• Goldsmiths, University of London Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Coventry University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
De Montfort University Featured Masters Courses
University of Reading Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Northumbria University Featured Masters Courses
"bio"×
0 miles

Masters Degrees (Bio)

  • "bio" ×
  • clear all
Showing 1 to 15 of 263
Order by 
The Master’s Programme in Bio-Pharmaceutical Sciences is a research-oriented programme which covers almost the entire area of drug research. Read more
The Master’s Programme in Bio-Pharmaceutical Sciences is a research-oriented programme which covers almost the entire area of drug research. The programme offers seven specialisations, three of which correspond to major research themes in the Bio-Pharmaceutical Sciences: Drug & Target Discovery, BioTherapeutics and Systems Pharmacology.

Visit the website: http://en.mastersinleiden.nl/programmes/bio-pharmaceutical-sciences/en/introduction

Admission to the Master’s in Bio-Pharmaceutical Sciences is possible throughout the year. International students who need a visa or housing are advised to start the programme in February or September.

Course detail

Leiden University has a rich tradition in pharmaceutical sciences. During the last 30 years, there has been a clear change in focus from traditional (bio-)pharmaceutical teaching to a more research-oriented training in bio-pharmaceutical sciences. This research orientation in the teaching programme is unique in Europe and enjoys a highly international profile.

The Master’s programme is designed and organised by the Leiden Academic Centre for Drug Research (LACDR) at Leiden University. The LACDR is a leading institute dedicated to world-class research and education in drug design, discovery and development. The LACDR operates in close collaboration with the Centre for Human Drug Research (CHDR) and the Leiden University Medical Center (LUMC). The mission of the institute is to advance the discovery of future medicines through cutting-edge research and training of bio-pharmaceutical scientists.

Specialisations

- Bio-Pharmaceutical Sciences and Education
- Bio-Pharmaceutical Sciences and Science Communication and Society
- Bio-Pharmaceutical Sciences and Science-Based Business
- BioTherapeutics
- Drug & Target Discovery
- Industrial Pharmacy
- Systems Pharmacology

Format and assessment

- This Master’s programme is strongly research-oriented and covers almost the entire area of drug research.

- The examination programme is designed on an individual basis and offers a high degree of freedom of choice.

- Students participate actively in research projects of excellent quality.

Reasons to Choose Bio-Pharmaceutical Sciences in Leiden:

1) The programme is offered by the Leiden Academic Centre for Drug Research, a leading institute dedicated to world-class research and education in drug discovery and development.

2) The institute is surrounded by a Science Park which includes several biomedical research institutes and biotechnological companies.

3) The institute is located at the Leiden BioScience Park, the largest life sciences cluster in the Netherlands with numerous biomedical research institutes and biotechnological companies.

4) In Leiden, education in drug research at Bio-Pharmaceutical Sciences can be combined with training in education, science communication, or science-based business.

Careers

- Students enrolled in the Master’s programme Bio-Pharmaceutical Sciences work within a multinational environment and are able to operate on the international market.

- Excellent career opportunities at universities, government or (bio)pharmaceutical industry.

How to apply: http://en.mastersinleiden.nl/arrange/admission

Funding

For information regarding funding, please visit the website: http://prospectivestudents.leiden.edu/scholarships

Read less
We look at evolution in Nature to find solutions for the societal challenges we face. Bio-inspired innovation (BII) is aimed at students with a Bachelor's degree in the Life Sciences who are interested in using bio-inspired design and science and want to innovate services, products and production systems. Read more

Learning from nature: Where Science meets Sustainability

We look at evolution in Nature to find solutions for the societal challenges we face. Bio-inspired innovation (BII) is aimed at students with a Bachelor's degree in the Life Sciences who are interested in using bio-inspired design and science and want to innovate services, products and production systems. With this programme you are equipped for a position in which you contribute to the transition to a circular economy with Bio Inspired Innovations.

This Master's programme equips you with research, design, and collaborative skills that will make you a Bio Inspired expert. BII builds on the excellent research at the Faculty of Science and links research findings to solve societal and business challenges.

The first year of the programme you learn to set up and execute research and discuss and report its outcomes. In the second year you will combine innovation, research, and design. You will develop design and innovation skills to help you translate key scientific insights into 'game-changers' for a sustainable, circular economy. A network of organisations and companies will enable you to find an internship of your interest.

