• University of York Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
De Montfort University Featured Masters Courses
University of Kent Featured Masters Courses
Coventry University Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of London International Programmes Featured Masters Courses
"bhf"×
0 miles

Masters Degrees (Bhf)

  • "bhf" ×
  • clear all
Showing 1 to 15 of 16
Order by 
The William Harvey Research Institute is currently the UK’s largest academic pharmacological research institute, with 350 scientists and clinicians from more than 40 nations, and has a long history of training talented scientists for careers in cardiovascular sciences and translational research (http://www.whri.qmul.ac.uk/). Read more
The William Harvey Research Institute is currently the UK’s largest academic pharmacological research institute, with 350 scientists and clinicians from more than 40 nations, and has a long history of training talented scientists for careers in cardiovascular sciences and translational research (http://www.whri.qmul.ac.uk/). In the UK Research Assessment Exercise (2014) 90% of our research was rated as world leading or internationally excellent. We are now seeking outstanding life sciences graduates for our BHF funded 4 year MRes/PhD programme to commence in October 2017.

Successful applicants will join our Translational Cardiovascular Academy and undertake an MRes course for the first year of study offering students the foundation knowledge and abilities they will need to proceed to their PhD training. The year will be divided into distinct sections, the first being dedicated to the teaching of essential skills followed by laboratory-based research projects. Upon successful completion of their MRes studies, students will continue to study for a 3 year PhD working with their chosen supervisor within the William Harvey Research Institute or wider medical school and college.

FUNDING

Successful applicants will receive an award covering tuition fees and a bursary at the applicable BHF rates (currently £22,278 for the first year).

There are currently no residency requirements for BHF studentships (see BHF website for more detailed information, https://www.bhf.org.uk/research/information-for-researchers/what-we-fund/phd-studentships

All students will be based in the attractive Charterhouse Square campus in the City of London with access to exceptional scientific and recreational facilities.

This training will be an invaluable foundation for individuals wishing to pursue a career in industry or academic research in the area of cardiovascular science.


For further information, please see our website: http://www.whri-bhf4yrphd.org

You can also contact the course co-ordinator: Prof Tim Warner,


As the first year of the course requires attendance on our MRes course please make your application online to the following programme:

http://www.qmul.ac.uk/postgraduate/taught/coursefinder/courses/121370.html

Please indicate on your application form under the Funding section (page 6) that you are applying for funding under ‘WHRI/BHF’.

The closing date for applications is Tuesday 18th April 2017

Read less
Cardiovascular disease is projected to remain the single leading cause of death over the next two decades, accountable for considerable disability and reduction in quality of life. Read more
Cardiovascular disease is projected to remain the single leading cause of death over the next two decades, accountable for considerable disability and reduction in quality of life. This Masters in Cardiovascular Sciences will include specialist training in the epidemiological nature of the disease, in combination with analysis of the cellular and molecular mechanisms that underlie its development.

Why this programme

-This course is provided by world leading experts in the BHF Glasgow Cardiovascular Research Centre. Cardiovascular Medicine at Glasgow is rated in the UK’s top ten and has a research grant income of £50M.
-Research for the MSc in Cardiovascular Sciences is supported by the BHF, MRC, Wellcome Trust, CSO, BBSRC and the European Commission.
-We have exciting scholarship opportunities.
-You will undertake a research project with an established cardiovascular researcher.
-This course is provided by world leading experts in the BHF Glasgow Cardiovascular Research Centre.
-The Cardiovascular Science Degree has a modular based course containing taught elements, tutorial sessions, critical review sessions and hands-on demonstration of current laboratory techniques.
-Tailored laboratory projects to suit student’s expertise and interests.
-If you are a science or medicine graduate looking to gain knowledge and new skills in the field of cardiovascular medicine, this programme is designed for you.
-You will have the opportunity to acquire and integrate a knowledge base in many new techniques for research in clinical cardiovascular medicine, including established risk factor measurements, novel imaging techniques, gene therapy, stem cells and the evolving genomics and proteomics fields.
-Cardiovascular science is a priority area for research funding, in recognition of the fact that new, improved treatments are required and that these can only arise through better understanding of its development. The University of Glasgow has a world-renowned reputation for expertise in cardiovascular research and education.
-Research is supported by the BHF, MRC, Wellcome Trust, CSO, BBSRC and the European Commission.
-Opportunities exist at Glasgow University to continue to PhD Studies.

