• University of Edinburgh Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Leeds Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Cranfield University Featured Masters Courses
Durham University Featured Masters Courses
University of Cambridge Featured Masters Courses
University College London Featured Masters Courses
London School of Economics and Political Science Featured Masters Courses
"automotive" AND "system"…×
0 miles

Masters Degrees (Automotive System)

We have 39 Masters Degrees (Automotive System)

  • "automotive" AND "system" ×
  • clear all
Showing 1 to 15 of 39
Order by 
Created in partnership with companies such as the Ford Motor Company and Jaguar Land Rover, the programme is also aimed at existing or prospective product development engineers and those working in manufacturing, particularly those working alongside product design personnel in the context of cross-functional teams and simultaneous working practice. Read more

Created in partnership with companies such as the Ford Motor Company and Jaguar Land Rover, the programme is also aimed at existing or prospective product development engineers and those working in manufacturing, particularly those working alongside product design personnel in the context of cross-functional teams and simultaneous working practice.

Students study three compulsory modules and a further three modules from a choice of five. In addition, full-time students undertake a university-based project and part-time students undertake an industry-based project.

An online study support system provides additional information and materials to facilitate student discussion.

The programme is accredited by the Institution of Mechanical Engineers (towards Chartered status).

This course is aimed at engineers working in the automotive industry who wish to extend and deepen their skills and understanding of the field, as well as recent graduates who intend to start a career in the industry.

Though primarily aimed at product development engineers, the course offers significant value to those working in the manufacturing side of the industry and those who work alongside colleagues from product design in the context of cross-functional teams. Individual modules of this MSc can be studied as short courses.

The programme is very much one of technical engineering content, sitting in a systems engineering framework.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/aero-auto/automotive-systems-engineering/

Course structure and teaching

Students study three compulsory modules, three optional taught modules and carry out an individual project. In total the course comprises 180 modular credits, made up from 6 taught modules valued at 20 credits each, plus the project which is valued at 60 credits.

The course is mostly delivered as a series of block taught modules. An online study support system provides additional information and materials to facilitate learning and discussion. Full time students undertake a University based project and part time students undertake an industry based project.

Assessment: Examination, coursework assignments and project dissertation.

Course features

- Incorporates a systems thinking framework, referring to product lifecycle, target setting, requirements capture and cascade, plus elements of business-related drivers for engineering practice.

- Provides clear links between design and manufacture, for example presenting examples where manufacturing capabilities have a large impact on design and system robustness.

- Develops advanced and specialist themes via the optional modules.

- Expertise provided from industry-based specialists.

- Individual modules can be studied as short courses.

- The MSc course was originally developed in partnership with Ford Motor Company, and we continue to work closely with the automotive industry in designing, developing and delivering our courses.

Compulsory modules

- Manufacturing Systems and Integrated Design

- Vehicle and Powertrain Functional Performance

- Vehicle Systems Analysis

- Project

Optional modules (select three)

- Body Engineering

- Powertrain Calibration Optimisation

- Sustainable Vehicle Powertrains

- Vehicle Dynamics and Control (for full time programme only)

- Vehicle Electrical Systems Integration

Careers and further Study

Graduates work primarily in product design and development groups and are sought after by a wide range of automotive companies. Students that wish to pursue other careers are well-equipped to work in a wide range of sectors within the vehicle industry.

Scholarships

Loughborough University offers five merit based competitive scholarships to the value of 10% of the programme tuition fee for international students applying for the MSc in Automotive Systems Engineering. All students applying for the course will be considered for the scholarship.

Why choose aeronautical and automotive engineering at Loughborough?

The Department of Aeronautical and Automotive Engineering is a specialist centre within one of the UK’s largest engineering universities.

The Department has 37 academic staff and nearly 150 postgraduate students on taught and research programmes. In the Government’s External Subject Review, the Department was awarded an excellent score (23/24) for the quality of its teaching.In the most recent Research Excellence Framework our subject areas featured in the top ten nationally.

- Facilities

The Department has extensive laboratories and facilities including: wind tunnels; anechoic chamber; indoor UAV testing; structures testing facilities; gas-turbine engines; eight purpose-built engine test cells; Hawk aircraft; 6-axis simulator (road and aircraft); chassis dynamometer and numerous instrumented test vehicles.

The Department hosts the Rolls-Royce University Technology Centre (UTC) in Combustion Aerodynamics and the Caterpillar Innovation and Research Centre (IRC) in engine systems.

- Research

The Department has four major research groups working across the technologies of automotive and aeronautical engineering. Each group works on a variety of research topics, ranging from the development of new low emissions combustion systems for gas turbine engines, through to fundamental investigations into the operation of hydrogen powered fuel cells.

- Career prospects

Over 90% (DLHE, 2016) of our graduates were in employment and/or further study six months after graduating. The Department has particularly close links with BAE Systems, Bentley, British Airways, Ford Motor Company, Group Lotus, Jaguar Land Rover, JCB, MIRA, Perkins Caterpillar, Rolls-Royce and many tier one automotive suppliers

Find out how to apply here http://www.lboro.ac.uk/departments/aae/postgraduate/apply/



Read less
Modern vehicles are often taken for granted and yet they represent an incredibly complex and diverse set of disciplines. Read more
Modern vehicles are often taken for granted and yet they represent an incredibly complex and diverse set of disciplines. The automotive electronics engineer has to bring together real-time software, safety critical constraints, sensor electronics, control algorithms, human factors, legislation and ethics into a working package that satisfies multiple stakeholders.

