• Queen Mary University of London Featured Masters Courses
  • Arden University Featured Masters Courses
  • Loughborough University London Featured Masters Courses
  • Loughborough University Featured Masters Courses
  • Durham University Featured Masters Courses
  • Ulster University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Leeds Featured Masters Courses
King’s College London Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Cass Business School Featured Masters Courses
FindA University Ltd Featured Masters Courses
"basin" AND "modelling"×
0 miles

Masters Degrees (Basin Modelling)

  • "basin" AND "modelling" ×
  • clear all
Showing 1 to 12 of 12
Order by 
This course is one of the premier international applied petroleum geoscience courses. Since the inception of the course in 1985 its graduates have an unparalleled employment record in the petroleum industry both in the UK and worldwide. Read more

This course is one of the premier international applied petroleum geoscience courses. Since the inception of the course in 1985 its graduates have an unparalleled employment record in the petroleum industry both in the UK and worldwide. In addition our graduates are highly sought after for further PhD research in the petroleum geosciences.

● Recognised by NERC - 5 MSc studentships each year covering fees, fieldwork and maintenance.

● Recognised by Industry - Industry scholarships

● We offer highly focused teaching and training by internationally recognised academic experts as well as by visiting staff from the petroleum industry.

The course covers the applications of basin dynamics and evolution to hydrocarbon exploration and production. The course is modular in form providing intensive learning and training in geophysics, tectonics and structural geology, sequence stratigraphy and sedimentology, hydrocarbon systems, reservoir geology, remote sensing and applied geological fieldwork.

The MSc course provides ‘state of the art’ training in -

● 3D seismic interpretation and 3D visualization;

● Fault analysis and fault-sealing;

● Seismic sequence stratigraphy;

● Applied sedimentology;

● Well log analysis;

● Remote sensing analysis of satellite and radar imagery;

● Analysis of gravity and magnetic data;

● Numerical modelling of sedimentation and tectonics;

● Applied structural geology;

● Geological Fieldwork.

● Transferable skills learned during the course include

project planning, presentation techniques, report writing and compilation, team working skills, spreadsheet and statistical analyses, GIS methods as well as graphics and visualization techniques.

● The full time MSc course runs for 50 weeks. The first half comprises one and two week course modules as well as group projects and fieldwork. The second half of the MSc course consists of an individual research project usually carried out in conjunction with the petroleum industry or related institutions such as international geological surveys.

● Part time study over 24 months is also available

● Each year independent projects are arranged with new data sets from industry – some students work in the offices of the company whereas other may use our excellent in-house facilities. All independent projects are supervised by faculty members with additional industry supervision where appropriate.

Facilities include –

● Dedicated Modern Teaching Laboratories

● 14 Dual Screen Unix Seismic Workstations

● PC and Macintosh Workstations

● Internationally Recognised Structural Modelling Laboratories

● Advanced Sedimentological Laboratories

The MSc course also greatly benefits from dynamic interaction with internationally recognised research groups within the Geology Department including –

● Project EAGLE – Evolution of the African and Arabian rift system – Professor Cindy Ebinger

● Southeast Asia Research Group – Tectonic Evolution and Basin Development in SE Asia – Professor Robert Hall

● Numerical Modelling Research Group – Numerical Modelling of Tectonics and Sedimentation – Dr Dave Waltham

● Fault Dynamics Research Group – Dynamics of Fault Systems in Sedimentary Basins – Professor Ken McClay

The 2005 MSc graduates went on to employment with Shell, BP, Amerada Hess, Gaz de France, OMV (Austria), Star Energy, First Africa Oil, Badley Ashton, ECL, PGS, Robertsons, PGL, Aceca, and to PhD research at Royal Holloway and Barcelona.

Since 2001, 85% of our graduates have gone in to work in the oil industry, 10% into geological research and 5% into environmental/engineering jobs.

Accommodation is available on campus in en-suite study bedrooms grouped in flats of eight, each with a communal kitchen and dining space.

Subsistence Costs ~£9,000 pa (including Hall of Residence fees of c. £4,500 for a full year)

APPLICATIONS can be made on line at http://www.rhul.ac.uk/Registry/Admissions/applyonline.html



Read less
The only applied structural geology Masters in the UK. Providing you with advanced training in the practical application of structural geology, preparing you either for employment in the hydrocarbon or mining industries or for postgraduate study (PhD). Read more

The only applied structural geology Masters in the UK. Providing you with advanced training in the practical application of structural geology, preparing you either for employment in the hydrocarbon or mining industries or for postgraduate study (PhD).

