• University of York Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Coventry University Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Loughborough University Featured Masters Courses
"bacteria"×
0 miles

Masters Degrees (Bacteria)

  • "bacteria" ×
  • clear all
Showing 1 to 15 of 35
Order by 
The Molecular Life Sciences programme focuses on the molecular aspects of the fields of nutrition, health, nature and the living environment and works in close coordination with colleagues from different disciplines. Read more

MSc Molecular Life Sciences

The Molecular Life Sciences programme focuses on the molecular aspects of the fields of nutrition, health, nature and the living environment and works in close coordination with colleagues from different disciplines.

Programme summary

The Molecular Life Sciences programme focuses on molecules and their properties. It seeks to discover relationships between the physical and chemical properties of molecules, particularly the role of complex molecules in living systems. It is an interdisciplinary programme that combines chemistry, physics and biology. The aim of the programme is to enable students to conduct independent research at the interface of chemistry, biology and physics, or in an applied field such as medicine, the environment, food sciences or (bio) nanotechnology. The programme is tailormade and thesis-oriented, with the thesis being the culmination of the study.

Specialisations

Biological Chemistry
By combining the principles of chemistry, biochemistry, molecular biology, cell biology, microbiology, genetics and bioinformatics, this specialisation enables students to contribute new insights to the life sciences. Increasingly complex areas are studied, such as the molecular regulation of growth and cell differentiation, gene control during development and disease, and the transfer of genetic traits. Another important field is enzymology where enzyme mechanisms are studied with the aim of understanding and modifying their properties to make new compounds or biological membranes.

Physical Chemistry
This specialisation uses the most advanced technologies to focus on the chemical and physical properties of molecules and their behaviour in chemical and biochemical processes. The processes in nature are used as models for studying and synthesising new compounds with interesting chemical or physical properties for applications such as LCDs, biosensors or food science. Students can major in the fields of biophysics, organic chemistry or physical chemistry and colloid science.

Biomedical Research
This specialisation equips graduates with key skills in the natural sciences and enables them to use these skills as part of an integrated approach. Many recent breakthroughs in biomedical research have taken place at the interface between chemistry, biology and physics, so it is logical that many of our graduates enter careers in biomedical research. The explicit aim of this specialisation is to prepare students for careers at a medical research institute, academic hospital or a company in the pharmaceutical industry. As a result, students also complete their internships at such locations.

Physical Biology
Students in this specialisation learn to view biomolecules from a physical point of view. They use techniques in biophysics, physical chemistry, microspectroscopy and magnetic resonance (MRI) to contribute to areas such as cell-cell communication, transformation of light into chemical energy, and protein interactions. Students can major in fields such as biochemistry, biophysics, microbiology, molecular biology, plant physiology, physical chemistry and colloid science.

Your future career

By combining the power of chemistry, physics and biology, graduates are able to make a significant contribution to fundamental and/or applied research in fields such as (bio) nanotechnology, biotechnology, environmental research, biomedical research, nutrition and the food sciences. Our graduates enter careers at universities, research institutes and industrial laboratories. The first job for many of our graduates is a four year PhD project at a university or research institute. This is not only an excellent preparation for a research career, but it also prepares you for management positions. Others become science journalists, teachers or consultants in government or industry.

Project Flu Vaccination for bacteria.
Together with his colleagues of the Laboratory of Microbiology, professor John van der Oost unravelled part of the working of the immune systems of bacteria that had been infected by a virus. Theoretically, this knowledge allows for other bacteria to be protected against specific viruses and, thus, may be considered to be a flu vaccination for bacteria. Understanding this process in simple organisms on a molecular level, is the first step in revealing the mechanism of viral infection in the human body. This can be the starting point for a whole new line of medicines.

Related programmes:
MSc Biotechnology
MSc Food Technology
MSc Bioinformatics
MSc Nutrition and Health
MSc Plant Biotechnology
MSc Biology

Read less
Radboud University’s Master’s specialisation in Microbiology deals with the interface between fundamental biological and medical sciences. Read more
Radboud University’s Master’s specialisation in Microbiology deals with the interface between fundamental biological and medical sciences. It focuses on molecular, medical and environmental microbiology to improve our health and environment and provides in-depth insight into present-day microbial research in general and clinical microbiology.

The major topics of the Microbiology specialisation are:

Environmental microbiology and Biotechnology

Microorganisms can be used to break down environmental pollutants and toxic chemicals. Therefore microbiology has the potential to replace common energy-intensive chemical processes with more sustainable solutions. Radboud University collaborates closely with environmental scientists and industrial partners to create energy-efficient and environmentally friendly solutions for societal waste problems.

Immunology

Unfortunately some microorganisms make us ill. A better understanding of battle between our immune system and these microorganisms will lead to the development of improved vaccines.

Molecular Microbiology

The genome of a microorganism is a key factor in research, because it determines how the organisms interact with the host cell and how they cause diseases. Molecular Microbiology acts on the interface between microbiology, molecular biology and genetics and is fundamental for the development of novel antibiotics and improvement of vaccines against microorganisms.

Top research

The department of Microbiology at Radboud University has been bestowed with the most prestigious science prizes, including two ERC Advanced Grants, a Spinoza Prize, and two Gravitation Grants. Additionally, many of out students have been awarded prizes for best thesis, poster and paper. The department works at the forefront of environmental microbiology and is specialised in the discovery of ‘impossible’, new anaerobic micro-organisms. The laboratory is equipped with state-of-the-art bioreactors, electron microscopy, GC-MS, metagenomics, and metaproteomics facilities to grow and study micro-organisms that contribute to a better environment by consuming greenhouse gasses and nitrogenous pollutants.