Programme structure

In addition to the taught courses you will take part in student-led critical review sessions where you will provide a critical appraisal of a scientific research paper taken from current literature.

You will also take part in an introductory session on how to review a scientific paper, designed to give you experience of reading, summarising and presenting the findings of a scientific publication in a critical manner.

Core courses
-Clinical aspects of cardiovascular disease
-Established and novel research techniques
-Evidence based research in medicine
-Medical statistics
-Topics in therapeutics - general topics and cardiovascular disease
-Topics in therapeutics - commonly used drugs
-Pharmacogenomic and molecular medicine - fundamentals of molecular medicine
-Pharmacogenomic and molecular medicine - applied pharamcogenomics and molecular medicine

Optional courses
-Basic science diabetes and vascular disease
-Clinical and research audit

Career prospects

Successful graduates will emerge equipped with the skills necessary for a career in the highly competitive field of cardiovascular research. Career opportunities include education, clinical translational cardiovascular research, public health bodies or commercial industrial research in the field of cardiovascular medicine. Students who have completed course are currently employed in NHS, PhD programmes, academia and industry.

Read less
This Masters in Translational Medicine is the first year of a British Heart Foundation 4-Year PhD studentship. IT IS NOT OFFERED as an individual programme of study. Read more
This Masters in Translational Medicine is the first year of a British Heart Foundation 4-Year PhD studentship: IT IS NOT OFFERED as an individual programme of study.

Why this programme

-The programme will provide you with the skills needed to assess critically recent advances in biology relevant to human disease.
-It covers the areas of cardiovascular medicine, inflammation and immunology, neuroscience, mathematics, bioinformatics and cell biology, and advances in fundamental biomedical science relevant to integrative mammalian biology.
-You will be taught the administrative procedures and ethical and project planning requirements for applying for statutory licenses (personal and project) for animal work as well as ethical aspects of gene and cell therapy.
-The University is one of the few centres in the UK offering BHF 4-Year PhD studentships. Successful applicants accepted into the programme will be fully funded. For more information, see: BHF 4 year PhD programme.

Programme structure

The programme is part of a 4-year PhD with the first year being an MRes. The MRes is made up of three individual 12-week research placements after an intense two-week induction. Each project will be based on different themes with three different supervisors. Years 2-4 make up the PhD portion of the programme.

Induction
You will be required to attend an in-depth introductory programme, which will provide training in research ethics, statistics, project design, literature review and laboratory safety techniques.

Placements
The induction is followed by three individual research placements. These are at the core of this programme, providing three separate projects to allow you to define your areas of interest for your PhD studies. Each placement is a 12-week project and this will be with three different principal supervisors. You will be encouraged to choose placements beyond your undergraduate subject experience to maximise your exposure to new techniques and science. Supervisors are drawn from a wide range of academic disciplines, such as medicine, biomedical and life sciences, mathematics, electronics and electrical engineering, and veterinary medicine.

Career prospects

You will be taught the practical laboratory skills needed to pursue a career in basic translational medicine and applied science through research projects. After successfully completing year 1, you will be awarded an MRes, and progress to a PhD. The programme produces fully trained scientists ready for progression to academic or industrial careers.

Read less
Lead academic 2016. Dr Martin Nicklin. This flexible course focuses on the molecular and genetic factors of human diseases. Understanding those factors is crucial to the development of therapies. Read more

About the course

Lead academic 2016: Dr Martin Nicklin

This flexible course focuses on the molecular and genetic factors of human diseases. Understanding those factors is crucial to the development of therapies. Core modules cover the fundamentals. You choose specialist modules from the pathway that interests you most. We also give you practical lab training to prepare you for your research project. The project is five months of invaluable laboratory experience: planning, carrying out, recording and reporting your own research.