You’ll gain a skillset combining advanced structural techniques and interpreting seismic data, an understanding of structural systems in time and space, and an appreciation of both the geological and geophysical constraints of seismic interpretation and model building.

This will enable you to use a combination of structural and geophysical techniques to solve geological problems. As a capable seismic interpreter you’ll be able to contribute in an industry role from day one.

Our teaching is research led, with direct links to active applied research. You’ll be taught by a range of research and industry experts, as well as through industry-led workshops. Strong industry links are a feature of this course.

Course highlights:

  • The only applied structural geology Masters in the UK, offering you a route to both industry or a PhD.
  • Unlike other petroleum/ ore geoscience courses in the UK, which only provide you with broad training in all aspects of petroleum and ore geology. At Leeds, apply your skills, tools, and knowledge in structural geology and tectonics to exploration settings, datasets, and problems.
  • A key focus of this Masters is on understanding structural evolution in various settings and the use of 3D and 4D thinking in geological contexts. Skills that are essential for your employment in industry.
  • Gain an international standard of Masters qualification in 12 months rather than 24. We deliver focused, advanced teaching linked to a research project (in contrast to the more research-oriented US Masters).
  • Undertake free fieldwork in the UK and EU that is directly linked to your classroom learning.
  • Choose from hydrocarbon and mining module options, depending on your interests.
  • Access high-spec computing facilities and industry-standard software.
  • Produce an industry or research focused dissertation in your final year.

Fieldwork

The following fieldwork to the UK and overseas is free, and forms an integral part of the course. It is directly linked to learning outcomes in the classroom.

  • An introductory field day to Ingleton, North Yorkshire.
  • A 6-day trip to the South West of England. Consider both extensional and compressional tectonics, basin-scale to fault to reservoir scale deformation, fault seal analysis, kinematic and geometric fault evolution, restorations, and 3D fault analysis.
  • A 12-day trip to the Central Spanish Pyrenees. This trip serves as a summary trip where you will pull together elements from the entire course. Consider regional scale orogenic deformation through to basin scale to fracture scale. And the influence of sediment-structure interaction in basin evolution, and tie outcrop scale observations with seismic examples.

Course content

Develop personal skills and a professionalism that will make you employable, as well as increasing your knowledge and technical ability.

You will take 9 months of taught classes, followed by approximately 3 months of independent research and dissertation writing in association with industry or research collaborators.

Carry-out free fieldwork, which forms an integral part of the course, and is directly linked to learning outcomes in the classroom. Besides local visits, there is a 6-day trip to South West England and a 12-day visit to the Spanish Pyrenees.

Some of the modules you will study are spread over 2 semesters, while most are short and intensive. They are devised to develop your advanced understanding of key topics (including large scale tectonics, basin evolution and reservoir scale deformation) and your technical ability through the use of industry-leading software.

Begin, by reviewing the fundamentals of structural geology, maps, and mathematics before moving onto the more advanced modules.

You’ll receive advanced training in structural geology and tectonics, in geological model construction, and the practical application of structural geology. And gain training in interpreting seismic data and the principals underlying data acquisition and processing.

You’ll also undertake professional and research level training in structural geology and basin evolution from regional, to basin, to reservoir/deposit scale.

In semester 2, you can choose from hydrocarbon or mining modules.

Course structure

Compulsory modules

  • Structural Geology Independent Project 60 credits
  • Applied Geophysical Methods 15 credits
  • Integrated Sub Surface Analysis 30 credits
  • Applied Structural Models 20 credits
  • Geomechanics 10 credits
  • Applied Geodynamics and Basin Evolution 15 credits
  • 3D Structure: Techniques and Visualisation 15 credits

For more information on typical modules, read Structural Geology with Geophysics MSc in the course catalogue

Learning and teaching

Teaching is varied, with some of your modules being very practical based e.g. fieldwork, presentations, learning new software. While other methods are tutorial or lecture based. You will also have the opportunity to work individually or as a group. Regardless of method, you will be supported by substantial online learning material.

Facilities

The School of Earth and Environment’s £23m building gives you access to world-class research, teaching and laboratory facilities. As a Masters student, you will have access to a 3D visualisation suite, and to your own dedicated computer facilities, which runs industry standard software.

Industry standard software:

  • 2D and 3D seismic interpretation is done via Kingdom Suite software.
  • Geocellular modelling is delivered on the Petrel platform.
  • Structural modelling and restoration is learnt using Midland Valley's 2DMove software.
  • PCs run a range of structural modelling, GIS and 3D visualisation programmes.
  • If you choose the optional Ore Deposits module, train in Leapfrog 3D deposit modeller.