Our approach to this field

- Research themes
The Master's specialisation Microbiology is mainly focused on research. You can choose one of the following themes as the subject of your research internship:

- Environmental Microbiology & Biotechnology
For students who are intrigued by questions like: How does life without oxygen work? How do global biogeochemical (nutrient) cycles govern the functioning of the Earth? Can we use microorganisms to create a more sustainable wastewater industry? How do microorganisms break down environmental pollutants and toxic chemicals?
You will do research at the interface between Microbiology, environmental sciences and biochemistry. The research questions cover several levels, from gaining fundamental understanding of energy metabolism of bacteria to their applications in wastewater treatment.
Societal relevance: Microbiology has the potential to replace common energy-intensive chemical processes by more sustainable solutions. Radboud University collaborates closely with environmental scientists, animal ecologists and industrial partners to create energy-efficient and environmentally friendly solutions for societal waste problems.

- Immunology
For students who are intrigued by questions like: Why do some bacteria make us ill whereas others do not? How do bacteria outsmart our immune system? What are the mechanisms of human defence against microorganisms?
You will do research at the interface between Microbiology, Immunology and Cell Biology, and can, for example, work on how microorganisms are recognised by the host defence system
Societal relevance: A better understanding of host defence will lead to the development of improved vaccines against microorganisms.

- Molecular Microbiology
For students who are intrigued by questions like: How are microorganisms able to persist inside the human body and how do they cause diseases? What does gene regulation tell us about their pathogenic capabilities? Can microbial genomes help us determine how microorganisms interact with human host cells?
You will do research at the interface between Microbiology, molecular biology and genetics, and can, for example, work on functional gene analyses by mutagenesis studies and on the interaction between epithelial cells and pathogenic bacteria.
Societal relevance: Understanding host-pathogen interactions is fundamental for the development of novel antibiotics and improvement of vaccines. Radboudumc collaborates with public health institutes – such as the RIVM (National Institute of Public Health) – and with industrial partners.

- Personal tutor
Our top scientists are looking forward to guiding you during a challenging and inspiring scientific journey. This programme offers you many opportunities to follow your own interests under the excellent supervision of a personal tutor. This allows you to specialise in a field of personal interest.

- The Nijmegen approach
The first thing you will notice as you enter our Faculty of Science is the open atmosphere. This is reflected by the light and transparent building and the open minded spirit of the people working, exploring and studying there. It is no wonder students from all over the world have been attracted to Nijmegen. You study in small groups, with direct and open contact with members of the staff. In addition, Nijmegen has excellent student facilities, such as high-tech laboratories, libraries and study ‘landscapes'.

Studying by the ‘Nijmegen approach' is a way of living. We will equip you with tools which are valuable for the rest of your life. You will be challenged to become aware of your intrinsic motivation. In other words, what is your passion in life? With this question in mind we will guide you to translate your passion into a personalised Master's in Biology.

See the website http://www.ru.nl/masters/microbiology

Read less
Microbiology research covers organisms from prokaryotes to eukaryotes, including archaea, bacteria, yeasts, lichens and filamentous fungi. Read more
Microbiology research covers organisms from prokaryotes to eukaryotes, including archaea, bacteria, yeasts, lichens and filamentous fungi. Projects involve the use of physiological, genetic and genomic approaches to elucidate mechanisms of DNA recombination and repair (archaea and bacteria), of motility (bacteria), or of genome dynamics, sexual reproduction, biotechnological applications, or responses to environment and stress (fungi).

APPLICATION PROCEDURES
After identifying which Masters you wish to pursue please complete an on-line application form
https://pgapps.nottingham.ac.uk/
Mark clearly on this form your choice of course title, give a brief outline of your proposed research and follow the automated prompts to provide documentation. Once the School has your application and accompanying documents (eg referees reports, transcripts/certificates) your application will be matched to an appropriate academic supervisor and considered for an offer of admission.

COURSE STRUCTURE
The MRes degree course consists of two elements:
160 credits of assessed work. The assessed work will normally be based entirely on a research project and will be the equivalent of around 10 ½ months full-time research work. AND
20 credits of non-assessed generic training. Credits can be accumulated from any of the courses offered by the Graduate School. http://www.nottingham.ac.uk/gradschool/research-training/index.phtml The generic courses should be chosen by the student in consultation with the supervisor(s).

ASSESSMENT
The research project will normally be assessed by a dissertation of a maximum of 30,000 to 35,000 words, or equivalent as appropriate*. The examiners may if they so wish require the student to attend a viva.
*In consultation with the supervisor it maybe possible for students to elect to do a shorter research project and take a maximum of 40 credits of assessed modules.

The School of Biology will provide each postgraduate research student with a laptop for their exclusive use for the duration of their studies in the School.

SCHOLARSHIPS FOR INTERNATIONAL STUDENTS
The University of Nottingham is delighted to offer 10 x £1,000 tuition fee scholarships for students starting full-time study on one of the Masters by Research (MRes) programmes in the School of Biology at the University in September 2012. Applicants must be classified as ‘overseas’ students for fees purposes and be applying to study full time. All eligible students who have offers of admission before end of May 2012 will automatically be considered for the Scholarships. The scholarship winners will be notified in June 2012.