The Ricardo engineering consultancy helped to develop this course, ensuring MSc students come away equipped with industry-relevant skills. Their continued involvement includes offering the use of pioneering industry equipment through the Ricardo Universities IC Engines research facility. They also help to cultivate future engineering talent, both locally and internationally.

On this MSc course you'll explore a range of topics including interconnected communication networks, entertainment systems, safety critical software, diagnostics, alternative fuels and hybrid technologies.

In the latest Research Assessment Exercise (RAE2008), our automotive engineering research group achieved an excellent rating, with 70 per cent of its research rated as internationally excellent or world leading, and 95 per cent deemed to have been internationally recognised.

Our reputation has enabled us to invest more in our facilities.

This MSc is accredited by the Institution of Engineering and Technology on behalf of the Engineering Council as meeting the requirements for further learning for registration as a chartered engineer. Candidates must hold a CEng-accredited BEng or BSc(Hons) undergraduate degree to comply with full CEng registration requirements.

Course structure

The course starts in September. You will study four modules each term and will take exams after your Christmas and Easter vacations.

For each taught module you will have between three and four hours' contact with the lecturer each week, alongside further self-study tutorial and laboratory exercises requiring study outside of the class contact time.

After all eight taught modules have been completed you will then begin your individual project and masters dissertation stage. This final stage is full-time, but there are no classes during this phase, which ends in early September.

It is possible to study part-time study, by taking the modules at a slower rate. This can be tailored to fit around any personal or professional commitments that you may have. Please note, however, that there is no evening teaching so if you wish to study part-time then you will need to agree on study leave with your employer in order to attend the classes. The final project phase could be conducted at your place of work in some cases.

Syllabus

You will study eight modules and embark on an individual project. This project will form the basis of your dissertation.

Core modules:

Engineering with MATLAB
Sustainable Automotive Power Technology
Automotive Communication Systems
Embedded Processor Systems
Power Train Engineering
Sensors and Interfacing
Power Electronics and Actuators
An individual project on which you base your dissertation

Option modules:

Advanced Computer Systems
Secure Information Systems Engineering

Individual projects have included real-time power-train modelling for software in the loop testing, a smart grid system using electric vehicles as an energy storage resource and an experimental investigation of novel fuel injection and ignition systems for a spray-guided gasoline engine.

Our research labs

The Division of Engineering and Product Design’s research and teaching laboratories house a number of engine test cells in which world leading research is carried out. Although these labs centre on cylinders, pistons and valves they are surrounded by complex electronic equipment to control the mechanics and to monitor pressures, temperatures, chemistry and capture high speed events on computer for real-time and post-run analysis.

MSc students often carry out projects in these labs and make their contribution to research or commercial innovation. For details of these state of the art laboratories see Sir Harry Ricardo Laboratories.

Professor Stipidis and his team provide valuable state-of-the-art research into automotive communications architectures and also provide infrastructure for some of the laboratory exercises in the Automotive Communications Systems taught module.

Employability

This course serves as a training and proving ground for the next generation of researchers. It is ideal for those hoping to be employed as development or research engineers.

The MSc can also serve as the basis for further study at a doctoral level.

The nature of graduate work varies; it could be with OEM’s (Original Equipment Manufacturers) like Ford, General Motors, Jaguar Land Rover; it could be with consultants such as Ricardo, Lotus or AVL; or Tier One suppliers such as Delphi, Infineon or Denso.

Scholarships

Scholarships are available for this course. Please click the link below for more information.

https://www.brighton.ac.uk/studying-here/fees-and-finance/postgraduate/index.aspx

Read less
WMG has an established legacy of leading automotive research in close collaboration with industry. This degree provides a holistic understanding of the different technology options and methods for design, system integration, and verification that will drive the market introduction of new energy efficient vehicles. Read more
WMG has an established legacy of leading automotive research in close collaboration with industry. This degree provides a holistic understanding of the different technology options and methods for design, system integration, and verification that will drive the market introduction of new energy efficient vehicles.

Designed for

This course is ideally suited to those aspiring to become research managers and technology leaders within the strategically important areas of vehicle electrification and sustainability. You will have the management skills, technical awareness, and vision to assess different technology options within the context of environmental legislation and consumer expectations for vehicle quality, reliability, and performance.

The Course Provides

You will develop the skills to design and evaluate the next generation of automotive products that have a lower environmental impact than conventional vehicles. You will learn the latest innovations in research, technology management, and leadership that are pre-requisite for career progression within the international automotive industry.

Course Content

Core Modules:
1. Automotive Hybridisation and Electrification
2. Energy Storage and High Voltage Automotive Systems
3. Propulsion Technology for Hybrid and Electric Vehicle Applications
4. Lightweight Materials and Structures
5. Systems Modelling and Simulation

Plus four elective modules from the full list of modules, where there is a list of nine recommended modules to choose.