Assessment

Given the variety of learning outcomes and teaching methods, you will be assessed differently between modules but generally assessed on a combination of presentations, practicals and/or formal examinations.

Industry links

We have very strong links with industry, which you’ll benefit from throughout the year. This includes the provision of scholarships, data for dissertation projects, teaching of short courses and free licenses for industry standard software.



Read less
An on-line version of a well established programme with an international reputation for excellence in the petroleum industry. Primarily suited to hydrocarbon industry professionals who wish to further develop knowledge and skills whilst continuing full-time work. Read more
• An on-line version of a well established programme with an international reputation for excellence in the petroleum industry.
• Primarily suited to hydrocarbon industry professionals who wish to further develop knowledge and skills whilst continuing full-time work.
• Comprehensive learning materials delivered via a dedicated web portal: video clips, animations, audio-visual presentations, fully-illustrated manuals, self-assessment quizzes, exercises and computer-based practicals.
• Field trips and intensive study seminars held at various locations worldwide.
• An option to be awarded a Postgraduate Diploma (PGDip) in Petroleum Geoscience is available if a project is not undertaken.

Hydrocarbons are a precious resource. Finding new reserves is becoming ever more challenging and the enhanced recovery of reserves from existing fields is becoming increasingly important. Well trained Petroleum Geoscientists with the ability to integrate geological and geophysical data, and to apply it on a variety of scales, have a vital role to play. The MSc in Petroleum Geoscience provides graduates with training in the practical and technical skills required to address a range of questions, from understanding the distribution of hydrocarbons in sedimentary basins to quantifying the complex structural, stratigraphic and sedimentological architecture of individual reservoirs.

Studying Petroleum Geoscience at Royal Holloway
• The programme has the same curriculum as the MSc Petroleum Geoscience offered in London at the Royal Holloway campus and at Tyumen Oil and Gas State University in Russia.
• The department is ranked highly in national research assessment exercises as having a research output of international excellence.
• The programme has been developed by and is supported by a team of 13 academic staff, all active researchers and tutors in the field of Petroleum Geoscience.
• Tutorial support provided for each module by Royal Holloway staff
• With experience of supervising hundreds of independent projects for masters students, Royal Holloway staff can provide expert advice for the planning of projects to be carried out using industry data.

Course Content
The programme comprises six taught modules (MSc and PGDip) and an Independent Research Project (MSc only).
Geodynamics of Sedimentary Basins
Tectonics and geodynamic evolution of sedimentary basins, subsidence analysis, thermal histories.
Geophysical Analysis
Seismic acquisition and processing, interpretation techniques, seismic mapping, attribute analysis and reservoir characterisation.
Structural Analysis
Structural interpretation of seismic data, fault and fracture analysis.
Sedimentology and Stratigraphy
Siliciclastic and carbonate depositional systems, facies analysis, seismic and sequence stratigraphy, and palaeogeographic analysis and mapping.
Reservoir Geoscience
Well log analysis, rock mechanics, reservoir geology and geophysics, reservoir modelling.
Petroleum Systems
Petroleum systems, basin modelling, play analysis, petroleum economics.
Independent Project (MSc only)
An independent research project focussed on some aspect of Petroleum Geoscience, designed to meet individual training needs & carried out in association with industry.

Tuition and Assessment
Fully illustrated course materials provided through a web portal, with interactive coursework exercises and on-line tutorials. A two-week residential study period with team projects and incorporating a field course forms part of the programme. On-line quizzes and tutor-supported coursework provide feedback on learning; assessment is by coursework exercises submitted on-line and written examinations for each module.

Applications http://www.londonexternal.ac.uk/geoscience

Read less
This is one of the premier international applied MSc courses with a focus on petroleum exploration and production. It is run in parallel with the Basin Evolution and Dynamics MSc in Petroleum Geocsience but with a greater emphasis on tectonics and structural geology. Read more
This is one of the premier international applied MSc courses with a focus on petroleum exploration and production. It is run in parallel with the Basin Evolution and Dynamics MSc in Petroleum Geocsience but with a greater emphasis on tectonics and structural geology. In addition to successful employment in the international petroleum industry graduates from this course are employed in the international mining industry as well as being highly sought after for further PhD research in the geosciences.

● Recognised by Industry - Industry scholarships

● We offer highly focused teaching and training by internationally recognised academic experts as well as by visiting staff from the petroleum and remote sensing industries.

