub, and you’ll have direct access to these environmental developments first hand. The students use the Hub and its facilities as their base - a place to meet and to study - during their year at Keele.

Course Aims

The MSc in Environmental Sustainability and Green Technology is designed to provide an interdisciplinary understanding of environmental challenges whilst giving the opportunity to specialise in several sustainability themes related to geosciences, energy generation, biological science, green information technology, environmental policy and politics, and project management.

Successful students will gain
- An understanding of knowledge in the areas of science, technology, policy and green political theory relevant to environmental sustainability

- Experience in analytical and computer techniques which would allow them to contribute to the solving of environmental challenges

- A conceptual understanding to evaluate critically current research and advance scholarship in environmental sustainability

- A comprehensive understanding of experimental design, planning and scientific techniques within a research project

- Problem-solving and team-working skills relevant to the implementation of sustainable technologies and policies

Course Content

The MSc programme comprises 8 taught 15-credit modules and a 60-credit research project which is undertaken either at Keele University or on placement with an industrial collaborator.

This structure allows students to obtain a postgraduate certificate (60 credits) or a postgraduate diploma (120 credits) depending on the number of modules studied.

The first two modules provide an overview of important environmental technologies and policies relevant to sustainability. Students then choose four from ten optional modules which are arranged within four themes:
- Renewable and Sustainable Energy
- Biological Challenges and Sustainability
- Environmental Politics
- Policy and Project Management

Cross theme studies are encouraged. This interdisciplinary knowledge is then applied in a student-centred learning situation. This provides the necessary teamwork and problem-solving skills to formulate strategies to address a range of environmental and sustainability challenges.

The 60-credit research project is preceded by a Research Skills module.

Teaching & Assessment

Modules are assessed by assignment and/or examination. The research project is based on the submission of a 15 - 20,000 word report that is undertaken by the student in conjunction with an academic supervisor and, where appropriate, an industrial collaborator.

Field course costs

There will be no charge to new students taking field courses. The School receives an annual financial contribution from the University to support the cost of the field course programme. Therefore field course costs for new postgraduate students will be paid for by the University.

Employment Case Studies

Our unique inter-disciplinary course leads our graduates into a diverse range of careers.

Our students have chosen careers in research; in local, regional and national government; multi-national corporations; environmental consultancies and charities.

For examples of what graduates are doing now, see here - https://www.keele.ac.uk/gge/applicants/postgraduatetaughtcourses/msc-esgt/employmentcasestudies/

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
Biotechnology is defined as the industrial exploitation of living organisms or the exploitation of components derived from these organisms. Read more

MSc Biotechnology

Biotechnology is defined as the industrial exploitation of living organisms or the exploitation of components derived from these organisms.

Programme summary

During the master Biotechnology you learn more about the practical applications of biotechnology, including age-old techniques such as brewing and fermentation, which are still important today. In recent decades, gene modification has revolutionized the biotechnology industry, spawning countless new products and improving established processes. Modern biotechnology has become an applied area of science with a multidisciplinary approach embracing recombinant DNA technology, cellular biology, microbiology, biochemistry, as well as process design and engineering.

Specialisations

Cellular and Molecular Biotechnology
This specialisation focuses on the practical application of cellular and molecular knowledge with the aim of enhancing or improving production in micro-organisms or cell cultures. Possible majors: molecular biology, biochemistry, microbiology, virology, enzymology and cell biology. The knowledge and skills gained can be applied in food biotechnology, medicine and vaccine development, environmental and bio-based technology.

Process Technology
This specialisation focuses on engineering strategies for developing, enhancing or improving production in fermentation, bioconversion and enzymatic synthesis. Possible majors: bioprocess engineering, food or environmental engineering, applied biotechnology and system and control techniques. The knowledge and skills gained can be applied in food biotechnology, medicine and vaccine development, environmental and bio-based technology.

Marine Biotechnology
This specialisation focuses on the use of newly- discovered organisms from the sea in industrial processes. Applications include production of new medicines, fine chemicals, bio-based products and renewable energy.