Recent graduates work in academic research science, pharmaceuticals and the biotech industry.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

From Genome to Gene Function; Human Gene Bioinformatics; Research Literature Review; Human Disease Genetics; Modulating Immunity; Laboratory Practice and Statistics.
You choose: six optional pathways

1. Genetic Mechanisms pathway:


Modelling Protein Interactions; Gene Networks: Models and Functions.

2. Microbes and Infection pathway:


Virulence Mechanisms of Viruses, Fungi and Protozoa; Mechanisms of Bacterial Pathogenicity; Characterisation of Bacterial Virulence Determinants.

3. Experimental Medicine pathway:


Molecular and Cellular Basis of Disease; Model Systems in Research; Novel Therapies.

4. Cancer pathway:

Molecular Basis of Tumourigenesis and Metastasis; Molecular Techniques in Cancer Research; Molecular Approaches to Cancer Diagnosis and Treatment.

5. Cardiovascular pathway:

Vascular Cell Biology; Experimental Models of Vascular Disease; Vascular Disease Therapy and Clinical Practice.

6. Clinical Applications pathway:

Apply directly to this pathway. Available only to medical graduates. Students are recruited to a specialist clinical team and pursue the taught programme (1-5) related to the attachment. They are then attached to a clinical team for 20 weeks, either for a clinical research project or for clinical observations. See website for more detail and current attachments.

Teaching and assessment

Lectures, seminars, tutorials, laboratory demonstrations, computer practicals and student presentations. Assessment is continuous. Most modules are assessed by written assignments and coursework, although there are some written exams. Two modules are assessed by verbal presentations.

Your research project is assessed by a thesis, possibly with a viva.

Read less
Lead academic 2016. Dr Peter Grabowski. Accredited by the Association for Nutrition. This course will give you a good understanding of the fundamentals of human nutrition. Read more

About the course

Lead academic 2016: Dr Peter Grabowski
Accredited by the Association for Nutrition

This course will give you a good understanding of the fundamentals of human nutrition. You’ll learn research skills and techniques. It will prepare you for a career in research, the food industry, academia, community nutrition and nutrition consultancy.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

Epidemiology and Community Nutrition; Nutritional Biochemistry; Molecular Nutrition; Nutritional Physiology; Nutrition for Developing Countries; Clinical Nutrition. The Diploma follows the same taught structure as the masters and students must complete all modules.

Masters students complete an original Research Project and a literature review. PG Diploma students complete a library-based research project.

Teaching and assessment

You’ll learn through lectures and seminars, practical sessions, workshops, group debates, self-study units and individual presentations. The taught modules include research skills tutorials. You’ll work independently on the research and library projects, with guidance from an academic.

You’re assessed on written reports, laboratory practical classes and group and individual assignments, which may involve oral presentations. There is a written examination at the end of each module with an original research project for the MSc and a library-based project for the Diploma. The research project is assessed by a written dissertation and an oral presentation. The library project is assessed by written dissertation.

Read less
Lead academic 2016. Dr Charlotte Codina. This is a part-time distance learning course for practising Orthoptists and other eye care professionals. Read more

About the course

Lead academic 2016: Dr Charlotte Codina

This is a part-time distance learning course for practising Orthoptists and other eye care professionals. It’s taught online so you can study for a higher degree without having to leave your current post.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Course content

Concomitance and Incomitance in Depth or Stroke; Insight into Disease or Low Vision; Eye to Vision; Research Methods (option for Postgraduate Diploma); Dissertation (Postgraduate Diploma only); Research Project (MMedSci only).

Teaching

Teaching is by distance learning, supported 
by four weekend residentials.

Read less
Lead academic 2016. Dr Jonathan Wood. Translational Neuroscience looks at how laboratory research relating to brain structure and function informs the development of new therapies for diseases of the nervous system. Read more

About the course

Lead academic 2016: Dr Jonathan Wood

Translational Neuroscience looks at how laboratory research relating to brain structure and function informs the development of new therapies for diseases of the nervous system.

Combining the research strengths from the Faculty of Medicine, Dentistry and Health and the Faculty of Science, leading international basic and clinical scientists will provide an innovative and progressive programme. You’ll study basic neurobiology and molecular biology through to neuroimaging and applied clinical practice.