The course covers the applications of tectonics and structural geology to hydrocarbon exploration and production as well as to applied structural geology research in different terranes. The course is modular in form providing intensive learning and training in tectonics, applied structural geology, seismic interpretation of structural styles, tectonostratigraphic analysis, section balancing and reconstruction, remote sensing, crustal fluids and hydrocarbon systems, reservoir geology, and applied geological fieldwork.

The MSc course provides ‘state of the art’ training in –
● Plate tectonics and terrane analysis;
● Applied structural analysis;
● 3D seismic interpretation and 3D visualization of structural styles;
● Fault analysis and fault-sealing;
● Tectonostratigraphic analysis;
● Scaled analogue modelling;
● Numerical modelling of structures;
● Remote sensing analysis of satellite and radar imagery;
● Analysis of gravity and magnetic data;
● Section balancing and reconstruction;
● Applied structural fieldwork.

● Transferable skills learned during the course include
project planning, presentation techniques, report writing and compilation, team working skills, spreadsheet and statistical analyses, GIS methods as well as graphics and visualization techniques.

● The full time MSc course runs for 50 weeks. The first half comprises one and two week course modules as well as group projects and fieldwork. The second half of the MSc course consists of an individual research project usually carried out in conjunction with the petroleum industry or related institutions such as international geological surveys.

● Part time study over 24 months is also available

● Each year independent projects are arranged with new data sets from industry – some students work in the offices of the company whereas other may use our excellent in-house facilities. All independent projects are supervised by faculty members with additional industry supervision where appropriate.

Facilities include –
● Dedicated Modern Teaching Laboratories
● Internationally Recognised Structural Modelling Laboratories
● 14 Dual Screen Unix Seismic Workstations
● PC and Macintosh Workstations
● Advanced Sedimentological Laboratories

The MSc course also greatly benefits from dynamic interaction with internationally recognised research groups within the Geology Department including –

● Project EAGLE – Evolution of the African and Arabian rift system – Professor Cindy Ebinger
● Southeast Asia Research Group – tectonic evolution and basin development in SE Asia – Professor Robert Hall
● Numerical Modelling Research Group – Numerical modelling of tectonics and sedimentation – Dr Dave Waltham
● Fault Dynamics Research Group – Dynamics of Fault Systems in Sedimentary Basins – Professor Ken McClay

Our Tectonics MSc graduates have gained employment with Shell, BP, ECL, PGS, Sipetrol, PGL, Codelco, and to PhD research in a range of universities including Trieste, Barcelona, and Ulster universities.
Since 2001, 85% of our Petroleum Geosciences MSc graduates have gone in to work in the oil industry, 10% into geological research and 5% into environmental/engineering jobs.

Accommodation is available on campus in en-suite study bedrooms grouped in flats of eight, each with a communal kitchen and dining space.

Subsistence Costs ~£9,000 pa (including Hall of Residence fees of c. £4,500 for a full year)

APPLICATIONS can be made on line at http://www.rhul.ac.uk/Registry/Admissions/applyonline.html

Read less
This Course is Open for 2016-17 entry. Royal Holloway is one of the leading international centres for petroleum geoscience training and research. Read more
This Course is Open for 2016-17 entry.

Royal Holloway is one of the leading international centres for petroleum geoscience training and research. Our MSc Petroleum Geoscience course was established in 1985 and, with over 600 graduates from 32 countries, it is recognised around the world as one of the premier training courses for people starting out on careers in the hydrocarbon industry.

Our excellent links with the international oil industry, combined with high quality teaching and research facilities make the Royal Holloway MSc an ideal option if you are a recent graduate looking for a focused, vocational training course, or if you are an early career professional wishing to enhance your career development.

You can choose between several course modules to specialise your training in topics focussing on basin evolution or structural analysis and tectonics.

You will be joining a department where the Research Excellence Framework (REF) reported that 94% of research has been classified as 4* world leading and 3* internationally excellent in terms of originality, significance and rigour. By this criterion, Earth Sciences is 2nd place among UK universities. You will become part of a vibrant international graduate school, fully integrated into the research culture of the department.

See the website https://www.royalholloway.ac.uk/earthsciences/coursefinder/mscpetroleumgeoscience.aspx

Why choose this course?

- There is a huge demand for well qualified petroleum geoscientists. Companies worldwide are facing up to the challenge of replacing an ageing workforce with young graduates who can apply their knowledge and quickly learn from more experienced colleagues.