Medical Biotechnology
This specialisation focuses on the use of modern biotechnology in the development and production of new vaccines and medicines. Advanced molecular and cellular techniques are used to study diagnostic and production methods for vaccines and medicines. Possible majors: molecular biology, microbiology, virology and cell biology.

Food Biotechnology
This specialisation focuses on the application from biotechnology to food processing. The approach includes microbial and biochemical aspects integrated with process engineering and chemistry. Possible majors: food microbiology, food chemistry and process engineering.

Environmental and Biobased Technology
This specialisation focuses on the design and development of biotechnological processes for solving environmental problems by removing waste products or by producing renewable energy. Possible majors: environmental technology, bioprocess engineering, microbiology and biobased chemical technology.

Your future career

Graduates in biotechnology have excellent career prospects. More than 60 percent begin their careers in research and development. Many of these Master graduates go on to earn their PhD degrees and often achieve management positions within a few years. Approximately 30 percent of our graduates start working for biotechnology companies immediately. Relatively few begin their careers outside the private sector or in a field not directly related to biotechnology. In the Netherlands, some graduates work for multinational companies such as Merck Schering Plough, DSM, Heineken, Unilever and Shell, while others find positions at smaller companies and various universities or research centres such as NKI and TNO.

Alumnus Sina Salim.
In America and Brazil, production of maize and sugar cane for bio ethanol takes up enormous swathes of arable land that could otherwise be used for food production. This leads to the well-known food versus fuel dilemma. An alternative method for producing biodiesel is the use of algae. Currently, too much energy is consumed during the growth and harvesting of algae, but huge efforts are being made to reduce these energy requirements. Sina Salim is trying to develop a cheap and energy efficient harvesting method to ultimately produce biodiesel from algae, a competitor of fossil fuel. Now he is operational scientist at Bioprocess Pilot Facility B.V.

Related programmes:
MSc Molecular Life Sciences
MSc Food Technology
MSc Bioinformatics
MSc Plant Biotechnology
MSc Environmental Sciences.

Read less
For those seeking a role in the technology transfer, technology finance or pharmaceutical and biotechnology industries, it is essential to develop an understanding of the science, regulatory environment, and communication and deal-making. Read more
For those seeking a role in the technology transfer, technology finance or pharmaceutical and biotechnology industries, it is essential to develop an understanding of the science, regulatory environment, and communication and deal-making. The Bio-business programme delivers an overview of the history and trends in scientific research and development in the industrial biosciences. This is supported and complemented by business, entrepreneurial and industry-facing modules, including the structure of the biotechnology and pharmaceutical industries in the context of regulation and public perception. The programme highlights issues of risk and regulation and the socio-economic benefits stemming from technology and material developments.

The main aims are to convey a broad and detailed understanding of all these critical issues, and to provide insight into both the theory and practice of entrepreneurship and business in the context of the bioscience industry, recognising the differences between science-based projects and other types of commercial activity.

The programme features specialist presentations from researchers and authorities in subject areas such as ethics, biological products and business development. Hands-on experiential learning is also provided, developing students' ability to build talented teams and pitch for funds, among other essential skills.

Why study this course at Birkbeck?

- Provides training in management and business principles, in research methods via new and existing modules offered by CIMR in the Department of Management, and new modules in the Department of Biological Sciences.
- Analyses core and specialist issues in business innovation, focused on biological and chemical sciences.
- Specialist presentations from authorities in subject areas such as ethics, pharmaceuticals and technology transfer. New biological sciences module content is informed by a high-profile industrial panel.
- Requires you to carry out an independent piece of research within the subject area of the programme.
- Evening, face-to-face study in full-time and part-time modes.

Read less
The first course of its kind to be accredited by the Royal Society of Chemistry, this taught Masters course is designed to equip you with the necessary skills in green chemistry and green chemical technology to prepare you for a range of different careers in research, process development, environmental services, manufacturing, law, consultancy and government. Read more
The first course of its kind to be accredited by the Royal Society of Chemistry, this taught Masters course is designed to equip you with the necessary skills in green chemistry and green chemical technology to prepare you for a range of different careers in research, process development, environmental services, manufacturing, law, consultancy and government.