Read less
1-year fully funded studentships still available (for EU students only). Read more
1-year fully funded studentships still available (for EU students only)

MRes in Experimental Physiology and Drug Discovery (Bio-Imaging) is a unique 12 month full-time multi-disciplinary course which aims to give all participants an introduction to the different aspects of biomedical imaging (including hardware and probe development, in vivo and in vitro experimental application, software development and data analysis). In addition, participants will be given training in comparative anatomy, physiology and pharmacology of laboratory animals, they will also obtain a Home Office Personal licence and hands-on experience of a range of in-vivo techniques used in research.


Students will follow already taught courses in Biomedical Imaging, and Experimental Physiology and Drug Discovery. Students will also be taught transferrable skills subjects, such as safety awareness, intellectual property management, time and project management and presentation and communication skills. In addition, students will undertake an individual research project throughout the course and submit a research thesis.


Aims and Objectives

Provide science graduates with:

- an introduction to the different aspects of biomedical imaging
- the ability to perform biomedical imaging, such as probe development or the experimental applicatoin of imaging in vivo
- intensive hands-on in vivo functional biology research training
- the ability to perform the physiological and pharmacological studies in drug development


Content and Structure

Part A: Bio-imaging, animal handling, Home Office training course, comparative anatomy and physiology and drug discovery.

Part B: Six practical modules focused on in vivo research skills (problem solving, e-learning, journal club and lectures).

Part C: 21 week in vivo research project

Career opportunities

The course will provide students with an insight into the principles of drug discovery and translational medical science. Importantly, those students wanting to undertake a PhD in in-vivo science will have gained a Home Office personal licence and be confident in animal handling and techniques. The students will thus be well equipped to make rapid progress in research. Furthermore, having learnt about biomedical imaging from development to application, they will also be better equipped to develop a fully integrative approach to their research problem. The multidisciplinary nature of the course will give students the ability to appreciate the importance of translating the results of scientific and cliical discoveries into potential benefits to healthcare.

Read less
Learning from nature for engineering - that is the goal of this international Master's degree program (MSc) taught in English. Nature offers a myriad of solutions to engineering problems. Read more
Learning from nature for engineering - that is the goal of this international Master's degree program (MSc) taught in English. Nature offers a myriad of solutions to engineering problems. Over the course of four semesters, this program focuses on the implementation of numerous nature-inspired innovations into new technologies and sustainable products and offers an exciting overview of all core areas of biomimetics.

The challenges that our bio-inspired engineering graduates will be equipped to face, will be as diverse as biomimetics itself. Potential occupational fields include, for example, applied research and development, technical biology, product development and construction, industry and product design, manufacturing engineering and automation technology, innovation management, and (business) consulting.

The bio-inspired engineering Master's program will enable talented and committed students to discover the riches of biomimetics and to use them to develop sustainable engineering solutions to benefit our society. The program ensures a transfer of knowledge from applied basic research to the creation of prototypes through the high proportion of practical exercises.

COURSE FOCUS POINTS
- 22% Biomimetics
- 17% Engineering principles for biomimetics
- 15% Biology for engineers
- 15% Specialization/Master’s thesis
- 13% Fablab & rapid prototyping
- 8% Science & innovation
- 6% 3D-Design & optimization
- 4% Analytics

Read less
For those seeking a role in the technology transfer, technology finance or pharmaceutical and biotechnology industries, it is essential to develop an understanding of the science, regulatory environment, and communication and deal-making. Read more
For those seeking a role in the technology transfer, technology finance or pharmaceutical and biotechnology industries, it is essential to develop an understanding of the science, regulatory environment, and communication and deal-making. The Bio-business programme delivers an overview of the history and trends in scientific research and development in the industrial biosciences. This is supported and complemented by business, entrepreneurial and industry-facing modules, including the structure of the biotechnology and pharmaceutical industries in the context of regulation and public perception. The programme highlights issues of risk and regulation and the socio-economic benefits stemming from technology and material developments.

The main aims are to convey a broad and detailed understanding of all these critical issues, and to provide insight into both the theory and practice of entrepreneurship and business in the context of the bioscience industry, recognising the differences between science-based projects and other types of commercial activity.