Read less
Genetics is the scientific study of inheritance and as such is a very broad research area. Within the School of Life Sciences, research in Genetics is focussed on the Institute of Genetics, most groups of which are located within the Queen's Medical Centre. Read more
Genetics is the scientific study of inheritance and as such is a very broad research area. Within the School of Life Sciences, research in Genetics is focussed on the Institute of Genetics, most groups of which are located within the Queen's Medical Centre. Projects in genetics cover a wide spectrum from population and evolutionary genetics through to molecular and biochemical genetics. They have the common aim of understanding how the genetic material achieves its functions and how it is passed down through generations. Some of the research involves classic genetic approaches including the isolation of mutants with specific phenotypes and the study of their behaviour in genetic crosses. These studies involve model organisms that include bacteria, yeasts and other fungi, Xenopus, zebrafish and mice. Other research in Genetics at Nottingham employs molecular techniques and bioinformatics to address fundamental evolutionary problems such as the evolution of AIDS viruses, the genetic changes that are associated with speciation and the evolution of transposable elements and genome structure. There also projects available in Genetics research groups who are focussing on the systems responsible for maintaining gene and genome integrity and securing accurate chromosome transmission in bacteria, archaea, yeast and vertebrates.

APPLICATION PROCEDURES

After identifying which Masters you wish to pursue please complete an on-line application form
https://pgapps.nottingham.ac.uk/
Mark clearly on this form your choice of course title, give a brief outline of your proposed research and follow the automated prompts to provide documentation. Once the School has your application and accompanying documents (eg referees reports, transcripts/certificates) your application will be matched to an appropriate academic supervisor and considered for an offer of admission.

COURSE STRUCTURE
The MRes degree course consists of two elements:
160 credits of assessed work. The assessed work will normally be based entirely on a research project and will be the equivalent of around 10 ½ months full-time research work. AND
20 credits of non-assessed generic training. Credits can be accumulated from any of the courses offered by the Graduate School. http://www.nottingham.ac.uk/gradschool/research-training/index.phtml The generic courses should be chosen by the student in consultation with the supervisor(s).

ASSESSMENT
The research project will normally be assessed by a dissertation of a maximum of 30,000 to 35,000 words, or equivalent as appropriate*. The examiners may if they so wish require the student to attend a viva.
*In consultation with the supervisor it maybe possible for students to elect to do a shorter research project and take a maximum of 40 credits of assessed modules.

The School of Life Sciences will provide each postgraduate research student with a laptop for their exclusive use for the duration of their studies in the School.

SCHOLARSHIPS FOR INTERNATIONAL STUDENTS
http://www.nottingham.ac.uk/studywithus/international-applicants/scholarships-fees-and-finance/scholarships/masters-scholarships.aspx

Read less
This is a full-time research-based postgraduate degree, run jointly by Imperial College London and the Natural History Museum, London. Read more
This is a full-time research-based postgraduate degree, run jointly by Imperial College London and the Natural History Museum, London.

OPEN DAY

visit the course pages for more information about the next Open Day at NHM on Wednesday 7 June 2017.

OUTLINE

Taxonomy and systematics provide the foundation for studying the great diversity of the living world. These fields are rapidly changing through new digital and molecular technologies. There is ever greater urgency for species identification and monitoring in virtually all the environmental sciences, and evolutionary ‘tree thinking’ is now applied widely in most areas of the life sciences. These courses provide in-depth training in the study of biodiversity based on the principles of phylogenetics, evolutionary biology, palaeobiology and taxonomy. The emphasis is on quantitative approaches and current methods in DNA-based phylogenetics, bioinformatics, and the use of digital collections.

LOCATION

The course is a collaboration of Imperial College London (Silwood Park) with the Natural History Museum. This provides an exciting scientific environment of two institutions at the forefront of taxonomic and evolutionary research.

[[SYLLABUS ]]
The MRes in Biosystematics features hands-on research projects that cover the main methodological approaches of modern biosystematics. After 6 weeks of general skills training, students will ‘rotate’ through three research groups each conducting a separate 14-week project in specimen-based phylogenetics, molecular systematics/genomics, and bioinformatics. The projects may be of the student’s own design. Students attend small group tutorials, lab meetings and research seminars.

TRANSFERABLE SKILLS]

The GSLSM (Graduate School of Life Sciences and Medicine) at Imperial College London provides regular workshops covering a wide range of transferable skills, and MRes students are encouraged to undertake at least four during the year. Topics include: Applied Writing Skills, Creativity and Ideas Generation, Writing for Publication, Introduction to Regression Modelling, Introduction to Statistical Thinking.

RECENT PROJECTS

MORPHOLOGICAL

The Natural History Museum’s Dorothea Bate Collection of dwarfed deer from Crete: adaptation and proportional size reduction in comparison with larger mainland species
Cambrian lobopodians and their position as stem-group taxa
Atlas of the Caecilian World: A Geometric Morphometric perspective
Tooth crown morphology in Caecilian amphibians
Morphometrics of centipede fangs: untapping a possible new source of character data for the Scolopendromorpha
Phylogeny of the Plusiinae (Lepidoptera: Noctuidae): Exploring conflict between larvae and adults
A comparison between species delineation based on DNA sequences and genital morphometrics in beetles (Coleoptera)

MOLECULAR

Geographical distribution of endemic scavenger water beetles (Hydrophilidae) on the island of Madagascar based on DNA sequence data
Cryptic diversity within Limacina retroversa and Heliconoides inflate
Phylogenetics of pteropods of the Southern Oceans
Molecular discrimination of the European Mesocestoides species complex
A molecular phylogeny of the monkey beetles (Coleoptera: Scarabaeidae: Hopliini)
The molecular evolution of the mimetic switch locus, H, in the Mocker Swallowtail Papilio dardanus Brown, 1776
Phylogenetic and functional diversity of the Sargasso Sea Metagenome

BIOINFORMATICS

A study into the relation between body size and environmental variables in South African Lizards
Cryptic diversity and the effect of alignment parameters on tree topology in the foraminifera
Delimiting evolutionary taxonomic units within the bacteria: 16S rRNA and the GMYC model
Testing the molecular clock hypothesis and estimating divergence times for the order Coleoptera
Taxon Sampling: A Comparison of Two Approaches
Investigating species concepts in bacteria: Fitting Campylobacter and Streptococcus MLST profiles to an infinite alleles model to test population structure
Assessing the mitochondrial molecular clock: the effect of data partitioning, taxon sampling and model selection

ON COMPLETION OF THE COURSE, THE STUDENTS WILL HAVE:

• a good understanding of the state of knowledge of the field, together with relevant practical experience, in three areas of biosystematic science in which he or she has expressed an interest;
• where applicable, the ability to contribute to the formulation and development of ideas underpinning potential PhD projects in areas of interest, and to make an informed decision on the choice of potential PhD projects;
• a broad appreciation of the scientific opportunities within the NHM and Imperial College;
• knowledge of a range of specific research techniques and professional and transferable skills.