Course Content

The MSc is a one year full time course consisting of taught material and a substantial research project. Teaching is delivered by academic experts within the Department of Chemistry as well as external experts from other academic institutions and industry. The Teaching component of the course is delivered via a mix of lectures, workshops, seminars and practical work. You will learn about the key principles of green chemistry and the importance of sustainable technology in a variety of areas. In addition to this, you will also have the opportunity to enhance your transferable skills.

Assessment methods include a closed examination, written assignments, presentations, posters and practical work.

Our Students

The MSc course has been running for over ten years over which time there has been a large increase in the range of nationalities represented. The content of the course is globally relevant and so attracts applications from around the world from people keen to develop their own knowledge to pass on when they return to their home country. Students have an opportunity not only to benefit from the degree that will aid them in their future career in industry or elsewhere but also to experience the cultural and social attractions that the university and the city can offer.

Students who have previously studied the MSc programme have come from France, Spain, Ireland, Tanzania, Nigeria, Oman, Thailand, Malta, Lithuania, Brunei, China and Malaysia to name but few – the full range can be seen on the map below. The diversity of our students enriches the cultural experience for all members of the group.

Career Destinations

The course will be of benefit to students who wish to follow a range of career paths including those in chemistry-based industries:
-Speciality chemical and associated manufacturing industries
-Fine chemical and associated manufacturing industries
-Catalyst development
-Pharmaceutical industry in either a research or process-development role
-Chemical formulation
-Chemical user companies along the entire supply chain including retail
-Government departments and science laboratories
-University academic career
-University research career, in particular as a route to PhD research
-Environmental monitoring and evaluation
-Legal services and other organisations

Research Project

A key part of the MSc in Green Chemistry is the research project. The whole course is 180 credits and the research project accounts for 100 of these so is a very significant part of the programme.

Students are able to choose from a range of project areas in order to carry out research in their area of interest. Projects will be supervised by an academic member of staff, and may also involve collaboration with industry. Projects are chosen in the early stages of the course and you will be allocated to a PAG - Project Area Group - that corresponds with larger research projects that are currently taking place within the Green Chemistry Centre.

Projects can vary each year, but examples of recent MSc students' research includes:
-Production of natural flavours and fragrances using biocatalysis in scCO2
-Clean synthetic strategies for production of pharmaceuticals
-Extraction and utilisation of high value chemicals from food waste
-Starbon technology for catalysis
-Microwave assisted pyrolysis of wood pellets
-Bio-derived platform molecules

The research project module is assessed by a substantial written report by each student, a PAG report and an oral presentation on your individual research.

Read less
The MSc in Architectural Design is run by Professor Neil Spiller and Head of Department Nic Clear; the programme encourages students to develop a speculative and experimental approach to architectural design through the use of advanced digital tools and techniques. Read more
The MSc in Architectural Design is run by Professor Neil Spiller and Head of Department Nic Clear; the programme encourages students to develop a speculative and experimental approach to architectural design through the use of advanced digital tools and techniques. It is aimed at students of architecture and related disciplines, who wish to continue their academic, intellectual and professional skills beyond the requirements of their professionally recognised qualification.

The programme aims to address and redefine new trends and knowledge in the field of architecture and offers a postgraduate design framework strongly supported by theoretical components. Teaching is by members of the AVATAR (Advanced Virtual and Technological Architecture Research) group students who are encouraged to develop a personal focus and independent research position within the programme framework. It is particularly geared towards students who wish to go on to study at MPhil/PhD.

The programme is not validated by a professional body and does not provide exemption from the Royal Institute of British Architects (RIBA) Part 2 professional examination or from the Architects' Registration Board (ARB) Part 2 prescript.

The Department is based in a new state of the art building designed by the award winning architects Heneghan Peng; it is equipped with fourteen rooftop landscapes, cutting edge digital workshops, extensive design studios, a world-class library and two gallery spaces.

Our building is located in the heart of Greenwich, the newest addition to a suite of magnificent buildings that occupy the UNESCO World Heritage site and the location of the Greenwich Prime Meridian.