The programme features specialist presentations from researchers and authorities in subject areas such as ethics, biological products and business development. Hands-on experiential learning is also provided, developing students' ability to build talented teams and pitch for funds, among other essential skills.

Why study this course at Birkbeck?

- Provides training in management and business principles, in research methods via new and existing modules offered by CIMR in the Department of Management, and new modules in the Department of Biological Sciences.
- Analyses core and specialist issues in business innovation, focused on biological and chemical sciences.
- Specialist presentations from authorities in subject areas such as ethics, pharmaceuticals and technology transfer. New biological sciences module content is informed by a high-profile industrial panel.
- Requires you to carry out an independent piece of research within the subject area of the programme.
- Evening, face-to-face study in full-time and part-time modes.

Read less
Recent years breakthrough discoveries in health sciences have generally been achieved by effective cooperation between interdisciplinary research teams, which included members from medicine, basic sciences and engineering. Read more
Recent years breakthrough discoveries in health sciences have generally been achieved by effective cooperation between interdisciplinary research teams, which included members from medicine, basic sciences and engineering. Such a cooperation provides a broad visionary approach and strong scientific basis for a better understanding of the health related problems and allows the development of novel technologies to improve the quality of life.
Koç University Biomedical Sciences and Engineering (BMSE) MS and PhD programs have been developed with this philosophy in mind and offer unique, truly interdisciplinary graduate education and leading edge research opportunities for students with different disciplines, which include basic sciences (chemistry, physics and biological sciences) engineering (chemical, mechanical and electrical engineering), medicine and related health sciences programs and provide them with the vision, knowledge and tools to become the future leaders.

Current faculty projects and research interests:

• Computational and Quantative Biology
• Biometric Materials and Islet Cell Bioengineering
• Robıtics and Mechanics
• Computational Biology and Bioinformatics
• Molecular biochemistry
• Computational Systems
• Biofluids and Cardiovascular Mechanics
• Polymer Science and Technology
• Mitochondrial Biogenesis
• Cell Biology
• Microphotonics
• Optofluidic and Nano-Optics

Read less
Biotechnology is defined as the industrial exploitation of living organisms or the exploitation of components derived from these organisms. Read more

MSc Biotechnology

Biotechnology is defined as the industrial exploitation of living organisms or the exploitation of components derived from these organisms.

Programme summary

During the master Biotechnology you learn more about the practical applications of biotechnology, including age-old techniques such as brewing and fermentation, which are still important today. In recent decades, gene modification has revolutionized the biotechnology industry, spawning countless new products and improving established processes. Modern biotechnology has become an applied area of science with a multidisciplinary approach embracing recombinant DNA technology, cellular biology, microbiology, biochemistry, as well as process design and engineering.

Specialisations

Cellular and Molecular Biotechnology
This specialisation focuses on the practical application of cellular and molecular knowledge with the aim of enhancing or improving production in micro-organisms or cell cultures. Possible majors: molecular biology, biochemistry, microbiology, virology, enzymology and cell biology. The knowledge and skills gained can be applied in food biotechnology, medicine and vaccine development, environmental and bio-based technology.

Process Technology
This specialisation focuses on engineering strategies for developing, enhancing or improving production in fermentation, bioconversion and enzymatic synthesis. Possible majors: bioprocess engineering, food or environmental engineering, applied biotechnology and system and control techniques. The knowledge and skills gained can be applied in food biotechnology, medicine and vaccine development, environmental and bio-based technology.

Marine Biotechnology
This specialisation focuses on the use of newly- discovered organisms from the sea in industrial processes. Applications include production of new medicines, fine chemicals, bio-based products and renewable energy.

Medical Biotechnology
This specialisation focuses on the use of modern biotechnology in the development and production of new vaccines and medicines. Advanced molecular and cellular techniques are used to study diagnostic and production methods for vaccines and medicines. Possible majors: molecular biology, microbiology, virology and cell biology.

Food Biotechnology
This specialisation focuses on the application from biotechnology to food processing. The approach includes microbial and biochemical aspects integrated with process engineering and chemistry. Possible majors: food microbiology, food chemistry and process engineering.