FURTHER INFORMATION

Students are encouraged to view the NHM website for further information, and to contact the course administrator if they have any queries. Visits can be arranged to the NHM to meet the course organisers informally and to be given a tour of the facilities. Applications should be made online on the Imperial College London website.

Read less
Want to be at the forefront of scientific research into microbes and their role in developing new medicines, tackling diseases and improving the environment?. Read more
Want to be at the forefront of scientific research into microbes and their role in developing new medicines, tackling diseases and improving the environment?

Northumbria is the only UK university to offer Microbiology as an individual discipline, giving you the opportunity to develop specialist knowledge and break new ground as a scientist.

Gain hands-on, immersive experience, in high tech facilities, working alongside leading academics. Advance your expertise in clinical and environmental microbiology, studying how viral and bacterial diseases work and how you can use microbes to create new medicines.

You’ll cover microbial taxonomy, bioinformatics and molecular biology, using bacteria and viruses to develop new technologies and substances through data analysis and genome sequencing.

With opportunities to develop your theoretical knowledge, advance your own research, and increase your profile through articles and publications, this course equips you for further PhD study or for a career in microbiology.

This course is also available part time - for more information, please view the web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/microbiology-dtpmgy6/

Learn From The Best

Specialising in a wide range of research areas, from developing enzymes for pharmaceutical, chemical and food industries, to life in extreme environments, your academic team reflect the varied, multi-disciplinary nature of microbiological science.

Tutors are active researchers in their chosen specialisms and share their knowledge through teaching, scientific conferences and publications. Many have established relationships with professional microbiology organisations and lead policy and practice within the profession.

Combining industry experience and research expertise, you’ll benefit from their knowledge and real-life insights as you develop your skills and understanding.

Teaching And Assessment

You’ll enhance your knowledge of this broad subject matter through in-depth, research focused and real-life learning.

You’ll gain skills in applying tools, techniques and methods related to molecular biology, microbial culture and classification and in functional analysis of microbial and viral genomes.

With an emphasis on individual learning and problem solving using the latest research, as part of the course, you’ll undertake a research project based on a currently relevant question. This will allow you to develop your particular specialism or interest and focus your study on practical research.

You’ll be assessed on your ability to apply your subject knowledge to real-world challenges in the form of assessment tasks as well as being measured in key laboratory skills.

Module Overview
AP0700 - Graduate Science Research Methods (Core, 20 Credits)
AP0701 - Molecular Biology (Core, 20 Credits)
AP0702 - Bioinformatics (Core, 20 Credits)
AP0703 - Subject Exploration (Core, 20 Credits)
AP0706 - Microbes and Disease (Core, 20 Credits)
AP0707 - Microbial Diversity (Core, 20 Credits)
AP0708 - Applied Sciences Research Project (Core, 60 Credits)

Learning Environment

You’ll get hands-on experience in our large, modern well-equipped laboratories with audio-visual facilities that help you observe, learn and question techniques and ideas.

High-tech wet and dry labs which are fully equipped for molecular biology manipulations are available to help you work on your own research projects.

While some modules are conventionally taught, you’ll benefit from a mixture of learning experiences including lectures, small group seminars and laboratory sessions, adding a practical edge to your theoretical understanding.

Research-Rich Learning

The internationally recognised and well-established group, led by Professor Iain Sutcliffe, apply scientific approaches to aspects of healthcare and extend understanding of diseases.

Research areas include:
-Bacterial cell envelope architecture and biosynthesis
-Control of parasitic arthropods
-Microbial diagnostics (in collaboration with Applied Chemistry)
-Microbial enzymes as biocatalysts (through our Nzomics Innovation Unit, in collaboration with Applied Chemistry)
-Molecular ecology and microbial community analysis in human health (COPD, cystic fibrosis and necrotising enterocolitis)
-Molecular ecology and microbial community analysis in the environment (Lake Suigetsu, Japan; Polar environments) and in agricultural management
-Genomics and proteomics of prokaryotes
-Novel antimicrobials (in collaboration with Applied Chemistry)
-Systematics and taxonomy of bacteria
-Virulence determinants in pathogenic streptococci

Microbiological and virological based techniques to study; virus-host interactions and phage genomics (through our Nu-omics). Research is funded by companies, charities and research council grants.

Give Your Career An Edge

This course has been designed to help you develop specific knowledge and practical skills in Microbiology based on work-related learning. Teaching and assessment throughout the course is based on problem solving linked to a practical approach to current research.

You’ll have opportunities for work-based learning and to be an ambassador for STEM activities, gaining valuable professional experience and applying your knowledge in real-world situations.

Your research project provides a chance to showcase your interests and ability to define, formulate and test a hypothesis through careful experimental design, method development, data capture and analysis and communicating your findings.

You’ll be able to demonstrate transferable skills valued by employers including critical thinking, working as part of a group, data mining and record keeping, alongside problem solving, independent learning, and communication with both technical and non-technical audiences.