The aims of the programme are:

- To develop research concerning the impact of advanced technology on architectural design, and to contribute on a discussion on issues such as aesthetics, philosophy and cybernetics

- To concern itself with the technologies of virtuality (exploring fully immersed, mixed and augmented environments); time based digital media (film, video and animation), nano and bio technology (micro-landscapes and architecture, ethics, sustainability and ecology) including reflexive environments and cybernetic systems.

Visit the website http://www2.gre.ac.uk/study/courses/pg/arc/arcdes

Architecture and Landscape

We need tools to help us create a built environment that is responsive rather than obstructive to its users and to the world around it. At Greenwich we encourage both students and staff to embrace the interconnectedness of design, construction and building management, of landscape architecture and graphic design, and to constantly look at new ways of exploring these areas.

All architecture programmes focus on the urgent necessity to change our living habits in order to design and build a sustainable urban environment.

The construction management programmes are designed to provide students with a high level of understanding of the design, function, construction and statutory requirements for buildings of all classes, and to prepare them for more advanced employment within the construction industry.

What you'll study

Full time
- Year 1:
Students are required to study the following compulsory courses.

Master Project (60 credits)
Advanced Architectural Design 01 (Project Themes) (40 credits)
Architectural Thesis (40 credits)
Theories of Architectural Design (20 credits)
Future Representations (20 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

Advanced Architectural Design 01 (Project Themes) (40 credits)
Theories of Architectural Design (20 credits)
Future Representations (20 credits)

- Year 2:
Students are required to study the following compulsory courses.

Master Project (60 credits)
Architectural Thesis (40 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Assessment

Students are assessed through coursework, thesis and design portfolio.

Career options

This programme is suitable for those aiming to develop advanced design skills for use in architectural practice, and for those aiming to enhance their academic skills and/or go on to doctoral study.

Find out about the teaching and learning outcomes here - http://www2.gre.ac.uk/__data/assets/pdf_file/0005/644423/MA-Advanced-Architectural.pdf

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
Learning from nature for engineering - that is the goal of this international Master's degree program (MSc) taught in English. Nature offers a myriad of solutions to engineering problems. Read more
Learning from nature for engineering - that is the goal of this international Master's degree program (MSc) taught in English. Nature offers a myriad of solutions to engineering problems. Over the course of four semesters, this program focuses on the implementation of numerous nature-inspired innovations into new technologies and sustainable products and offers an exciting overview of all core areas of biomimetics.

The challenges that our bio-inspired engineering graduates will be equipped to face, will be as diverse as biomimetics itself. Potential occupational fields include, for example, applied research and development, technical biology, product development and construction, industry and product design, manufacturing engineering and automation technology, innovation management, and (business) consulting.

The bio-inspired engineering Master's program will enable talented and committed students to discover the riches of biomimetics and to use them to develop sustainable engineering solutions to benefit our society. The program ensures a transfer of knowledge from applied basic research to the creation of prototypes through the high proportion of practical exercises.

COURSE FOCUS POINTS
- 22% Biomimetics
- 17% Engineering principles for biomimetics
- 15% Biology for engineers
- 15% Specialization/Master’s thesis
- 13% Fablab & rapid prototyping
- 8% Science & innovation
- 6% 3D-Design & optimization
- 4% Analytics

Read less
Recent years breakthrough discoveries in health sciences have generally been achieved by effective cooperation between interdisciplinary research teams, which included members from medicine, basic sciences and engineering. Read more
Recent years breakthrough discoveries in health sciences have generally been achieved by effective cooperation between interdisciplinary research teams, which included members from medicine, basic sciences and engineering. Such a cooperation provides a broad visionary approach and strong scientific basis for a better understanding of the health related problems and allows the development of novel technologies to improve the quality of life.
Koç University Biomedical Sciences and Engineering (BMSE) MS and PhD programs have been developed with this philosophy in mind and offer unique, truly interdisciplinary graduate education and leading edge research opportunities for students with different disciplines, which include basic sciences (chemistry, physics and biological sciences) engineering (chemical, mechanical and electrical engineering), medicine and related health sciences programs and provide them with the vision, knowledge and tools to become the future leaders.