The MSc will provide you with up-to-date knowledge of advances in the field, research experience with internationally renowned research groups and transferable skills to provide a springboard for your future career.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

Molecular Neuroscience; CNS Structure and Function; Genetics and Modelling of Neurodegenerative Disease; Mechanisms of Neurodegenerative Disease; Applied Neuroimaging; Neurophysiology and Psychiatry. A 20 week Research Project will be undertaken in the Summer Term.

Examples of optional modules

Option one: Literature Review and Critical Analysis of Science; Ethics and Public Awareness of Science.

Option two: Computational Neuroscience: Neurons and Neuronal Codes; Mathematical Modelling and Research Skills.

Teaching and assessment

Lectures, seminars, tutorials, laboratory demonstrations, computer practicals and student-led group work. Assessment is primarily by written assignments and coursework, although there are some written examinations and oral presentations. The research project is assessed by a thesis 
and presentation.

Read less
Lead academic 2016. Dr Trevor Austin. This course provides the opportunity for doctors with a developing interest in medical education to explore the theoretical principles underpinning medical education and consider how this relates to their practice. Read more

About the course

Lead academic 2016: Dr Trevor Austin

This course provides the opportunity for doctors with a developing interest in medical education to explore the theoretical principles underpinning medical education and consider how this relates to their practice.

The course aims to develop medical educators who are informed and understand the core principles and issues in medical education.

It is coordinated through the Academic Unit of Medical Education and delivered in collaboration with the Academic Unit of Primary Medical Care.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

The Principles of Learning; Teaching and Learning in the Clinical Setting; Curriculum Design, Implementation and Monitoring; Assessing the Learner.

Teaching and assessment

Seminars, workshops, practical activities 
and tutorial group discussions. Each module is assessed via a reflective portfolio.
You can go on to study for a PG Diploma or Masters in Teaching and Learning in Higher Education.

Read less
Lead academic 2016. Dr Thomas Jenkins. Read more

About the course

Lead academic 2016: Dr Thomas Jenkins

This course, offering practical clinical exposure, enables you to apply the fundamentals of neuroanatomy and physiology to better understand the clinical features of patients with neurological disease and learn how insights from the laboratory are translated into benefits for patients.

In small group teaching sessions and clinics, you’ll have the opportunity to apply theoretical knowledge to patients with neurological disease. In the final term you may take a research option (Route A) or a Clinical Neurology Experiential Learning Module (Route B).

Students opting for Route A will choose from a range of clinical research projects based at SITraN or within the Royal Hallamshire Hospital. Students opting for Route B will attend additional specialist clinics with patient-centred teaching from experts in the field who will emphasise recent advances in clinical practice.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

During the autumn and spring terms, you’ll take four taught modules worth 30 credits each: Applied Neuroanatomy and Clinical Neuroscience; Cerebrovascular Disease and Disorders of Consciousness; Neuroinflammation (CNS) and diseases of the PNS; Neurodegeneration.

Complementing the taught modules is a comprehensive programme of clinical demonstrations, integrated learning activities, themed clinics and neuro-anatomy dissection (autumn term) where students will be able to apply the taught theory and further substantiate their understanding of the topic area being studied.

Examples of optional modules

Either a research project (Route A) or a Clinical Neurology Experiential Learning Module (CNELM) (Route B) worth 60 credits is completed in the summer term.

Teaching and assessment

The taught component of the MSc is delivered through lectures, seminars, tutorials, practical demonstrations and student-led group work. Each of the 30-credit modules is assessed using a formal examination (15 credits) and ongoing assessments during the module (15 credits), including essays and oral presentations.

The research project (Route A) is assessed from the written dissertation and research presentation examination. The CNELM (Route B) is assessed by means of a portfolio (30 credits) and a 6,000-word dissertation (30 credits) on an aspect of the sub-speciality chosen for the module. The portfolio will contain a reflective log, anonymised details of cases seen, and work-based assessments.

Read less
Lead academic 2016. Dr Carolyn Staton. Translational oncology is the process by which laboratory research informs the development of new treatments for cancer. Read more

About the course

Lead academic 2016: Dr Carolyn Staton

Translational oncology is the process by which laboratory research informs the development of new treatments for cancer. It’s a rapidly advancing field with massive therapeutic and commercial potential.