Your Future

The MSc Microbiology course will support and inspire you to high achievement in employment or further education and research in your chosen specialism.

Building on your theoretical knowledge with practical and laboratory skills you’ll show that you can tackle complex problems with confidence, skill and maturity as you develop key strengths in critical thinking and expressing opinions based on evidence.

The practices and procedures of Microbiology and Virology, together with logical thinking, attention to detail and a questioning mind will equip you with skills suitable for a range of careers in human health and disease, environmental studies and industrial or biotechnical industries.

Read less
The taught Infection Biology MSc will help you to develop your knowledge and understanding of the molecular mechanisms by which bacteria, viruses and parasites cause disease in humans and in domesticated animals, and the immune responses generated by these hosts to such pathogens. Read more
The taught Infection Biology MSc will help you to develop your knowledge and understanding of the molecular mechanisms by which bacteria, viruses and parasites cause disease in humans and in domesticated animals, and the immune responses generated by these hosts to such pathogens. You can choose to specialise in virology, microbiology (bacteriology) or parasitology.

Why this programme

-This degree in Infection Biology allows you to study in an Institute housing two UK National centres of excellence, in Virology and Parasitology, and active in the Scottish Infection Research Network (SIRN), a key clinical focus on healthcare-related
-You will work in the laboratories of internationally recognized infection biology researchers, conducting high quality basic, translational and clinical science.
-We have exciting scholarship opportunities.
-This MSc in Infection Biology provides access to a combination of highly specialised equipment, unique in Scotland, including cutting edge in vitro and in vivo research facilities for biological imaging, high content screening microscopy , and a state of the art polyomics facility bringing together metabolomics, proteomics, genomics, transcriptomics, and integrations of data sets with bioinformatics.
-You can attend guest lectures and workshops from scientists and clinicians working in the pharmaceutical, diagnostic and biotechnology fields.
-You can carry out a research project in an internationally recognized centre of excellence, working with world-leading researchers in infection biology.
-This Infection Biology degree integrates infection biology with cutting edge molecular and cellular techniques.
-The MSc in Infection Bilogy offers breadth, covering bacteria, viruses and parasites.
-Students can opt to specialise in one of the three areas of infection biology, and will graduate with a named specialism e.g. MSc Infection Biology (Microbiology).
-Optional courses allow students to develop their interests: Technology transfer and commercialisation of bioscience research; Drug discovery; Diagnostic technologies and devices; Current trends and challenges in biomedical research and health
-We have excellent opportunities to engage with industrial and clinical scientists, with guest lecturers from the pharmaceutical industry, medical diagnostic laboratories and bioscience business.
-Students have the opportunity to carry out a research project in an internationally recognized centre of excellence, working with world-leading researchers in infection biology.

Programme structure

The MSc programme will consist of five taught courses and a project or dissertation, spread over 11-12 months. Three courses are compulsory, and two are chosen from a series of options.

The PGDip programme will consist of five taught courses, spread over 7-8 months, with three compulsary courses and two chosen from a series of options.

The PgCert programme consists one core taught course over 3-4 months.

Core Courses and Project
-Host-pathogen interactions and immune responses to infection
-Omic technologies for the biomedical sciences: from genomics to metabolomics
-Designing a research project: biomedical research methodology
-Infection Biology Research project (laboratory based or non-laboratory based, in Virology, Parasitology, or Microbiology)

Optional Courses
-Drug discovery
-Diagnostic technologies and devices
-Current trends and challenges in biomedical research and health
-Technology transfer and commercialisation of bioscience research

Teaching and Learning Methods
A variety of methods are used, including lectures, tutorials, workshops, laboratories and problem-based learning. These are supplemented by a wide range of course-specific electronic resources for additional learning and self assessment. As a result, you will develop a wide range of skills relevant to careers in infection biology research, diagnostics or drug development. These skills include team-working, data interpretation and experimental design. You will use the primary scientific literature as an information resource.

Electronic Resources
Our online resources were voted the best in the United Kingdom in the International Student Barometer in 2012, and include:
-A continually updated Moodle (virtual learning environment) with extensive additional teaching and self-assessment materials
-Over 35,000 online textbooks and e-journals available through the University library website, 24/7
-Academic databases of biological sciences and medicine
-Henry Stewart Talks - animated audio visual presentations by world leading experts covering many topics in infection biology

Career prospects

The University of Glasgow MSc in Infection Biology provides you with many career opportunities.

Research: About half of our MSc students enter a research career, mainly by undertaking further postgraduate research studies towards a PhD), or by working in research laboratories in clinical or academic settings, including national government laboratories.

Industry: Other students go on to work in the pharmaceutical, diagnostic or biotechnological industries.

Read less
The Department of Molecular Genetics is administered from the Medical Sciences Building and has nearly 100 faculty members whose labs are located within… Read more
The Department of Molecular Genetics is administered from the Medical Sciences Building and has nearly 100 faculty members whose labs are located within the Medical Science Building, the Best Institute, the Donnelly Centre for Cellular and Biomolecular Research, the FitzGerald Building, the Hospital for Sick Children, Mount Sinai Hospital, the Ontario Institute for Cancer Research, and Princess Margaret Hospital.

The Master of Science and Doctor of Philosophy programs in Molecular Genetics offer research training in a broad range of genetic systems from bacteria and viruses to humans. Research projects include DNA repair, recombination and segregation, transcription, RNA splicing and catalysis, regulation of gene expression, signal transduction, interactions of host cells with bacteria and viruses, developmental genetics of simple organisms (worms and fruit flies) as well as complex organisms (mice), molecular neurobiology, molecular immunology, cancer biology and virology, structural biology, and human genetics and gene therapy.