Current faculty projects and research interests:

• Computational and Quantative Biology
• Biometric Materials and Islet Cell Bioengineering
• Robıtics and Mechanics
• Computational Biology and Bioinformatics
• Molecular biochemistry
• Computational Systems
• Biofluids and Cardiovascular Mechanics
• Polymer Science and Technology
• Mitochondrial Biogenesis
• Cell Biology
• Microphotonics
• Optofluidic and Nano-Optics

Read less
Our Energy programmes allow you to specialise in areas such as bio-energy, novel geo-energy, sustainable power, fuel cell and hydrogen technologies, power electronics, drives and machines, and the sustainable development and use of key resources. Read more
Our Energy programmes allow you to specialise in areas such as bio-energy, novel geo-energy, sustainable power, fuel cell and hydrogen technologies, power electronics, drives and machines, and the sustainable development and use of key resources.

We can supervise MPhil projects in topics that relate to our main areas of research, which are:

Bio-energy

Our research spans the whole supply chain:
-Growing novel feedstocks (various biomass crops, algae etc)
-Processing feedstocks in novel ways
-Converting feedstocks into fuels and chemical feedstocks
-Developing new engines to use the products

Cockle Park Farm has an innovative anaerobic digestion facility. Work at the farm will develop, integrate and exploit technologies associated with the generation and efficient utilisation of renewable energy from land-based resources, including biomass, biofuel and agricultural residues.

We also develop novel technologies for gasification and pyrolysis. This large multidisciplinary project brings together expertise in agronomy, land use and social science with process technologists and engineers and is complemented by molecular studies on the biology of non-edible oilseeds as sources for production of biodiesel.

Novel geo-energy

New ways of obtaining clean energy from the geosphere is a vital area of research, particularly given current concerns over the limited remaining resources of fossil fuels.

Newcastle University has been awarded a Queen's Anniversary Prize for Higher Education for its world-renowned Hydrogeochemical Engineering Research and Outreach (HERO) programme. Building on this record of excellence, the Sir Joseph Swan Centre for Energy Research seeks to place the North East at the forefront of research in ground-source heat pump systems, and other larger-scale sources of essentially carbon-free geothermal energy, and developing more responsible modes of fossil fuel use.

Our fossil fuel research encompasses both the use of a novel microbial process, recently patented by Newcastle University, to convert heavy oil (and, by extension, coal) to methane, and the coupling of carbon capture and storage (CCS) to underground coal gasification (UCG) using directionally drilled boreholes. This hybrid technology (UCG-CCS) is exceptionally well suited to early development in the North East, which still has 75% of its total coal resources in place.

Sustainable power

We undertake fundamental and applied research into various aspects of power generation and energy systems, including:
-The application of alternative fuels such as hydrogen and biofuels to engines and dual fuel engines
-Domestic combined heat and power (CHP) and combined cooling, heating and power (trigeneration) systems using waste vegetable oil and/or raw inedible oils
-Biowaste methanisation
-Biomass and biowaste combustion, gasification
-Biomass co-combustion with coal in thermal power plants
-CO2 capture and storage for thermal power systems
-Trigeneration with novel energy storage systems (including the storage of electrical energy, heat and cooling energy)
-Engine and power plant emissions monitoring and reduction technology
-Novel engine configurations such as free-piston engines and the reciprocating Joule cycle engine

Fuel cell and hydrogen technologies

We are recognised as world leaders in hydrogen storage research. Our work covers the entire range of fuel cell technologies, from high-temperature hydrogen cells to low-temperature microbial fuel cells, and addresses some of the complex challenges which are slowing the uptake and impact of fuel cell technology.

Key areas of research include:
-Biomineralisation
-Liquid organic hydrides
-Adsorption onto solid phase, nano-porous metallo-carbon complexes

Sustainable development and use of key resources

Our research in this area has resulted in the development and commercialisation of novel gasifier technology for hydrogen production and subsequent energy generation.

We have developed ways to produce alternative fuels, in particular a novel biodiesel pilot plant that has attracted an Institution of Chemical Engineers (IChemE) AspenTech Innovative Business Practice Award.

Major funding has been awarded for the development of fuel cells for commercial application and this has led to both patent activity and highly-cited research. Newcastle is a key member of the SUPERGEN Fuel Cell Consortium. Significant developments have been made in fuel cell modelling, membrane technology, anode development and catalyst and fuel cell performance improvements.