Our MSc(Res) is taught by leading research scientists and clinicians. The course offers training in the theory and practice of translational oncology and provides you with transferable skills for your future career. It includes a six-month research project for which you’ll work as part of a team within the oncology research community at Sheffield.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

Cellular and Molecular Basis of Cancer; Cancer Epidemiology; Cancer Diagnosis and Treatment; Tumour Microenvironment; Cancer Technologies and Clinical Research; Literature Review; Research Project.

Teaching and assessment

Teaching is by lectures, seminars, class discussions/workshops, interactive tutorials, practical demonstrations, student-led group work and patient encounters.

Alongside the taught modules students attend the Sheffield Cancer Research seminars which include question and answer sessions with the experts, and a series of professional skills development tutorials.

Assessment is by a combination of written seen exams, oral and poster presentations, case studies and written assignments. The research project is assessed by an oral presentation and a written dissertation.

Read less
Lead academic 2016. Dr Mark Fenwick. The course provides training in reproductive and developmental medicine for scientists, clinicians and others, for instance ethical advisers or lawyers looking to specialise. Read more

About the course

Lead academic 2016: Dr Mark Fenwick

The course provides training in reproductive and developmental medicine for scientists, clinicians and others, for instance ethical advisers or lawyers looking to specialise. It’s a good platform for a research career or a career in clinical laboratory training for IVF or embryology.

Through the taught modules you’ll develop a solid understanding of reproductive science relevant to clinical applications. We cover the breadth of processes from gonadal development and production of gametes through to pregnancy and parturition. Each module is taught by leading scientists and clinicians in that field.

You’ll also have the opportunity to learn about the ethical issues and international laws regulating reproductive medicine. Finally, you’ll undertake a research project to develop a depth of knowledge in a specialist topic.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

Research Skills in Reproductive Medicine; Gonads to Gametes: fundamentals of reproduction; Fertilisation, Implantation and Embryology; Fetal Development, Pregnancy and Parturition; Reproductive Technology and Infertility; Law, Ethics and Policy in Reproductive Medicine.

Read less
Lead academic 2016. Professor Ilaria Bellantuono. This unique one-year programme is run by the Centre for Integrated research into Musculoskeletal Ageing (CIMA) and funded by Medical Research Council and Arthritis Research UK. Read more

About the course

Lead academic 2016: Professor Ilaria Bellantuono

This unique one-year programme is run by the Centre for Integrated research into Musculoskeletal Ageing (CIMA) and funded by Medical Research Council and Arthritis Research UK. CIMA is a collaboration between the University of Sheffield, the University of Liverpool and the University of Newcastle.

The course provides multidisciplinary research training on the musculoskeletal system as a whole in the context of ageing. The training has a strong focus on employability. Topics range from basic science to clinical aspects, from in vitro to in vivo models, and from the latest advances in the assessment of the musculoskeletal system to lifestyle interventions.

Although you’ll be based at Sheffield, the course involves exchange visits to the other universities.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

Principles of Human Nutrition: relevance to ageing; Biology of Ageing; Biology and Assessment of Skeletal Health; Muscle in the Integrated Musculoskeletal System; Research Project.

Teaching and assessment

The taught element is online and may be taken remotely at home (live interactions will take place between 9–5pm UK time). This includes live lectures, wikis and blogs, and tutor support.

The research project involves hands-on laboratory work. It includes placements with all three universities.

You’ll also have the chance to take part in seminars, workshops and networking events delivered by industrial partners. You’ll be assessed through exams, coursework, a mock grant proposal and a research project dissertation.

Read less
Lead academic 2016. Dr Julie Simpson. This course combines taught modules on the fundamental aspects of the major nervous system diseases, with the development of practical laboratory skills encompassing histopathology, molecular pathology and microscopy. Read more

About the course

Lead academic 2016: Dr Julie Simpson

This course combines taught modules on the fundamental aspects of the major nervous system diseases, with the development of practical laboratory skills encompassing histopathology, molecular pathology and microscopy.