Environmental and Biobased Technology
This specialisation focuses on the design and development of biotechnological processes for solving environmental problems by removing waste products or by producing renewable energy. Possible majors: environmental technology, bioprocess engineering, microbiology and biobased chemical technology.

Your future career

Graduates in biotechnology have excellent career prospects. More than 60 percent begin their careers in research and development. Many of these Master graduates go on to earn their PhD degrees and often achieve management positions within a few years. Approximately 30 percent of our graduates start working for biotechnology companies immediately. Relatively few begin their careers outside the private sector or in a field not directly related to biotechnology. In the Netherlands, some graduates work for multinational companies such as Merck Schering Plough, DSM, Heineken, Unilever and Shell, while others find positions at smaller companies and various universities or research centres such as NKI and TNO.

Alumnus Sina Salim.
In America and Brazil, production of maize and sugar cane for bio ethanol takes up enormous swathes of arable land that could otherwise be used for food production. This leads to the well-known food versus fuel dilemma. An alternative method for producing biodiesel is the use of algae. Currently, too much energy is consumed during the growth and harvesting of algae, but huge efforts are being made to reduce these energy requirements. Sina Salim is trying to develop a cheap and energy efficient harvesting method to ultimately produce biodiesel from algae, a competitor of fossil fuel. Now he is operational scientist at Bioprocess Pilot Facility B.V.

Related programmes:
MSc Molecular Life Sciences
MSc Food Technology
MSc Bioinformatics
MSc Plant Biotechnology
MSc Environmental Sciences.

Read less
Food Technology at Ghent. -Inter-university programme - Joint degree offered by the two leading universities in Flanders. -High-level research-based education to solve food security problems in developing countries. Read more
Food Technology at Ghent:
-Inter-university programme - Joint degree offered by the two leading universities in Flanders.
-High-level research-based education to solve food security problems in developing countries.
-Farm to fork multi-disciplinary approach.

Food should not only be produced, it should also be delivered to the ultimate consumer in an acceptable form if it is to fulfil its nutritional destiny. To bring foods to the consumer in an acceptable form, on the one hand processing technologies are used to convert edible raw materials into foods with decreased inherent stability; on the other hand preservation technologies are required to increase the stability and shelf life of foods.

Based on these considerations two technological dimensions are the key objectives: the transformation (processing) of raw materials into products suited for human consumption and the role of postharvest and food preservation unit operations in delivering safe and nutritious foods to the end consumer.

Structure

Semester 1 (Sept-Jan)
-Preceded by introduction courses.
-Food Science and Food Engineering at UGent.
Semester 2 (Febr-June)
-Food Science and Food Engineering at KULeuven.
Semester 3 (Sept-Jan) and Semester 4 (Febr-June)
-Major in Food Science and Technology (UGent).
OR
-Major in Postharvest and Food Preservation and Engineering (KULeuven).
-Tailor-made sub programme including elective courses.
-Master dissertation at the university of the major.

Learning outcomes

Our programme will prepare you to become professionals in areas of food technology to equip future personnel with the necessary technical and managerial knowledge, skills and attitudes, which is required to successfully contribute to solving problems related to food security. The programme particularly focuses on countries where food security is a current and future major concern and key challenge.

Other admission requirements

Each application will be evaluated by the Educational Committee for admission. Applicants are fluent in English (written and oral). Candidates from countries where English is not the language of instruction need to have obtained a score of at least 550 on the paper-based TOEFL test (or a score of at least 80 on a internet-based TOEFL test) or at least 6,5 on the IELTS test.

Direct access is given to students who are, based on the specific entrance requirements of those programmes, directly admitted to the Master of Science in Bioscience Engineering: Food Science and Technology (Master of Science in de Bio-ingenieurswetenschappen: Levensmiddelentechnologie) at KU Leuven or to the Master of Science in Bioscience Engineering: Food Science and Nutrition (Master of Science in de Bio-ingenieurswetenschappen: Levensmiddelenwetenschappen en Voeding) at UGent.

Access is given to students who are, based on the specific entrance requirements of those programmes, admitted to the Master of Science in Bioscience Engineering: Food Science and Technology (Master of Science in de Bio-ingenieurswetenschappen: Levensmiddelentechnologie) at KU Leuven or to the Master of Science in Bioscience Engineering: Food Science and Nutrition (Master of Science in de Bio-ingenieurswetenschappen: Levensmiddelenwetenschappen en Voeding) at UGent after successful completion of a preparatory programme (15 to 60 credits) or transitional programme (45 to 90 credits).