Learning Style

The taught component of the course consists of lectures, workshops, practicals, demonstrations, problem classess, syndicate exercises, and a review.

Module leaders are experts in their fields and are supported by external speakers working in organisations at the forefront of their fields.

Assessment is through post module assignment (PMA) rather than exam and is based on the learning objectives of each module. Your PMA should take around 60 hours of work and consolidate the knowledge you have gained from the module.

Industrial visits are available to all students and the course is assessed through assignments.

Each module will usually last one week.

After You Graduate

This programme has extensive industry support from national and international companies. As an SAE graduate, you can expect to take a leadership role with a vehicle manufacturer or specialist supplier. The programme is ideally suited to those aspiring to become research managers and technology leaders within the strategically important areas of vehicle electrification and sustainability.

Read less
In the modern world of vehicle design and manufacture, companies require engineers who are highly qualified and possess specialised skills. Read more
In the modern world of vehicle design and manufacture, companies require engineers who are highly qualified and possess specialised skills.

The course proposed here not only addresses the overall design of a vehicle but will also introduce participants to various specialised areas of Automotive Engineering.

WHY CHOOSE THIS COURSE?

-We have expertise in adopting an integrated multidisciplinary approach to engineering projects
-Take part in real engineering projects in conjunction with industry
-Achieve a better understanding of system design methodologies

WHAT WILL I LEARN?

The course has the following modules:
-Masters Project (Industry or Academic based)
-Engineering Project Management
-Computer Aided Engineering
-Noise Vibration and Harshness
-Engineering Analysis and Simulation
-Ground Vehicle Dynamics
-Powertrain and Engine Dynamics
-Ground Vehicle Aerodynamics
-Alternative Propulsion Systems

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

We prepare participants for productive careers as Automotive Engineering specialists in a wide range of engineering, manufacturing, and services organisations.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
This MSc course has been developed for the Jaguar Land Rover Technical Accreditation Scheme. The course is available on a part time basis, taking typically four years to complete. Read more
This MSc course has been developed for the Jaguar Land Rover Technical Accreditation Scheme.

The course is available on a part time basis, taking typically four years to complete. Students take 12 Assessed Modules over 3 years, 5 of which are Core (C) and 7 Optional (O), plus a project on a SSE topic within the automotive domain (over the final year). See the Project tab for more details.

This modular MSc is designed to prepare students for work in the demanding field of Safety Systems Engineering (SSE) by exposing them to the latest science and technology within this field. In the core module phase, the course focuses on the principles and practices in SSE across a range of domains, including automotive. In the optional module phase, the course focuses on specialist SSE and automotive topics. The projects are also designed to consider SSE topics within an automotive context.

The discipline of SSE developed over the last half of the twentieth century. It can be viewed as a process of systematically analysing systems to evaluate risks, with the aim of influencing design in order to reduce risks, i.e. to produce safer products and services. In mature industries, such as aerospace and nuclear power, the discipline has been remarkably successful, although there have been notable exceptions to the generally good safety record, e.g. Fukushima, Buncefield and the Heathrow 777 accident.

Various trends pose challenges for traditional approaches to SSE. For example, classical hazard and safety analysis techniques deal poorly with computers and software where the dominant failure causes are errors and oversights in requirements or design. Thus these techniques need extending and revising in order to deal effectively with modern systems. Also, in our experience, investigation of issues to do with safety of computer systems have given some useful insights into traditional system safety engineering, e.g. into the meaning of important concepts such as the term hazard. The optional modules allow students to investigate such areas as the contribution of software, human factors or operational factors within an automotive engineering context in more depth.

Learning Outcomes
The course aims to provide participants with a thorough grounding and practical experience in the use of state-of-the-art techniques for development of safety critical systems, together with an understanding of the principles behind these techniques so that they can make sound engineering judgements during the design, deployment and operation of such systems. Graduates completing the course will be equipped to participate in safety-critical systems engineering related aspects of industry and commerce.

New areas of teaching will be developed in response to new advances in the field as well as the requirements of the organisations that employ our graduates.

The course aims to equip students with knowledge, understanding and practical application of the essential components of System Engineering, to complement previously gained knowledge and skills. A York System Safety Engineering with Automotive Applications graduate will have a knowledge and understanding of the essential areas, as represented by the core modules, knowledge and understanding on a number of specialist topics, as represented by the optional modules. and an ability to identify issues with the safety process in a particular project, identify responses to this gap and evaluate the proposal, as represented by the project.

Transferable Skills
Information-retrieval skills are an integrated part of many modules; students are expected to independently acquire information from on-line and traditional sources. These skills are required within nearly all modules.

Numeracy is required and developed in some modules. Time management is an essential skill for any student in the course. The formal timetable has a substantial load of lectures and labs. Students must fit their private study in around these fixed points. In addition, Open Assessments are set with rigid deadlines which gives students experience of balancing their time between the different commitments.

All students in the University are eligible to take part in the York Award in which they can gain certified transferable skills. This includes the Languages for All programme which allows students to improve their language skills.