- We are one of the world leaders in the field of petroleum geoscience. Our MSc is recognised as a premier training course that will provide you with the practical and technical skills required to meet the challenges facing the hydrocarbon industry.

- You will develop the ability to integrate geological and geophysical data, and to apply your knowledge on a variety of scales, so that you can address a range of questions; from understanding the distribution of hydrocarbons in sedimentary basins, to quantifying the complex structural, stratigraphic and sedimentological architecture of individual reservoirs.

- We have excellent links with the international oil industry, including an Advisory Board with representatives from 14 multinational companies, which ensures that our teaching is up-to-date, relevant and will prepare you for a career in the industry.

- An MSc in Petroleum Geoscience from Royal Holloway also provides you with the geological and transferable skills to work in other Earth Science-related fields, and prepares you for further postgraduate study.

- This is a flexible course, allowing you study full-time, part-time or through distance learning. If you opt to study part-time you will have also have the option of studying through sandwich mode (complete terms in separate years).

- Field work in the UK and Spain is an important part of the programme and is fully integrated with the course units.

- The Department receives a number of studentships from industry sponsors and from the Research Council which are available to UK and EU applicants. Everyone who applies for a place on this course is automatically considered for these studentships, and no further application is required.

Department research and industry highlights

Our research follows four main themes:

- Geodynamics and Sedimentary Systems
The interaction between tectonic, volcanic and sedimentary processes to generate surface and sub-surface architectures. With a diverse range of expertise, researchers integrate geophysics, structural geology, sedimentology and modelling to improve our understanding of a wide range of geodynamic settings. Our interests range from the evolution of rift systems and passive margins to the tectonics of mountain belts and include an emphasis on sediment dynamics in all settings. Much of the research in this theme is funded by industry.

- Physics & Chemistry of Earth Processes
Quantitative characterization of Physical and Chemical processes within the Earth. This group plays a role in many research activities across the department and helps to ensure a rigorous academic approach. Research applications in geochemistry stem from development of world-class geochemical techniques in radiogenic (Sr-Nd-Pb-Hf-U-Th) and stable (C,H,O,N,S) isotopes, based on strategic partnerships with instrument manufacturers. In geophysics we have extensive expertise in both exploration geophysics and global geophysics. However, the group's main contribution extends well outside the traditional scope of geophysics and geochemistry into areas such as sedimentology, tectonics, palaeontology, oceans and atmospheres, the link between magmatism and tectonics, and the nature of the shallow mantle. In addition to making wide use of geochemical and geophysical data, we have developed a wide variety of forward and inverse modelling techniques (mathematical, numerical and laboratory-analogue).

- Global Environmental Change
Key transitions in Earth history including modern global change. A wide range of proxies and finger-printing techniques are employed to focus on issues of global change such as methane as a greenhouse gas, coastal and estuarine dynamics, modern and ancient sedimentary processes, Phanerozoic environmental change and associated biotic responses, the biogeochemistry of Archaean ecosystems and evolution of life through geologic time. In addition, we pioneer new research on the impact of ice sheet contamination and associated chemistry on climate change.

- Natural Hazards
Integrating several strands of current research within the department, this newly developing theme investigates a range of natural hazards, including intraplate earthquakes, subduction zones, volcanoes, landslides and associated tsunami, as well as environmental hazards. It utilises field studies, remote sensing data, numerical modelling, geophysical data from sites around the globe.

On completion of the course graduates will have:

- an understanding of the processes that control the structural and stratigraphic architecture of sedimentary basins

- an understanding of petroleum systems and the controls on the distribution of hydrocarbons and other fluids in sedimentary basins

- an understanding of the properties of hydrocarbon reservoirs, and the implications of this for hydrocarbon production and field development

- the ability to use seismic, well log, core and remotely sensed data to evaluate sedimentary basins, hydrocarbon prospects and hydrocarbon fields.

Assessment

The taught course units are assessed by a combination of written exams and course work. Each of the six units comprises 10% of the total assessment for the MSc course. The remaining 40% of the assessment comes from the Independent Research Project.

Employability & career opportunities

Our graduates are highly employable; 92% remain in petroleum geosciences and related fields after graduation – approximately 75% entering the industry and 20% continuing in research (mainly as PhD students).