Read less
This course combines theoretical knowledge and practical training in the immunology of infectious diseases through comprehensive teaching and research methods. Read more
This course combines theoretical knowledge and practical training in the immunology of infectious diseases through comprehensive teaching and research methods. Students will gain specialised skills in applying scientific concepts, evaluating scientific data and carrying out modern immunological techniques. Students will benefit from the unique mix of immunology, vaccinology, molecular biology, virology, bacteriology, parasitology, mycology and clinical medicine at the School.

Infectious diseases represent an increasingly important cause of human morbidity and mortality throughout the world. Vaccine development is thus of great importance in terms of global health. In parallel with this growth, there has been a dramatic increase in studies to identify the innate, humoral or cellular immunological mechanisms which confer immunity to pathogenic viruses, bacteria, fungi and parasites. As a result, increasing numbers of scientists, clinicians and veterinarians wish to develop their knowledge and skills in these areas.

The flexible nature of the course allows students to focus on attaining a broader understanding of infectious disease through attending taught units. Students can also undertake an extended research project within groups led by experienced team leaders. Such projects can involve basic investigations of immune mechanisms or applied field based studies.

Graduates from this course go into research positions in academia and industry, and further training such as PhD study.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/iid_progspec.pdf)
- Intercalating this course (http://www.lshtm.ac.uk/study/intercalate)

Visit the website http://www.lshtm.ac.uk/study/masters/msiid.html

Objectives

By the end of this course students should be able to:

- demonstrate specialist knowledge and understanding of the basic principles of host immunity to infection against the diverse range of pathogens which confront human populations

- apply this specialist knowledge to a range of practical skills and techniques, in particular modern molecular and cellular techniques for assessing immune responses to pathogens

- critically assess, select and apply appropriate research methods to investigate basic immunological mechanisms and applied issues in the immunology of infection

- critically evaluate primary scientific data and the published scientific literature

- integrate and present key immunological concepts at an advanced level, both verbally and in written form

Structure

Term 1:
There is a one-week orientation period that includes an introduction to studying at the School, sessions on key computing and study skills and an introduction to major groups of pathogens, followed by two compulsory modules:

- Immunology of Infectious Diseases
- Analysis & Design of Research Studies

Sessions on basic computing, molecular biology and statistics are run throughout the term for all students.

Terms 2 and 3:
Students take a total of five study modules, one from each timetable slot (Slot 1, Slot 2 etc.). The list below shows recommended modules. There are other modules which may be taken only after consultation with the Course Directors.

*Recommended modules

- Slot 1:
Advanced Immunology 1 (compulsory)

- Slot 2:
Advanced Immunology 2 (compulsory)

- Slot 3:
Advanced Training in Molecular Biology*
Clinical Immunology*
Extended Project*
Basic Parasitology
Clinical Infectious Diseases 3: Bacterial & Viral Diseases & Community Health in Developing Countries

- Slot 4:
Extended Project*
Immunology of Parasitic Infection: Principles*
Molecular Biology Research Progress & Applications*
Clinical Infectious Diseases 4: Parasitic Diseases & Clinical Medicine
Epidemiology & Control of Communicable Diseases
Ethics, Public Health & Human Rights
Genetic Epidemiology

- Slot 5:
AIDS*
Antimicrobial Chemotherapy*
Extended Project*
Molecular Cell Biology & Infection*
Mycology*

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/tiid.html

Residential Field Trip

Towards the end of Term 1, students get the opportunity to hear about the latest, most exciting aspects of immunological research at the British Society of Immunology Congress. The cost is included in the £500 field trip fee.

Project Report

During the summer months (July - August), students complete a research project on an immunological subject, for submission by early September. Some of these projects may take place with collaborating scientists overseas or in other colleges or institutes in the UK. Students undertaking projects overseas will require additional funding of up to £1,500 to cover costs involved.

The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/msiid.html#sixth

Read less
This course provides comprehensive knowledge and practical training in the spread of microorganisms (predominantly bacterial and viral pathogens), disease causation and diagnosis and treatment of pathogens significant to public health. Read more
This course provides comprehensive knowledge and practical training in the spread of microorganisms (predominantly bacterial and viral pathogens), disease causation and diagnosis and treatment of pathogens significant to public health. The increasing incidence of microbial infections worldwide is being compounded by the rapid evolution of drug-resistant variants and opportunistic infections by other organisms. The course content reflects the increasing importance of genomics and molecular techniques in both diagnostics and the study of pathogenesis.

In response to a high level of student interest in viral infections, the School has decided to offer the opportunity for students who focus on viruses in their module and project choices to be awarded a Master's degree in Medical Microbiology (Virology). This choice will depend on the module selection of the individual student in Terms 2 and 3 and choice of project.

Graduates from this course move into global health careers related to medical microbiology in research or medical establishments and the pharmaceutical industry.

The Bo Drasar Prize is awarded annually for outstanding performance by a Medical Microbiology student. This prize is named after Professor Bohumil Drasar, the founder of the MSc Medical Microbiology course.