Projects

The MSc System Safety Engineering with Automotive Applications project for part-time students is 60 credits in length:
-Literature survey on a subject to determine the state of the art in that area
-A gap in the state of the art identified in the first part is addressed, a proposal made and evidence provided for the proposal. This project is completed in September of a student's fourth year

The Project(s) enable(s) students to:
-Demonstrate knowledge of an area by means of a literature review covering all significant developments in the area and placing them in perspective
-Exhibit critical awareness and appreciation of best practice and relevant standards
-Investigate particular techniques and methods for the construction of safe systems, possibly involving the construction of a prototype
-Evaluate the outcome of their work, drawing conclusions and suggesting possible further work in the area

The project(s) address(es) a technical problem concerned with real issues in the automotive domain. It should, if possible, include the development and application of a practical method, technique or system. It is a natural progression from the taught modules, and builds on material covered in them. It addresses the problem from an automotive system safety perspective, including hardware, software or human factors. It will typically have an industrial flavour, students are encouraged, with the help of their managers and academic staff, to select a project which is relevant to their own work.

The project begins at the start of the Autumn term after completion of the taught modules, and lasts 12 months part-time. There are three weeks attendance at York during the project, for progress assessment and access to library facilities: in October near the start of the project; and in the following January and July.

Read less
Designed for. SCAV is designed for engineering or STEM subject graduates. Read more

Designed for

SCAV is designed for engineering or STEM subject graduates. It is particularly suitable for those with a background in electronics, electrical engineering, control systems, or communications who want to play a role in the development of connected and autonomous vehicles, and the Intelligent Transportation Systems Network.

With the advent of smart, connected and autonomous vehicles on the horizon of technical advancements, the automotive industry is facing a developmental challenge. How do we develop a robust technical infrastructure to support the anticipated explosive growth in smart vehicular functions, communications systems and driverless cars? This demands a comprehensive understanding of the technology and a bottom-up approach ensuring robustness and dependability of Electronics, Communications (e.g. V-2-V, V-2-I) and Control Systems.

The strategic success of any industrial player in this area would depend on a ready availability of a skilled work-force within high level technical competencies, specifically catered for the automotive environment.

What will the course provide?

Through this MSc we aim to address the knowledge-gap in the areas of machine learning, automated control strategies, connectivity, and communication infrastructure, cyber-security protocols, emerging automotive networks and robust automotive embedded systems within the context of smart, connected and autonomous vehicles.

WMG at the University of Warwick has an established legacy of leading automotive research in collaboration with industry. Our unique experimental facilities enable academics and industry practitioners to work together and include:

  • 3xD (Drive-in Driver-in-the-loop Driving) simulator facility
  • Fully-functional complete vehicle electrical/electronic system (labcar)
  • Hardware-in-the-Loop (HIL) facilities
  • National Automotive Innovation Centre (NAIC)

This MSc programme has extensive industrial support with the Industry Advisory Board consisting of Jaguar Land Rover (JLR), RDM and other industrial stakeholders.

Course modules

  • Sensor and Sensor Fusion
  • Networks and Communications for the Connected Car
  • Human-Technology Interaction
  • Machine Intelligence and Data Science
  • Robust Automotive Embedded Systems 

Elective modules

You will need to choose four elective modules from the module list*, which should be chosen to supplement your core modules above (subject to availability). *Important, please note: the list relates to modules available in 2017/18 academic year, and should be regarded as an illustrative guide to modules available in future years.

You are required to pass nine modules in total as part of this Master's course.

Project

Leveraging the close partnerships that WMG has with key organisations within the automotive sector, it is envisaged that your project will have an industrial sponsor, enabling you to work in close collaboration with an industry partner. This valuable experience will further your transferrable skills development, and expand your networking opportunities and understanding in a professional research and development environment.

The project is worth 50% of the final grade, and supports you in developing research and analytical skills.

Work on your project runs concurrently with your module study.

Learning style

The taught component of the course consists of lectures, workshops, practicals, demonstrations, syndicate exercises, extended surgery time and reviews. Module leaders are experts in their fields and are supported by external speakers working in organisations at the forefront of their fields.

Assessment is through post module assignment (PMA) rather than exam and is based on the learning objectives of each module. Your PMA should take around 60 hours of work and consolidate the knowledge you have gained from the module.

Each module usually lasts one week. There is more information here about the course structure.

After you graduate

Graduates of this MSc will understand a myriad of factors contributing towards the performance and dependability of connected and autonomous vehicles and will be well placed to continue professional work within R&D.