You’ll be trained to use tissue samples in neuroscience research aimed at understanding the pathophysiology of nervous system diseases and you’ll discover how laboratory breakthroughs have been translated into clinical benefits.

The course will be taught by scientists and consultant neuropathologists who are experts in their fields. You’ll get the opportunity to carry out neuroanatomy dissection and you’ll work with leading research groups during the research project.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

Neuro-anatomy; Basic Principles of Pathology and Histopathology; Molecular Neuroscience; Ethics and Public Awareness of Science; Pathology and Modelling of Neurodegenerative Disease; Neuroinflammation, Neuro-Oncology and Neurovascular Disease; Literature Review and Critical Analysis of Science; Research Project.

Teaching and assessment

The taught component of the MSc is delivered through practical laboratory classes and demonstrations, lectures, seminars and tutorials. Assessment is primarily through written assignments and coursework, along with practical laboratory assessments, spotter exams, presentations and debates. The research project is assessed by a thesis and oral presentation.

Read less
Lead academics 2016. Dr Janine Kirby and Professor Winston Hide. This course draws on expertise from three University faculties – Medicine, Dentistry and Health, Science and Social Sciences – and the Sheffield Genetics Diagnostic Service (Sheffield Children’s Hospital NHS Foundation Trust). Read more

About the course

Lead academics 2016: Dr Janine Kirby and Professor Winston Hide

This course draws on expertise from three University faculties – Medicine, Dentistry and Health, Science and Social Sciences – and the Sheffield Genetics Diagnostic Service (Sheffield Children’s Hospital NHS Foundation Trust). It’s aimed at professionals and students from health care and science backgrounds. The syllabus, as outlined by Health Education England (HEE), covers the scope and application of genomics in medicine and biomedical research as well as the ethical, social and legal issues relating to this field.

The course is taught by academics, scientists and clinicians. Techniques range from lectures and tutorials to laboratory workshops and online learning packages. You’ll get first-hand experience of hypothesis-driven research by carrying our your own project in Genomic Medicine.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

An Introduction to Human Genetics and Genomics; Omics Techniques and Application to Genomic Medicine; Genomics of Common and Rare Inherited Diseases; Molecular Pathology of Cancer; Pharmacogenomics and Stratified Health Care; Application of Genomics in Infectious Disease; Bioinformatics and Interpretation in Genomics; Ethical, Legal and Social Issues in Applied Genomics.

Examples of optional modules

Option one: Research Project.

Option two: Literature Review; Workplace-Based Genomic Medicine; Professional and Research Skills.

Teaching and assessment

The MSc Genomic Medicine offers a wide range of delivery methods for providing theoretical knowledge, from lectures, laboratory sessions and tutorials to computer-based analysis workshops as well as the opportunity to gain input from internationally renowned experts in their fields. The inclusion of problem-based learning is embedded within the course and features in combinations of online and in person interpretive class formats. Tutorials, seminars and individual meetings with staff provide opportunities for discussion and feedback. Each of the departments delivering the programme fosters an environment that provides many opportunities for individual and group learning. However, the primary responsibility for learning lies with the student, who must be organised and self-motivated to make the most of the programme.

PG Diploma and PG Certificate options available as entry options both full time and part time

Read less
Physicians Associates (PAs) are health professionals who see patients and address their health needs whilst working under the supervision of doctors. Read more

About the course

Physicians Associates (PAs) are health professionals who see patients and address their health needs whilst working under the supervision of doctors. Qualified PAs have direct contact with patients in their assessment: taking histories, performing examination, making diagnoses and considering management plans, supported by the new Faculty of Physician Associates.

The University has an excellent medical school and successful applicants to the course will benefit from our world-class facilities and expertise.

You will acquire a firm grounding in the knowledge and skills of generalist medical care to equip you to support doctors in ‘first contact’ health care, either in general practices or in hospitals. The modular course will be delivered in a systems-based, integrated way which places the patient at the centre.

The University is working closely with both Acute Trusts (hospitals) and Clinical Commissioning Groups (primary care) so that our graduates have the right qualities to meet the needs of potential employers and the public as a whole.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X