Read less
Organizations are seeking to create new products and consumers are demanding green alternatives. This has given rise to many opportunities to develop green, sustainable products and chemistries to replace oil-based products and fuels. Read more

Organizations are seeking to create new products and consumers are demanding green alternatives. This has given rise to many opportunities to develop green, sustainable products and chemistries to replace oil-based products and fuels. These include pharmaceuticals, food packaging, clothing and building materials, as well as cutting-edge carbon nanofibers and biofuels. UBC is a world leader in creating innovative value from forest biomass, and graduates of this program will take their place as technical leaders and sector specialists in this growing industry.

The Master of Engineering Leadership (MEL) in Green Bio-Products is an intensive one-year degree program that will equip you with the technical and leadership skills required to contribute to the growing bio-economy. The project-based curriculum covers all stages of the industry value chain. Graduates will gain a comprehensive and integrated understanding of the chemistry and anatomy of the tree and its role as one of the most prolific forms of biomass. While 60 per cent of your classes will focus on your technical specialization, the remaining 40 per cent are leadership development courses that will enhance your business, communication and people skills. Delivery of the management and leadership courses are in partnership with UBC's Sauder School of Business.

What Makes The Program Unique?

The MEL in Green Bio-Products degree was developed in close collaboration with industry partners, who told us they need to hire leaders with cross-functional technical and business skills to develop innovative solutions, manage teams and direct projects.

Students will develop the sector-relevant cross-disciplinary technical skills in demand by top employers. Distinct from other programs in Canada and internationally, the combination of technical expertise and leadership development makes the MEL in Green Bio-Products program unique and highly relevant in today’s business environment.

To complement your academic studies, professional development workshops, delivered by industry leaders, are offered throughout the year-long program. These extra-curricular sessions cover a range of topics such as:

-Leadership fundamentals

-Giving and receiving feedback

-Learning how to deliver a successful pitch

-Effective presenting

The workshops also provide opportunities to network with professionals from a wide range of industries, UBC faculty and students in the MEL and MHLP programs.

Career Options

Our graduates will be in high demand locally, nationally and internationally, equipped to take on challenging roles in this rapidly evolving sector. They will be participating in developing advanced technical processes, product ideation and take on senior management roles. As a graduate of this program, you will have the skills to take your career to the next level – working as an industry leader who is a peer to your engineering team members and confidently managing projects.



Read less
Evolutionary biology is the branch of biology dealing with the origin and descent of species, their genes and genomes.This programme allows the student to study practical evolutionary problems with model organisms, such as the fruit fly, as well as theoretical explorations of evolution using modelling and bioinformatics. Read more
Evolutionary biology is the branch of biology dealing with the origin and descent of species, their genes and genomes.This programme allows the student to study practical evolutionary problems with model organisms, such as the fruit fly, as well as theoretical explorations of evolution using modelling and bioinformatics.

The MRes provides a unique mix of taught components, extended laboratory projects, literature reviews and preparation of a grant proposal based on a research dissertation.
It gives students an insight into a range of state-of-the-art research activities and techniques, and provides generic, transferable skills training needed for all early stage researchers.

The programmes also addresses the scientific, ethical and commercial context within which the research takes place.
All of the MRes programmes can be studied as the first year of our Integrated PhD programme.

Visit the website http://www.bath.ac.uk/science/graduate-school/taught-programmes/mres-evolutionary-biology/

Why study Biology and Biochemistry with us?

- Biology & Biochemistry ranked 2nd in the Sunday Times University Guide 2013
- 90% of our research judged to be internationally recognised, excellent or world-leading
- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

What will I learn?

MRes degree programmes are designed for graduates who are contemplating a research career and who may go on to study for a PhD or to a position in industry involving interaction with research scientists.

If these do not apply, you might consider an MSc programme (http://www.bath.ac.uk/bio-sci/masters/).