Read less
"The course structure and the core modules cover the fundamentals of system safety in such depth and breadth as to be applicable to any safety standard, for example the ISO 26262. Read more
"The course structure and the core modules cover the fundamentals of system safety in such depth and breadth as to be applicable to any safety standard, for example the ISO 26262. I chose the modules Human Factors for Safety Critical Systems and Computers and Safety and believe this to be a very good combination for anybody working in the automotive industry. Unlike previous degree courses I refer to my York notes a great deal since they are extremely relevant to my day to day safety activities.”
Robert, Jaguar Land Rover

“As a clinician, I have found this course to be absolutely essential. I would recommend that anyone working in healthcare with an interest in patient safety should take the Foundations of System Safety Engineering module at the very least. For those who have a more focused safety role, particularly in healthcare technology, the University offers a number of modules to choose from, working up to the award of a Postgraduate Certificate, Diploma or MSc Safety Critical Systems Engineering.”
Beverley, Department of Health Informatics Directorate

The discipline of SSE has developed over the last half of the twentieth century. It can be viewed as a process of systematically analysing systems to evaluate risks, with the aim of influencing design in order to reduce risks, i.e. to produce safer products. In mature industries, such as aerospace and nuclear power, the discipline has been remarkably successful, although there have been notable exceptions to the generally good safety record, e.g. Fukushima, Buncefield and the Heathrow 777 accident.

Various trends pose challenges for traditional approaches to SSE. For example, classical hazard and safety analysis techniques deal poorly with computers and software where the dominant failure causes are errors and oversights in requirements or design. Thus these techniques need extending and revising in order to deal effectively with modern systems. Also, in our experience, investigation of issues to do with safety of computer systems have given some useful insights into traditional system safety engineering, e.g. into the meaning of important concepts such as the term hazard. The course therefore has a number of optional modules looking at software safety.

Learning Outcomes

The course aims to provide you with a thorough grounding and practical experience in the use of state-of-the-art techniques for development and operation of safety critical systems, together with an understanding of the principles behind these techniques so that you can make sound engineering judgements during the design, deployment and operation of such a system. On completing the course, you will be equipped to play leading and professional roles in safety-critical systems engineering related aspects of industry and commerce.

New areas of teaching are developed in response to new advances in the field as well as the requirements of the organisations that employ our graduates.

We aim to equip you with the knowledge, understanding and practical application of the essential components of Safety Critical Systems Engineering, to complement previously gained knowledge and skills. As a York Safety Critical Systems Engineering graduate, you will have a solid grounding of knowledge and understanding of the essential areas, as represented by the core modules. The optional modules give you the opportunity to gain knowledge in other areas which are of interest and these are taught by recognised experts in those areas.

Transferable Skills

Information-retrieval skills are an integrated part of many modules; you are expected to independently acquire information from on-line and traditional sources. These skills are required within nearly all modules, are an essential part of project work.

Numeracy is required and developed in some modules. Time management is an essential skill for any student on the course. The formal timetable has a substantial load of lectures and practical sessions. You are expected to fit your private study in around these fixed points. In addition, Open Assessments are set with rigid deadlines, so you must balance your time between the different commitments.

All students in the University are eligible to take part in the York Award in which they can gain certified transferable skills. This includes the Languages for All programme which allows students to improve their language skills.

Projects

For both full-time and part-time students, the project(s) enable(s) students to:
-Demonstrate knowledge of an area by means of a literature review covering all significant developments in the area and placing them in perspective;
-Exhibit critical awareness and appreciation of best practice and relevant standards;
Investigate particular techniques and methods for the construction of safe systems, possibly involving the construction of a prototype;
-Evaluate the outcome of their work, drawing conclusions and suggesting possible further work in the area.

The project(s) address(es) a major technical problem concerned with real issues. It should, if possible, include the development and application of a practical method, technique or system. It is a natural progression from the taught modules, and builds on material covered in them. Ideally it addresses the problem from a system perspective, including hardware, software and human factors. It will typically have an industrial flavour. If you are a part-time student, you are encouraged, with the help of your managers and academic staff, to select a project which is relevant to your own work in industry.

The project begins at the start of the Summer term after completion of the taught modules, and lasts 18 months part-time / 6 months full-time. For part-time students there are three weeks attendance at York during the project, for progress assessment and access to library facilities: in July near the start of the project; and in the following January and July. Full details are provided during the course.

Read less
The Master’s programme in Electronics Engineering focuses on the  design of integrated circuits and System-on-Chip in advanced semiconductor technologies. Read more

The Master’s programme in Electronics Engineering focuses on the  design of integrated circuits and System-on-Chip in advanced semiconductor technologies. This requires a broad spectrum of knowledge and skills across many fields within engineering and science.

The programme provides a competitive education in digital, analogue and radio-frequency (RF) integrated circuits (IC) and System-on-Chip (SoC) design, combined with in-depth knowledge in signal processing, application specific processors, embedded systems design, modern communications systems, and radio transceiver design.

Modern society depends on reliable and efficient electronics. Mobile phones, the Internet, computers and TVs are just a few examples that constantly improve in terms of functionality, performance and cost. In addition, a growing number of concepts and technologies significantly improve areas such as mobile and broadband communication, healthcare, automotive technology, robotics, energy systems management, entertainment, consumer electronics, public safety and security, industrial applications, and much more. This suggests that there will be vast industrial opportunities in the future, and a high demand for skilled engineers with the knowledge and skills required to lead the design of such complex integrated circuits and systems.