Facilities

As a postgraduate student you will be based in the Sir Joseph Swan Centre for Energy Research. Depending on your chosen area of study, you may also work with one or more of our partner schools, providing you with a unique and personally designed training and supervision programme.

You have access to:
-A modern open-plan office environment
-A full range of chemical engineering, electrical engineering, mechanical engineering and marine engineering laboratories
-Dedicated desk and PC facilities for each student within the research centre or partner schools

Read less
What's the Master of Biomedical Engineering about? . The Master of Science in Biomedical Engineering provides students with a state-of-the-art overview of all areas in biomedical engineering. Read more

What's the Master of Biomedical Engineering about? 

The Master of Science in Biomedical Engineering provides students with a state-of-the-art overview of all areas in biomedical engineering:

  • Biomechanics
  • Biomaterials
  • Medical sensors and signal processing
  • Medical imaging
  • Tissue engineering

The teaching curriculum builds upon the top-class research conducted by the staff, most of whom are members of the Leuven Medical Technology Centre. This network facilitates industrial fellowships for our students and enables students to complete design projects and Master’s theses in collaboration with industry leaders and internationally recognized research labs.

Biomedical engineers are educated to integrate engineering and basic medical knowledge. This competence is obtained through coursework, practical exercises, interactive sessions, a design project and a Master’s thesis project.

Structure

Three courses provide students with basic medical knowledge on anatomy and functions of the human body. The core of the programme consists of biomedical engineering courses that cover the entire range of contemporary biomedical engineering: biomechanics, biomaterials, medical imaging, biosensors, biosignal processing, medical device design and regulatory affairs.

The elective courses have been grouped in four clusters: biomechanics and tissue engineering, medical devices, information acquisition systems, and Information processing software. These clusters allow the students to deepen their knowledge in one particular area of biomedical engineering by selecting courses from one cluster, while at the same time allowing other students to obtain a broad overview on the field of biomedical engineering by selecting courses from multiple clusters.

Students can opt for an internship which can take place in a Belgian company or in a medical technology centre abroad. 

Through the general interest courses, the student has the opportunity to broaden his/her views beyond biomedical engineering. These include courses on management, on communication (e.g. engineering vocabulary in foreign languages), and on the socio-economic and ethical aspects of medical technology.

A design project and a Master’s thesis familiarize the student with the daily practice of a biomedical engineer.

International

The Faculty of Engineering Science at KU Leuven is involved in several Erasmus exchange programmes. For the Master of Science in Biomedical Engineering, this means that the student can complete one or two semesters abroad, at a number of selected universities.

An industrial fellowship is possible for three or six credits either between the Bachelor’s and the Master’s programme, or between the two phases of the Master’s programme. Students are also encouraged to consider the fellowship and short courses offered by BEST (Board of European Students of Technology) or through the ATHENS programme.

You can find more information on this topic on the website of the Faculty.

Strengths

The programme responds to a societal need, which translates into an industrial opportunity.

Evaluation of the programme demonstrates that the objectives and goals are being achieved. The mix of mandatory and elective courses allows the student to become a generalist in Biomedical Engineering, but also to become a specialist in one topic; industry representatives report that graduates master a high level of skills, are flexible and integrate well in the companies.

Company visits expose all BME students to industry. Further industrial experience is available to all students.

Our international staff (mostly PhD students) actively supports the courses taught in English, contributing to the international exposure of the programme.

The Master’s programme is situated in a context of strong research groups in the field of biomedical engineering. All professors incorporate research topics in their courses.

Most alumni have found a job within three months after graduation.

This is an initial Master's programme and can be followed on a full-time or part-time basis.

Career perspectives

Biomedical engineering is a rapidly growing sector, evidenced by an increase in the number of jobs and businesses. The Master of Science in Biomedical Engineering was created to respond to increased needs for healthcare in our society. These needs stem from an ageing population and the systemic challenge to provide more and better care with less manpower and in a cost-effective way. Industry, government, hospitals and social insurance companies require engineers with specialised training in the multidisciplinary domain of biomedical engineering.