For futher information please visit our department pages (http://www.bath.ac.uk/bio-sci/postgraduate/)

Programme structure

Career opportunities

Our graduates have gone on to further research in Lausanne, Berlin, Brussels, Frankfurt, and academic posts in Malaysia, Sweden, Germany, Canada, the US and in the UK. Recent employers of Bath graduates include:

British Aerospace
Network Rail
Powergen
Barclays Capital
BNP Paribas
Pfizer
AstraZenaca
MBDA UK Ltd
ATASS

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/

Read less
This programme concentrates on understanding the molecular principles underlying the biology of microorganisms such as bacteria, viruses, fungi and yeasts. Read more
This programme concentrates on understanding the molecular principles underlying the biology of microorganisms such as bacteria, viruses, fungi and yeasts. In particular we study gene expression and regulation, gene transfer, genome structure, epidemiology, cell communication, and pathogenicity and virulence factors.

The MRes provides a unique mix of taught components, extended laboratory projects, literature reviews and preparation of a grant proposal based on a research dissertation. It gives students an insight into a range of state-of-the-art research activities and techniques, and provides generic, transferable skills training needed for all early stage researchers. The programmes also addresses the scientific, ethical and commercial context within which the research takes place.

All of the MRes programmes can be studied as the first year of our Integrated PhD programme.

Visit the website http://www.bath.ac.uk/science/graduate-school/taught-programmes/mres-molecular-microbiology/

Why study Biology and Biochemistry with us?

- Biology & Biochemistry ranked 2nd in the Sunday Times University Guide 2013
- 90% of our research judged to be internationally recognised, excellent or world-leading
- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

What will I learn?

MRes degree programmes are designed for graduates who are contemplating a research career and who may go on to study for a PhD or to a position in industry involving interaction with research scientists.

If these do not apply, you might consider an MSc programme (http://www.bath.ac.uk/bio-sci/masters/)

For further information please visit our department pages (http://www.bath.ac.uk/bio-sci/)

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa. Recent employers include:

Morvus-Technology Ltd
Janssen-Cilag
Royal United Hospital, Bath
Ministry of Defence
State Intellectual Property Office, Beijing
Wellcome Trust Centre for Human Genetics, Oxford University
AbCam
Salisbury Foundation Trust Hospital
BBSRC
Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/

Read less
Molecular Plant Scientists attempt to understand the biology of plants at the molecular level. Read more
Molecular Plant Scientists attempt to understand the biology of plants at the molecular level. We study, in particular, mechansims of microbial pathogenicity and host plant defence in temperate and tropical species, cell and molecular biology of pollen-stigma recognition and signalling in flowering plants, plant hormone and G protein signalling pathways, genomics and gene networks, and molecular biology of stress responses in the important tropical crop cassava.

The MRes provides a unique mix of taught components, extended laboratory projects, literature reviews and preparation of a grant proposal based on a research dissertation.It gives students an insight into a range of state-of-the-art research activities and techniques, and provides generic, transferable skills training needed for all early stage researchers.

The programmes also address the scientific, ethical and commercial context within which the research takes place.

All of the MRes programmes can be studied as the first year of our Integrated PhD programme.

Visit the website http://www.bath.ac.uk/science/graduate-school/taught-programmes/mres-molecular-plant-sciences/

Why study Biology & Biochemistry with us?

- Biology & Biochemistry ranked 2nd in the Sunday Times University Guide 2013
- 90% of our research judged to be internationally recognised, excellent or world-leading
- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

What will I learn?

MRes degree programmes are designed for graduates who are contemplating a research career and who may go on to study for a PhD or to a position in industry involving interaction with research scientists.

If these do not apply, you might consider an MSc programme (http://www.bath.ac.uk/bio-sci/masters/)

For further information please see our department pages (http://www.bath.ac.uk/bio-sci/).

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa. Recent employers include:

Morvus-Technology Ltd
Janssen-Cilag
Royal United Hospital, Bath
Ministry of Defence
State Intellectual Property Office, Beijing
Wellcome Trust Centre for Human Genetics, Oxford University
AbCam
Salisbury Foundation Trust Hospital
BBSRC
Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/

Read less
The MRes in Biosciences enables students to customise their course according to their needs and future career ambitions by selecting diverse topics and projects under the guidance of the Director of Studies who advises on suitable taught units and laboratory projects. Read more
The MRes in Biosciences enables students to customise their course according to their needs and future career ambitions by selecting diverse topics and projects under the guidance of the Director of Studies who advises on suitable taught units and laboratory projects.