World-class research activities

The programme is organised by several strong divisions at the Department of Electrical Engineering and the Department of Computer and Information Science. These divisions, which include more than 60 researchers and 10 internationally recognised professors, have excellent teaching experience, world-class research activities that cover nearly the entire field of integrated electronic design, state-of-the-art laboratories and design environments, and close research collaboration with many companies worldwide.

Design-project courses with the latest software

The programme starts with courses in digital communication, digital integrated circuits, digital system design, analogue integrated circuits, and an introduction to radio electronics, providing a solid base for the continuation of the studies.

Later on, a large selection of courses enables students to choose between two major tracks:

  • System-on-Chip, with a focus on digital System-on-Chip design and embedded systems
  • Analogue/Digital and RF IC design, with a focus on the design of mixed analogue/digital and radio-frequency integrated circuits.

The programme offers several large design-project courses, giving excellent opportunities for students to improve their design skills by using the state-of-the-art circuit and system design environments and the CAD tools used in industry today. For instance, students who take the course VLSI Design will design real chips using standard CMOS technology that will be sent for fabrication, measured and evaluated in a follow-up course. Only a few universities in the world have the know-how and capability to provide such courses.



Read less
Our MSc Electronic Engineering enables you to acquire the essential knowledge, skills, competency, and critical awareness necessary for a rewarding career in the electronics industry. Read more
Our MSc Electronic Engineering enables you to acquire the essential knowledge, skills, competency, and critical awareness necessary for a rewarding career in the electronics industry. We prepare you for a career in analogue and digital circuit design, an area with a major skills shortage worldwide and particularly in the UK.

The content of our course is far-reaching and includes theory, practice, simulation and realisation underpinned by our 40 years of expertise in electronics and telecommunications.

Our course brings together our teaching, research and industrial contacts to form a vocational offering with enhanced postgraduate employability. You will be equipped with skills in the areas of:
-Analogue and digital design
-CAD and IC design
-Time and frequency domain analysis
-Fault analysis
-Embedded processing
-DSPs and fast prototyping

All of your acquired knowledge culminates in a project which sees the design, simulation, construction, testing and manufacture of a complex electronic system aimed at the industrial or consumer markets.

Our School is a community of scholars leading the way in technological research and development. Today’s electronic engineers are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top engineers, and our work is driven by creativity and imagination as well as technical excellence.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

We have been one of the leading electronics departments in the country throughout our history, and in recent years, our prolific research staff have contributed to some major breakthroughs.

We invented the world's first telephone-based system for deaf people to communicate with each other in 1981, with cameras and display devices that were able to work within the limited telephone bandwidth. Our academics have also invented a streamlined protocol system for worldwide high speed optical communications.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

There are career opportunities for well-qualified electronics design engineers in the avionics, automotive, entertainment and consumer product markets, and within companies such as Siemens, Fujitsu, Sony, Toshiba, Nokia, Samsung, LG, Apple, Microsoft, Intel, Dell, Sharp, Canon, Acer, Levono, Hitachi, Epson, Philips, Nikon, Pioneer, TCL, and JVC, all of whom are searching for competent designers.

A number of careers are also available through local SMEs, geographically close to Essex, who account for a significant proportion of the workforce, both in the UK and on the continent.

Our recent graduates have gone on to work for a wide range of high-profile companies including:
-Electronic Data Systems
-Pfizer Pharmaceuticals
-Bank of Mexico
-Visa International
-Hyperknowledge (Cambridge)
-Hellenic Air Force
-ICSS (Beijing)
-United Microelectronic Corporation (Taiwan)

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-MSc Project and Dissertation
-Electronic System Design & Integration
-Professional Practice and Research Methodology
-Programming Embedded Systems
-Programming in Python
-Theory of Signals and Systems
-Advanced Embedded Systems Design (optional)
-Creating and Growing a New Business Venture (optional)
-Digital Signal Processing (optional)
-High Level Logic Design (optional)
-Intelligent Systems and Robotics (optional)
-IP Networking and Applications (optional)
-Mathematical Research Techniques Using Matlab (optional)
-Mobile Communications (optional)
-Networking Principles (optional)

Read less
An understanding of advanced digital systems engineering is vital to the design of most modern electronic devices and systems. The Advanced Digital Systems Engineering MSc enables you to develop advanced skills in the major aspects of modern embedded systems design at hardware, software and firmware levels. Read more

An understanding of advanced digital systems engineering is vital to the design of most modern electronic devices and systems. The Advanced Digital Systems Engineering MSc enables you to develop advanced skills in the major aspects of modern embedded systems design at hardware, software and firmware levels.

Recent advances in chip fabrication technologies now mean that it is possible to use embedded system technology in an increasing number of technically demanding applications and engineers with skills in embedded system design are in high demand. In the EU it has been estimated that over 600,000 new jobs in embedded systems will be created over the next 10 years.

Advanced Digital Systems Engineering has a central role in computer systems, mobile and wireless communications, consumer electronics and automotive engineering and is important in the design of modern instrumentation and measurement systems used for industrial automation and manufacturing processes.

The MSc programme uses practical examples in instrumentation, monitoring, control, computing and communication to illustrate the evolving technology. Graduates are able to develop embedded systems using a variety of technology platforms in a wide range of applications including communications, consumer electronics, automotive electronics, industrial control, instrumentation and measurement.