Graduates find employment in a wide range of companies, from multinationals (such as Shell, BP, Statoil, BG, Centrica, GDF-Suez), large independents (e.g. Tullow, Hess), small independent companies (e.g. Volantis), and a wide range of consultancy companies (e.g. Fugro-Roberston, RPS, Equipoise, IHS, Midland Valley)

How to apply

Applications for entry to our campus based full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
This programme provides broad knowledge of marine geological and geophysical techniques and advanced training in marine geophysical exploration techniques, mathematical modelling, geodynamics, coastal processes, micropalaeontology or palaeoceanographic expertise. Read more

Summary

This programme provides broad knowledge of marine geological and geophysical techniques and advanced training in marine geophysical exploration techniques, mathematical modelling, geodynamics, coastal processes, micropalaeontology or palaeoceanographic expertise.

You will gain hands-on research experience through an advanced project with leading international researchers. The MRes focuses less on taught modules and more on the research project (about two-thirds of the year).

Modules

Semester one:

Core modules: Contemporary Topics in Ocean and Earth Science; Introduction to Marine Geology; plus one from Introduction to Chemical Oceanography or Introduction to Physical Oceanography

Optional modules: Applied and Marine Geophysics; Basin Analysis; Coastal Sediment Dynamics; Computational Data Analysis for Geophysicists and Ocean Scientists; Geodynamics and Solid Earth Geophysics; Microfossils, Environments and Time

Semester two:

Optional modules: Applied Coastal Sediment Dynamics; Ecological Modelling; Global Climate Cycles;
High-resolution Marine Geophysics

Plus research project

Visit our website for further information...



Read less
Together with its partners TU Dresden and University of Lisbon, UNESCO-IHE conducts the Joint Erasmus Mundus Programme in Groundwater and Global Change - Impacts and Adaptation (GroundwatCH). Read more
Together with its partners TU Dresden and University of Lisbon, UNESCO-IHE conducts the Joint Erasmus Mundus Programme in Groundwater and Global Change - Impacts and Adaptation (GroundwatCH).

Groundwater and Global Change - Impacts and Adaptation seeks to offer a distinctive curriculum built on the cornerstones of hydro(geo)logy, climatology, impacts and adaptation, within a framework of human pressures, global change and feedbacks, around the following academic focal areas:

General Hydrogeology
Groundwater Data Collection
Interpretation and Modelling
Climate Processes and Modelling
Integrated River Basin and Water Resource Management
Groundwater and Environmental Impacts
Groundwater, Society and Policies
Groundwater, Climate and Global Change Impacts and Adaptation

With this curriculum GroundwatCH aims to address the current gaps in higher education with regard to the understanding of the interactions between groundwater, surface water, climate and global change, and how we need to consider and can benefit from these interactions when dealing with adaptation.

Read less
The Geoscience MSc at UCL aims to provide a set of programmes that suit each student's aspirations, background and experience. The MSc offers several pathways to ensure a coherent programme of study. Read more
The Geoscience MSc at UCL aims to provide a set of programmes that suit each student's aspirations, background and experience. The MSc offers several pathways to ensure a coherent programme of study: Earth Systems Science; Palaeobiology; Earth and Planetary Physics; Environment; and Hydrogeology.

Degree information

The programme aims to integrate theoretical studies with essential practical skills in the Earth sciences, both in the field and in the laboratory. Students develop the ability to work on group projects, prepare written reports, acquire oral skills and gain training in the methods of scientific research.

Students undertake modules to the value of 180 credits. The programme consists of two core modules (30 credits), six optional modules (90 credits) and a research dissertation (60 credits).

Core modules
-Research Methods
-Project Proposal

Optional modules
-Earth and Planetary Systems Science
-Earth and Planetary Materials
-Melting and Volcanism
-Physical Volcanology and Volcanic Hazard
-Earthquake Seismology & Earthquake Hazard
-Tectonic Geomorphology
-Palaeoceanography
-Palaeoclimatology
-Biodiversity and Macroevolutionary Patterns
-Deep Earth and Planetary Modelling
-Geodynamics and Global Tectonics
-Crustal Dynamics, Mountain Building and Basin Analysis

Relevant modules can also be chosen from:
-UCL Geography

Dissertation/report
All MSc students undertake an independent research project which culminates in a dissertation of approximately 10,000–12,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials, and laboratory and fieldwork exercises. Student performance is assessed through coursework, written assignments, unseen written examination and the dissertation.

Careers

First destinations of recent graduates include:
-Neftex Petroleum Consultants Ltd: Geologist
-TWP Architects and Surveyors: Geotechnical Surveyor
-UCL Earth Sciences Rock and Ice Physics Laboratory: Research Assistant
-UCL: Research Degree, Earth Sciences

Employability
MSc Geoscience students have gone on to pursue careers in many varied areas, such as planning and surveying, governmental organisations, academic research.