The MRes provides a unique mix of taught components, extended laboratory projects, literature reviews and preparation of a grant proposal based on a research dissertation. The programmes also address the scientific, ethical and commercial context within which the research takes place.

All of the MRes programmes can be studied as the first year of our Integrated PhD programme.

Visit the website http://www.bath.ac.uk/science/graduate-school/taught-programmes/mres-biosciences/

Why study Biology and Biochemistry with us?

- Biology & Biochemistry ranked 2nd in the Sunday Times University Guide 2013
- 90% of our research judged to be internationally recognised, excellent or world-leading
- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

What will I learn?

MRes degree programmes are designed for graduates who are contemplating a research career and who may go on to study for a PhD or to a position in industry involving interaction with research scientists.

If these do not apply, you might consider an MSc programme (http://www.bath.ac.uk/bio-sci/masters/)

For further information please visit our department pages (http://www.bath.ac.uk/bio-sci/)

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa. Recent employers include:

Morvus-Technology Ltd
Janssen-Cilag
Royal United Hospital, Bath
Ministry of Defence
State Intellectual Property Office, Beijing
Wellcome Trust Centre for Human Genetics, Oxford University
AbCam
Salisbury Foundation Trust Hospital
BBSRC
Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/

Read less
This programme involves the integration of structural biology and bioinformatics approaches in order to understand the activity of proteins, including enzymes, antibodies and receptors, at a molecular level. Read more
This programme involves the integration of structural biology and bioinformatics approaches in order to understand the activity of proteins, including enzymes, antibodies and receptors, at a molecular level. This understanding provides a platform for techniques such as structure-based drug design, biocatalysis and protein engineering, which are the basis for many recent advances in biotechnology.

The MRes provides a unique mix of taught components, extended laboratory projects, literature reviews and preparation of a grant proposal based on a research dissertation. It gives students an insight into a range of state-of-the-art research activities and techniques, and provides generic, transferable skills training needed for all early stage researchers. The programmes also address the scientific, ethical and commercial context within which the research takes place.

All of the MRes programmes can be studied as the first year of our Integrated PhD programme.

Visit the website http://www.bath.ac.uk/science/graduate-school/taught-programmes/mres-protein-structure-function/

Why study Biology and Biochemistry with us?

- Biology & Biochemistry ranked 2nd in the Sunday Times University Guide 2013
- 90% of our research judged to be internationally recognised, excellent or world-leading
- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the bioscience

What will I learn?

MRes degree programmes are designed for graduates who are contemplating a research career and who may go on to study for a PhD or to a position in industry involving interaction with research scientists.

If these do not apply, you might consider an MSc programme (http://www.bath.ac.uk/bio-sci/postgraduate/)

For further information please visit our department pages (http://www.bath.ac.uk/bio-sci/)

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa.

Recent employers include:

Morvus-Technology Ltd
Janssen-Cilag
Royal United Hospital, Bath
Ministry of Defence
State Intellectual Property Office, Beijing
Wellcome Trust Centre for Human Genetics, Oxford University
AbCam
Salisbury Foundation Trust Hospital
BBSRC
Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/

Read less
Molecular chemistry is a creative science, where chemists synthesize molecules with new biological or physical properties to address scientific or societal challenges. Read more

Chemistry: Molecular Chemistry

Molecular chemistry is a creative science, where chemists synthesize molecules with new biological or physical properties to address scientific or societal challenges. Think of new catalytic conversions, lead compounds for future medicines or the next generation of conducting polymers. The specialisation Molecular Chemistry offers education in connection with top-level research in the Institute for Molecules and Materials (IMM), enabling you to develop in-depth knowledge of the design, synthesis and characterization of unprecedented functional molecular structures.

See the website http://www.ru.nl/masters/chemistry/molecular

Why study Molecular Chemistry at Radboud University?

- The IMM at Radboud University hosts an internationally renowned cluster of molecular chemistry groups, where you will participate in challenging research projects.
- The IMM Organic Chemistry department was recently awarded a 27 million euro NWO Gravity programme grant. Among the teaching staff are two ERC advanced grant and two ERC starting grant winners.
- Teaching takes place in small groups and in a stimulating, personal setting.