Visit the website https://www.kent.ac.uk/courses/postgraduate/1710/advanced-digital-systems-engineering

About the School of Engineering and Digital Arts

The School of Engineering and Digital Arts successfully combines modern engineering and technology with the exciting field of digital media.

Established over 40 years ago, the School has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

The School undertakes high-quality research that has had significant national and international impact, and our spread of expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. There is a thriving student population studying for postgraduate degrees in a friendly and supportive teaching and research environment.

We have research funding from the Research Councils UK, European research programmes, a number of industrial and commercial companies and government agencies including the Ministry of Defence. Our Electronic Systems Design Centre and Digital Media Hub provide training and consultancy for a wide range of companies. Many of our research projects are collaborative, and we have well-developed links with institutions worldwide.



Read less
Automation, control and robotics are pervasive enabling technologies found in almost every modern technical system, particularly in manufacturing and production. Read more

Automation, control and robotics are pervasive enabling technologies found in almost every modern technical system, particularly in manufacturing and production. They combine the diverse and rapidly expanding disciplines of automation, control, mechanics, software and signal processing.

This course is ideal if you wish to develop comprehensive knowledge and understanding of • classical and modern control theory • industrial automation • systems analysis • design and simulation • robotics.

You gain the ability to apply principles of modelling, classical and modern control concepts and controller design packages in various areas of industry. You also learn how to design and exploit automation and robotic systems in a range of manufacturing and industrial applications.

The course has six core modules which cover the major aspects of industrial automation and control systems engineering and robotics, ranging from classical linear control system design to non-linear, optimal and intelligent control systems, including distributed control systems, robotics, computer networks and artificial intelligence.

You also choose two optional modules relevant to automation and control to suit your interests. For example, if you wish to work in the manufacturing industry you can choose manufacturing systems or machine vision. There is the opportunity to study one or two management modules if you wish to apply yourself to a more managerial role.

To gain the masters you complete a major research-based project, which can be focused on an area of your particular interest or career need.

You work alongside staff from the Electrical, Electronic and Control Engineering Group and the Centre for Automation and Robotics Research (CARR) at Sheffield Hallam. This provides the opportunity to work with active researchers.

Professional recognition

This course is seeking accreditation by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council for the purposes of fully meeting the academic requirements for registration as a Chartered Engineer. The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer; graduates who have a BEng (Hons) accredited for CEng will be able to show that they have satisfied the further learning requirement for CEng accreditation.

Course structure

Core modules

  • industrial automation
  • control of linear systems
  • advanced control methods
  • robotics
  • applicable artificial intelligence

Options

Choose two from

  • software engineering
  • computer networks
  • project and quality management
  • sustainability, energy and environmental management
  • machine vision
  • digital signals processing
  • manufacturing systems
  • mixed signal design
  • electrical energy systems
  • efficient machines and electromagnetic applications.

MSc

  • project and dissertation

Assessment

  • coursework
  • examination
  • presentation
  • MSc project report

Employability

This course provides you with the knowledge and skills for further advanced study in this area.

You can also apply your skills in an industrial setting for automated manufacturing, control system design, or in the wide range of industries that exploit intelligent robotics. Graduates from this course find career opportunities in areas including • automation and control • process and petrochemical • biomedical • manufacturing • energy • automotive • aerospace.

You can also pursue careers in engineering design and development, engineering research, engineering consultancy and engineering management.

Completing this course combined with further work-based experience enables you to gain Chartered Engineer status.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Logic and Computation at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Logic and Computation at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Logic is the basis for reasoning about what we can express and compute, having a profound influence in philosophy, linguistics, mathematics, computer science, and electronics. Since the invention of computers, logic has always been the primary source of ideas and techniques for the theoretical and practical development of programming.

Today, as the scope of programming technologies expands, and the horizon of applications widens, research in logic and its applications in software and hardware development is booming. In industry, formal methods are an integral part of system development, e.g., in automotive electronics, avionics, and chip design.

The MRes Logic and Computation course will teach you about advanced techniques in logic and their applications in research problems in computer science. You will receive an elite education of direct relevance to research and development problems in contemporary information and communication technology (ICT).

Key Features

Teaching score of Excellent.

Highest percentage of top-class researchers of any Computer Science department in Wales – and only 12 in the UK have higher.

70% of the research activity assessed as world-leading or internationally excellent.

Our industrial programme IT Wales which can arrange vacation employment placements.

A state-of-the-art education.

Friendly staff, committed to the highest standards.

A university with high success rate, low drop-out rate, and excellent student support.

Swansea's Library spends more per student on books and other resources than any other university in Wales, and most in the UK.

Course Content

Research Component

The main part of the MRes in Logic and Computation is a substantial and challenging project involving cutting edge research. The completion of such a project will give you the ability and confidence to pursue a successful career in industrial research and development, or to proceed to academic PhD studies.

Taught Component

In seminars and reading courses you will enter the world of research by studying general topics in theoretical computer science as well as special topics for your research project. Guided by your supervisor you will conquer new technical subjects and learn to critically assess current research.