Why study this degree at UCL?

UCL Earth Sciences is engaged in world-class research into the processes at work on and within the Earth and planets.

Graduate students benefit from our lively and welcoming environment and world-class facilities, which include the UK's only NASA Regional Planetary Image Facility and access to the University of London Observatory in north London.

The department also hosts the Aon Benfield UCL Hazard Research Centre, Europe's leading multidisciplinary hazard research centre, and engages in extensive collaborative work with the Royal Institution and the Natural History Museum.

Read less
Are you interested in working on solutions for these and other environmental issues? The Wageningen University Master Earth & Environment was born from the necessity of helping the next generations of scientists find solutions for the issues confronting the way we look after our planet, now and in the future. Read more

MSc Earth and Environment

Are you interested in working on solutions for these and other environmental issues? The Wageningen University Master Earth & Environment was born from the necessity of helping the next generations of scientists find solutions for the issues confronting the way we look after our planet, now and in the future. Within the programme you can specialise in Hydrology and Water Resources, Meteorology and Air Quality, Biology and Chemistry of Soil and Water or Soil Geography and Earth Surface Dynamics.

Programme summary

Planet Earth is a complex, interactive and fascinating system. Protected by a thin layer of atmosphere, it provides all the essentials needed to sustain life and support living organisms. Natural processes and human needs often clash, leading to a wide range of environmental issues. Water scarcity and quality, soil degradation , food supply , loss of biodiversity, vulnerability to severe weather, and climate change are just a few examples of key issues that need to be addressed urgently.

As a Wageningen University geoscientist, you study Planet Earth and its ability to sustain life. Using tools from physics, chemistry, biology and mathematics, you build a quantitative understanding of the composition, structures and processes of the Earth and its atmosphere; as well as its resources and the influence of human activity. Thus, you have an important role to play in improving natural resource management and in removing obstacles to sustainable development.

Your study of the Earth system largely focuses on gaining an understanding of the interdependent physical, chemical and biological processes, and developing models that describe these processes on relevant scales. You develop scenarios that describe expected local, regional and/or global changes and the time scale on which they will occur. The Wageningen MEE focuses on the Earth’s ‘Critical Zone’ -including the atmospheric boundary layer, where flows of energy and matter determine the conditions for sustaining life; hence its name: Earth and Environment.

Specialisations

• Hydrology and Water Resources
The focus of this specialisation is to study the effects of climate change and other influences on the water balance of catchments to support optimal land management when dealing with hydrological extremes.

• Meteorology and Air Quality
Would you like to contribute to further understanding of atmospheric processes and their relevance for weather and climate? In this specialisation you learn about physical-chemical processes, the composition of the atmosphere and the exchange between the atmosphere and earth's surface and meteorology.

• Biology and Chemistry of Soil and Water
This specialisation allows you to develop an in-depth understanding of chemical and biological processes and their interactions in soils and natural waters, and their role in the functioning of terrestrial and aquatic ecosystems in a world that faces increasing anthropogenic pressures. You learn how these insights can contribute to develop effective strategies for the preservation and restoration of soil and water quality, biodiversity, and the functioning of natural ecosystems and the services they provide.

• Soil Geography and Earth Surface Dynamics
This specialisation allows you to explore the spatial and temporal processes that are active in soils, landscapes and the wider earth system. It uses an integrative approach that combines biophysical and human elements to gain insight in past, present and future system dynamics.

The combination of specific discipline training and the Earth System approach prepares you for working on the scientific and societal questions of the future. You can also choose from a selection of elective courses, and we also offer a special variant in preparation for a PhD.

Your future career

The MSc Earth and Environment programme offers our graduate scientists excellent opportunities to develop their career in research or as a science professional at universities, research institutes and consultancies. Our graduates can be found all over the world, working as meteorologists, hydrologists, water quality scientists or soil scientists, to name but a few disciplines.

Are you interested in working on solutions for these and other environmental issues? The master programme was born from the necessity of helping the next generations of scientists find solutions for the issues confronting the way we look after our planet, now and in the future.

Alumnus Nick Gorski.
NIck Gorski came from Canada to Wageningen because of the excellent reputation the Netherlands has in the field of water. He conducted two thesis research projects during his time here. The first dealt with the fluxes of sediment-bound contaminants in a river basin in southwestern Turkey. The second involved the development of a new modelling methodology for heterogeneous flow and solute transport in unsaturated soils. “I had the opportunity to take classes, do field work and research in other countries. It was an excellent way to put theory into practice.” After graduating Nick went on to work for the KWR Watercycle Research Institute in Nieuwegein, the Netherlands.