The Tsiquaye Prize is awarded annually for the best virology-based project report.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/mm_progspec.pdf)
- Intercalating this course (http://www.lshtm.ac.uk/study/intercalate)

Visit the website http://www.lshtm.ac.uk/study/masters/msmm.html

Objectives

By the end of the course students should be able to:

- demonstrate advanced knowledge and understanding of the nature of viruses, bacteria, parasites and fungi and basic criteria used in the classification/taxonomy of these micro-organisms

- explain the modes of transmission and the growth cycles of pathogenic micro-organisms

- demonstrate knowledge and understanding of the mechanisms of microbial pathogenesis and the outcomes of infections

- distinguish between and critically assess the classical and modern approaches to the development of therapeutic agents and vaccines for the prevention of human microbial diseases

- demonstrate knowledge of the laboratory diagnosis of microbial diseases and practical skills

- carry out a range of advanced skills and laboratory techniques, including the purification of isolated microbial pathogens, study of microbial growth cycles and analyses of their proteins and nucleic acids for downstream applications

- demonstrate research skills

Structure

Term 1:
There is a one-week orientation period that includes an introduction to studying at the School, sessions on key computing and study skills and course-specific sessions, followed by two compulsory modules:

- Bacteriology & Virology
- Analysis & Design of Research Studies

Recommended module: Molecular Biology

Sessions on basic computing, molecular biology and statistics are run throughout the term for all students.

Terms 2 and 3:
Students take a total of five modules, one from each timetable slot (Slot 1, Slot 2 etc.). The list below shows recommended modules. There are other modules that can be taken only after consultation with the Course Director.

- Slot 1:
Clinical Virology
Molecular Biology & Recombinant DNA Techniques

- Slot 2:
Clinical Bacteriology 1
Molecular Virology

- Slot 3:
Advanced Training in Molecular Biology
Basic Parasitology

- Slot 4:
Clincal Bacteriology 2
Molecular Biology Research Progress & Applications

- Slot 5:
Antimicrobial Chemotherapy
Molecular Cell Biology & Infection
Mycology
Pathogen Genomics

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/tmmi.html

Project Report

During the summer months (July - August), students complete a laboratory-based original research project on an aspect of a relevant organism, for submission by early September. Projects may take place within the School or with collaborating scientists in other colleges or institutes in the UK or overseas.

The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose

Course Accreditation

The Royal College of Pathologists accepts the course as part of the professional experience of both medical and non-medical candidates applying for membership. The course places particular emphasis on practical aspects of the subjects most relevant to current clinical laboratory practice and research.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/msmm.html#sixth

Read less
Research in this area will examine systems responsible for maintaining genome integrity and securing accurate chromosome transmission in bacteria, archaea, yeast and vertebrates. Read more
Research in this area will examine systems responsible for maintaining genome integrity and securing accurate chromosome transmission in bacteria, archaea, yeast and vertebrates. It will also examine the genetics and biochemistry of bacterial motility. Specific projects will focus on chromosome biology, the mechanics of homologous recombination and DNA repair, predatory activities of Bdellovibrio bacteriovorus. Telomere biology and genome dynamics are also major areas of interest.

APPLICATION PROCEDURES

After identifying which Masters you wish to pursue please complete an on-line application form
https://pgapps.nottingham.ac.uk/
Mark clearly on this form your choice of course title, give a brief outline of your proposed research and follow the automated prompts to provide documentation. Once the School has your application and accompanying documents (eg referees reports, transcripts/certificates) your application will be matched to an appropriate academic supervisor and considered for an offer of admission.

COURSE STRUCTURE
The MRes degree course consists of two elements:
160 credits of assessed work. The assessed work will normally be based entirely on a research project and will be the equivalent of around 10 ½ months research work. AND
20 credits of non-assessed generic training. Credits can be accumulated from any of the courses offered by the Graduate School. http://www.nottingham.ac.uk/gradschool/research-training/index.phtml The generic courses should be chosen by the student in consultation with the supervisor(s).

ASSESSMENT
The research project will normally be assessed by a dissertation of a maximum of 30,000 to 35,000 words, or equivalent as appropriate*. The examiners may if they so wish require the student to attend a viva.
*In consultation with the supervisor it maybe possible for students to elect to do a shorter research project and take a maximum of 40 credits of assessed modules.

The School of Life Sciences will provide each postgraduate research student with a laptop for their exclusive use for the duration of their studies in the School.

Read less
This programme focuses on interdisciplinary research in the field of innovation and usage of drugs, for example vaccines, gene therapeutics, medical nutrition and antibodies. Read more

DRUG INNOVATION: A UNIQUE PROGRAMME

This programme focuses on interdisciplinary research in the field of innovation and usage of drugs, for example vaccines, gene therapeutics, medical nutrition and antibodies.

Typical research questions addressed in the field of Drug Innovation include:
* How do we make new drugs against resistant microorganisms?
* Which proteins can we target for personalized cancer medicine?
* Can we differentiate stem cells by means of proteomics?
* How can we imprint the immune system to become tolerant?
* What is the connection between gut microbes and brains disease?
* Can we deliver proteins and gens to diseased cells, by learning from viruses and bacteria?
* How can we innovate and speed up the regulatory process of weighing benefit and risk?
* Which biomarkers predict for quality adjusted life years?

As a graduate you will be eligible for many PhD programmes and be able to contribute to drug innovation within research institutes, pharmaceutical and biotechnology companies or health care organisations.

Our programme offers a diverse suite of elective courses. This means you can concentrate on the topics of most interest to you.

Read less
The molecular approach to studying biological systems has underpinned huge advances in knowledge and promises much for the future in the understanding and application of biological principles. Read more
The molecular approach to studying biological systems has underpinned huge advances in knowledge and promises much for the future in the understanding and application of biological principles. At Nottingham we are using molecular approaches to study a wide range of model as well as innovative biological systems. Currently projects are available in research groupings that are investigating eukaryotic gene expression and vertebrate embryogenesis, including aspects of the development of the nervous system, germ cells and stem cell maturation, and the behaviour of cellular systems with respect to the many interactions of macromolecules within cells and their membranes. In addition there are projects to study in microbes the systems responsible for maintaining genome integrity and securing accurate chromosome transmission in bacteria, archaea and yeast, as well as the basis of bacterial motility. There are also projects concerned with the biology of fungi in relation to their stress responses and to their interactions with their environment in general, as well as with the use of fungi as cell factories for the production of proteins and pharmaceuticals. Finally there are projects in research groups studying ion channels, receptor-mediated carcinogenesis and ecotoxicology that use natural and synthetic toxins to dissect the properties of signalling molecules in nervous and muscle tissues and employ cutting-edge techniques to understand the molecular mechanisms underlying the actions of toxins and the mechanisms of disease.