As a biomedical engineer, you'll play a role in the design and production of state-of-the-art biomedical devices and/or medical information technology processes and procedures. You will be able to understand medical needs and translate them into engineering requirements. In addition, you will be able to design medical devices and procedures that can effectively solve problems through their integration in clinical practice. For that purpose, you'll complete the programme with knowledge of anatomy, physiology and human biotechnology and mastery of biomedical technology in areas such as biomechanics, biomaterials, tissue engineering, bio-instrumentation and medical information systems. The programme will help strengthen your creativity, prepare you for life-long learning, and train you how to formalise your knowledge for efficient re-use.

Careers await you in the medical device industry R&D engineering, or as a production or certification specialist. Perhaps you'll end up with a hospital career (technical department), or one in government. The broad technological background that is essential in biomedical engineering also makes you attractive to conventional industrial sectors. Or you can continue your education by pursuing a PhD in biomedical engineering; each year, several places are available thanks to the rapid innovation taking place in biomedical engineering and the increasing portfolio of approved research projects in universities worldwide.



Read less
What is the Master of Bioscience Engineering. Human Health Engineering all about? .  HHE offers a unique programme and educational vision focusing on . Read more

What is the Master of Bioscience Engineering: Human Health Engineering all about? 

 HHE offers a unique programme and educational vision focusing on technology for healthy humans. While many programmes in biomedical technology are offered in Belgium and abroad, HHE is the first and only programme offered in English that applies the unique combination of human physiology and engineering in a broad range of areas for healthy humans.

Structure

The HHE curriculum is comprised of 120 ECTS (four semesters). The programme is organised into a two-module major, a minor, a master’s thesis and elective courses.

Major

The first module (16 ECTS) contains four courses that will allow you to gain insight in the working of the different physiological systems of the human body as well as in the psychology of the healthy human. 

The second module (41 ECTS) consists of eight engineering courses. In this module, you are challenged to gain insight in technology and apply your technological knowledge to solve real-life problems in a creative way via practical exercises and project work.

The major also includes a broadening course on religion and society (3 ECTS). 

Minor, master's thesis and electives

The 20 ECTS minor is comprised of courses chosen to either strengthen your major or to broaden your expertise in another domain.

In the master’s thesis (30 ECTS), you will further develop your ‘hands-on’ experience and learn to solve problems using the acquired skills.

The curriculum is rounded off with 10 ECTS of elective courses aimed at broadening your academic education. These credits may also be used to take strengthening elective courses to fill any gaps in educational background.

This programme structure allows for a high degree of personalisation, which, in turn, ensures the best possible match for your interests or future career ambitions.

International

Are you looking to broaden your horizons? There are ample opportunities to conduct part of your master's thesis research at various partner institutions abroad. In addition, European residents can undertake their master's thesis research at a European or other partner university within the framework of the Erasmus+ programme. The Faculty also welcomes initiatives of students who want to do a work placement in a company or organization abroad, as well as exchange programmes with partner universities.

Career path

As a HHE graduate, your polyvalent skill set will make you widely employable in the labour market, both within your own specialisationand in other sectors. You will be equipped to take on scientific, technical, organisational and commercial-technical roles in many sectors. In addition, as a bio-engineer, you will rapidly evolve from supporting positions to management positions and this in different activities (research, production and service, marketing, etc.), according to your interests and goals.

As a HHE expert, your contribution will be essential in numerous industrial sectors, including all professional domains linked to the well-being, health and performance of healthy humans in interaction with their environment. This includes:

  • pharmaceutical industry
  • clothing and fashion industry
  • sport technology companies
  • medical companies
  • companies active in sleep comfort
  • helmet producers
  • producers of furniture
  • transport industry (such as cars, buses, trains, and airplanes), etc.

 In all of these business activities, the products of the future must be tuned to a better quality of life for humans. Furthermore, the ageing population is in urgent need of more and better preventative healthcare services, including automated systems for monitoring and support. As a bio-engineer specialised in living systems, you will have the potential to create added value in all of these areas, with special attention to the central place of the healthy human in the development of sustainable technology.



Read less

Show 10 15 30 per page



Cookie Policy    X