Related programmes:
MSc Biology
MSc Climate Studies
MSc Environmental Sciences
MSc International Land and Water Management
MSc Plant Sciences.

Read less
This Master of Science programme, taught entirely in English, aims at preparing high level professionals that can deal with a variety of problems common to all development and resource exploitation plans. Read more

Mission and Goals

This Master of Science programme, taught entirely in English, aims at preparing high level professionals that can deal with a variety of problems common to all development and resource exploitation plans. Their expertise will range from the knowledge of modelling of land and ecological systems, to acquisition and analysis of relevant data, geo-referencing and geo-processing, to pollution abatement technologies and reclamation plans. Students following this programme may either specialize in Geomatics or Environmental Engineering with particular emphasis on sustainable development and water resources.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/environmental-and-geomatic-engineering/

Career Opportunities

In addition to the classic professional opportunities for Environmental and Land Planning Engineering, studying Geomatic Engineering in depth allows to work in national or local bodies involved in cartography, land registries and collection of land data or in the aerospace and ICT industries involved in the management of territorial databases. On the other side, graduates with a deeper knowledge in Environmental Engineering can also found opportunities in the field of international relations, large multinational corporations and in non-governmental organizations.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Environmental_and_Geomatic_Engineering_02.pdf
This Master of Science programme, taught entirely in English, aims at preparing high level professionals that can deal with a variety of problems common to all development and resource exploitation plans. Their expertise will range from the knowledge of modeling of land and ecological systems, to acquisition and analysis of relevant data, geo-referencing and geo-processing, to pollution abatement technologies and reclamation plans. Students will increase their understanding of the functioning of ecosystems, learn how to assess the local and global environmental impacts of human activities, and apply advanced methods, techniques and models to identify, describe, quantify and develop integrated systems to support environmental decision-makers. The programme is organized around two main topics: Geomatics or Environmental Engineering, with particular emphasis on sustainable development and water resources. The first specialization aims at creating experts in surveying, monitoring, representing the land shape and processes in terms of information systems, while the second provides the future engineers with a clear understanding of sustainability issues and of their application in the current professional activities.

The programme is taught in English.

Subjects

- Mandatory courses:
Modeling and Simulation, Statistical Analysis of Environmental Data, Natural Resources Management, Environmental and Natural Resources Economy and Geographic Information Systems

Eligible courses:
1. Geomatics
Remote Sensing, Image Analysis, Satellite Navigation and Monitoring; Geophysical Prospecting;

2. Environmental Engineering
Hydraulic Engineering and River Basin Reclamation, Environmental Technology, Engineering and Cooperation for Global Development and Energy for sustainable Development.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/environmental-and-geomatic-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/environmental-and-geomatic-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The Master’s specialisation in Transnational Ecosystem-based Water Management (TWM) is partly taught at Radboud University and partly at the University of Duisburg-Essen in Germany. Read more
The Master’s specialisation in Transnational Ecosystem-based Water Management (TWM) is partly taught at Radboud University and partly at the University of Duisburg-Essen in Germany. At each University you will take different courses concering for example Water governance and Spatial Planning.

-Compulsory courses at Radboud University

Orientation in Biology and Environmental Sciences (3 EC)
Ecological and Environmental Concepts (3 EC)
Management of Ecosystems (3 EC)
Biodiversity and Ecological Assessment (3 EC)
Ecological and Environmental Modelling (3 EC)
Water Governance and Spatial Planning (3 EC)
Integrated Water Management (3 EC)
Environmental Economics for Water Management (3 EC)
Social Aspects of Water Management (3 EC)
Philosophy of water management (3 EC)

-Compulsory courses at the University of Duisburg-Essen

Hydroclimatology and Sustainable Water Management (2 EC)
Hydrogeology and Application (4 EC)
Hydraulics and Sediment Transport (3 EC)
Ecology and Protection of Freshwater Ecosystems and Aquatic Organisms (5 EC)
Field Trips (2 EC)
Water-borne Diseases (2 EC)
Basics in Hydraulic Planning and Facility Design (3 EC)
Waste Water Treatment (3 EC)
Flood Management (3 EC)
River Basin Management (3 EC)

Furthermore, you’ll profit from the expertise at two universities and become familiar with different cultures and research approaches. And after successful completion of the programme, you'll receive a German and a Dutch diploma. With that broad background, our graduates often find a job as manager or project leader, with an all-encompassing view in national or international water-related projects.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X