Admission requirements for international students

1. A completed Bachelor's degree in Chemistry, Science or a related area
In general, you are admitted with the equivalent of a Dutch Bachelor's degree in Chemistry, Science with relevant subjects, or a related programme in molecular science. In case of other pre-education, students must have passed preliminary examinations containing the subject matter of the following well-known international textbooks (or equivalent literature). Any deficiencies in this matter should be eliminated before you can take part in this specialisation. If you want to make sure that you meet our academic requirements, please contact the academic advisor.
- Organic chemistry: e.g. Organic Chemistry (Bruice)
- Biochemistry: e.g. Biochemistry (Lehninger)
- Physical chemistry: e.g. Physical chemistry (Atkins)
- 30 EC of chemistry or chemistry-related courses at third year Bachelor's level

2. A proficiency in English
In order to take part in this programme, you need to have fluency in both written and spoken English. Non-native speakers of English* without a Dutch Bachelor's degree or VWO diploma need one of the following:
- A TOEFL score of >575 (paper based) or >90 (internet based)
- An IELTS score of ≥6.5
- Cambridge Certificate of Advanced English (CAE) or Certificate of Proficiency in English (CPE) with a mark of C or higher

Career prospects

Approximately 40% of our graduates take up a PhD position, either in Nijmegen or elsewhere in the world. Our research institutes, in particular the Institute for Molecules and Materials, have vacancies for PhD projects every year. Our graduates also find work as researchers and managers in the chemical industry, or in one of our spin-off companies. A small proportion will not work in science, but for instance as a policymaker at a governmental organisation.

Our approach to this field

The Master's specialisation in Molecular Chemistry offers main stream chemistry courses and research topics, for those students that aim to deepen their knowledge and experimental skills in the heart of chemistry. The Institute for Molecules and Materials offers a state-of-the-art research infrastructure and hosts world-class research groups where you can conduct independent research, under the personal guidance of a researcher. Often, this leads to a scientific publication with you as a co-author.

Besides an internship in fundamental science, you can also chose to perform research in an industrial environment. Approximately one third of our students do one of their internships in a chemical company, both large (e.g. DSM, Synthon, AkzoNobel) and small (e.g. MercaChem, FutureChemistry, Chiralix).

Interested in going abroad? Contact one of our researchers, they can easily connect you to top groups elsewhere in the world. In the past few years, molecular chemistry students did internships in Oxford (UK), Princeton (US), Berkeley (US), Karolinska Institute (Sweden), ETH Zurich (Switzerland), etc.

Our research in this field

In the Master's specialisation Molecular Chemistry, the unique research facilities that Radboud University has to offer are coupled with the top level research within the Institute for Molecules and Materials (IMM). A selection of research groups for this specialisation are:
- Synthetic organic chemistry (Prof. Floris Rutjes): The group focuses on the development of new and sustainable synthetic (multistep)reactions by using bio-, organo- or metal-catalysts or combinations thereof, synthesis of druglike compound libraries, synthesis of bio-orthogonal click-reactions and chemical synthesis in continuous flow microreactors

- Analytical chemistry (Prof. Lutgarde Buydens): Research involves new chemometric methodologies and techniques for the optimisation of molecular structures. The research programme is designed around four areas: Methodological chemometrics, spectroscopic image analysis, molecular chemometrics, and analysis of genomics, metabolomics and proteomics data.

- Bio-organic chemistry (Prof. Jan van Hest): This groups uses Nature as inspiration for the design of functional molecules. Research lines that fit in this specialisation include: design and synthesis of modified peptides to alter their biological function, hybrid polymers containing biomolecules for use as antibacterial materials, and smart compartmentalisation strategies to enable multi-step reactions in a single reaction flask.

- Molecular materials (Prof. Alan Rowan): The aim of the group is the design and synthesis of novel polymers, self-organising molecules and ordered crystals and the subsequent investigation of their properties. Research topics related to his specialisation are: functional systems for application in catalysis, new OLEDS (organic LEDS), and liquid crystals.

See the website http://www.ru.nl/masters/chemistry/molecular

Read less

Show 10 15 30 per page



Cookie Policy    X