APPLICATION PROCEDURES
After identifying which Masters you wish to pursue please complete an on-line application form
https://pgapps.nottingham.ac.uk/
Mark clearly on this form your choice of course title, give a brief outline of your proposed research and follow the automated prompts to provide documentation. Once the School has your application and accompanying documents (eg referees reports, transcripts/certificates) your application will be matched to an appropriate academic supervisor and considered for an offer of admission.

COURSE STRUCTURE
The MRes degree course consists of two elements:
160 credits of assessed work. The assessed work will normally be based entirely on a research project and will be the equivalent of around 10 ½ months full-time research work. AND
20 credits of non-assessed generic training. Credits can be accumulated from any of the courses offered by the Graduate School. http://www.nottingham.ac.uk/gradschool/research-training/index.phtml The generic courses should be chosen by the student in consultation with the supervisor(s).

ASSESSMENT
The research project will normally be assessed by a dissertation of a maximum of 30,000 to 35,000 words, or equivalent as appropriate*. The examiners may if they so wish require the student to attend a viva.
*In consultation with the supervisor it maybe possible for students to elect to do a shorter research project and take a maximum of 40 credits of assessed modules.

The School of Life Sciences will provide each postgraduate research student with a laptop for their exclusive use for the duration of their studies in the School.

SCHOLARSHIPS FOR INTERNATIONAL STUDENTS
http://www.nottingham.ac.uk/studywithus/international-applicants/scholarships-fees-and-finance/scholarships/masters-scholarships.aspx

Read less
Molecular Biology with Biotechnology (MSc). This taught MSc course in the School of Biological Sciences provides intensive training in this important area of Biology and is designed both for fresh graduates and for those wishing to develop and extend their expertise in this area. Read more
Molecular Biology with Biotechnology (MSc)

This taught MSc course in the School of Biological Sciences provides intensive training in this important area of Biology and is designed both for fresh graduates and for those wishing to develop and extend their expertise in this area. The course has a strong practical emphasis and will provide the advanced theoretical and practical background necessary for employment in the Biotechnology industry, as well as equipping students with the knowledge required to pursue advanced studies in this area.
Course structure

The course consists of a taught component and a Research project. During the taught phase of the degree, you will take modules in Marine Biotechnology, Molecular and Medical Laboratory Techniques, Techniques of Molecular Biology and Biotechnology; Systems Biology; Plant Biotechnology, Environmental Biotechnology and Medical Biotechnology.

Topics covered in these modules will include Agrobacterium Ti plasmid based plant transformation vectors and the development of transgenic crops; the use and interpretation of microarrays and proteome systems; the development of transgenic fish and the diagnosis of fish diseases using molecular markers; bioremediation, biomining and the use of bacteria to degrade novel organic pollutants; stem cell technologies and the diagnosis of genetic disease using single nucleotide polymorphisms. image of students in the labDuring this part of the course, you will also take part in intensive laboratory exercises designed to introduce you to essential techniques in molecular biology and biotechnology including nucleic acid and protein extraction, PCR and QTL analysis, northern, southern and western blotting etc. In addition, most of the taught theory modules will have an associated practical component. The Research project will take place during the summer and will be conducted under the direct supervision of one of the staff involved in teaching the course. Students will be able to choose their Research project from a wide range of topics which will be related to the taught material.

Career options

The 21st century post genomics era offers a wide range of job opportunities in the agricultural, medical, pharmaceutical, aquaculture, forensics and environmental science areas. The rapidly developing economies of China and India in particular have recognised the enormous opportunities offered by Biotechnology. Job openings in sales and marketing with companies who have a science base are also common. Some graduates will also choose to extend their knowledge base by undertaking PhD programmes in relevant areas.

Read less
This programme concentrates on understanding the molecular principles underlying the biology of microorganisms such as bacteria, viruses, fungi and yeasts. Read more
This programme concentrates on understanding the molecular principles underlying the biology of microorganisms such as bacteria, viruses, fungi and yeasts. In particular we study gene expression and regulation, gene transfer, genome structure, epidemiology, cell communication, and pathogenicity and virulence factors.

The MSc programmes in Biology & Biochemistry are designed for students who wish to specialise further in a particular field or wish to change direction from their first degree (in a related area).

If you already have extensive and relevant research experience and would like to specialise, you might consider an MRes programme (http://www.bath.ac.uk/science/graduate-school/taught-programmes/).

Why study Biology and Biochemistry with us?

- Biology & Biochemistry ranked 2nd in the Sunday Times University Guide 2013
- 90% of our research judged to be internationally recognised, excellent or world-leading
- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

What will I learn?

The aim of each of our MSc programmes in Biology and Biochemistry is to provide professional-level training that will develop highly skilled bioscientists with strong theoretical, research and transferable skills, all of which are necessary to work at the forefront of modern biosciences.

For further information please visit our department pages (http://www.bath.ac.uk/bio-sci/)

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa.

Recent employers include:

Morvus-Technology Ltd
Janssen-Cilag
Royal United Hospital, Bath
Ministry of Defence
State Intellectual Property Office, Beijing
Wellcome Trust Centre for Human Genetics, Oxford University
AbCam
Salisbury Foundation Trust Hospital
BBSRC
Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X