Lecturers and students will meet regularly to discuss recent developments and give informal talks. Topics of the seminars are chosen in accordance with the research projects, and will cover material such as:

Theorem proving techniques

Formal program verification

Algebraic and coalgebraic specification

Modelling of distributed systems

Advanced methods in complexity theory

Additionally you will choose selected taught modules covering important topics such as Critical Systems, IT Security, Concepts of Programming

Languages, Artificial Intelligence Applications, Design Patterns and Generic Programming.

Facilities

The Department is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

Careers

All Computer Science courses will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

90% of Swansea’s Computer Science graduates are in full-time employment or further study within six months of graduating (HESA June 2011).

Some example job titles from the HESA survey 2011:

Software Engineer: Motorola Solutions

Change Coordinator: Logica

Software Developer/Engineer: NS Technology

Workflow Developer: Irwin Mitchell

IT Developer: Crimsan Consultants

Consultant: Crimsan Consultants

Programmer: Evil Twin Artworks

Web Developer & Web Support: VSI Thinking

Software Developer: Wireless Innovations

Associate Business Application Analyst: CDC Software

Software Developer: OpenBet Technologies

Technical Support Consultant: Alterian

Programming: Rock It

Software Developer: BMJ Group

Research

The results of the Research Excellence Framework (REF) 2014 show that Swansea Computer Science ranked 11th in the UK for percentage of world-leading research, and 1st in Wales for research excellence. 40% of our submitted research assessed as world-leading quality (4*).



Read less
This two-year Msc degree in Embedded Computing Systems allows you to study at two locations, choosing from the unique strengths of University of Southampton (system on chip electronics), Kaiserslautern University (embedded systems) and the Norwegian University of Science and Technology in Trondheim (electronics and communication). Read more

This two-year Msc degree in Embedded Computing Systems allows you to study at two locations, choosing from the unique strengths of University of Southampton (system on chip electronics), Kaiserslautern University (embedded systems) and the Norwegian University of Science and Technology in Trondheim (electronics and communication).

Introducing your degree

Develop a thorough understanding of some of the most important technologies that are transforming our communications systems.

Overview

The European Masters in Embedded Computing Systems (EMECS) is a two-year programme run in conjunction with Kaiserslautern University and the Norwegian University of Science and Technology at Trondheim.

You will benefit from Southampton’s expertise in system on chip and electronics, Trondheim’s knowledge of electronics and communications and Kaiserslautern’s strong track record in embedded systems.

The curriculum consists of a core programme, an elective programme and a Masters thesis.

  • The core programme covers the fundamentals of embedded computing systems and offers an equivalent education in all three institutions.
  • The elective programme reflects the specific profiles of the participating partner universities and their associated research institutes.

View the programme specification document for this course

Career Opportunities

Our graduates go on to work as architects of hardware and/or software systems, or as specialists in design methodology or gain employment in companies involved in system-on-chip design, telecommunications, automotive systems and manufacturing.

Graduates from our MSc programme are employed worldwide in leading companies at the forefront of technology. ECS runs a dedicated careers hub which is affiliated with over 100 renowned companies like IBM, Arm, Microsoft Research, Imagination Technologies, Nvidia, Samsung and Google to name a few.  Visit our careers hub for more information.

Through an extensive blend of networks, mentors, societies and our on-campus startup incubator, we also support aspiring entrepreneurs looking to build their professional enterprise skills. Discover more about enterprise and entrepreneurship opportunities.



Read less
GRADUATES OF THE MFA PROGRAM IN TRANSPORTATION DESIGN WILL BE INNOVATORS, IN AUTOMOTIVE DESIGN AND ALL ASPECTS OF MOBILITY, ALWAYS WITH AN EYE TOWARD THE FUTURE. Read more
GRADUATES OF THE MFA PROGRAM IN TRANSPORTATION DESIGN WILL BE INNOVATORS, IN AUTOMOTIVE DESIGN AND ALL ASPECTS OF MOBILITY, ALWAYS WITH AN EYE TOWARD THE FUTURE

Building on your art and creativity, the College’s MFA program in Transportation Design will bring you together with other bright, forward-thinking students from design and engineering disciplines who want to delve into the invention and entrepreneurial aspects of transportation design.

In this program, you will take on the role of “designer as inventor,” and learn how to integrate innovation with real-world business strategy, including business practices, research, brand identity, vehicle architecture and mobility as a system. The curriculum will lead you through a complete design process – extensive research, sketching and 3D rendering, animation, core competencies analysis and more – and will include special projects that explore innovation through forms and materials, functionality and engineering. It’s a unique approach that will teach you how to combine creativity and research with business realities to create new brand value.

Studying at CCS will put you at the very center of transportation design. In the College’s studios and labs – housed in the same building where Harley Earl, the first modern automotive designer, and other renowned researchers and designers pioneered groundbreaking vehicles – an automotive executive or other industry leader is very likely to stop in to engage informally with students. The College’s alumni are designers at every major car manufacturer and nearly all the Tier 1 auto suppliers, at racing and defense companies like Pratt & Miller, and consulting in firms as far away as Vietnam and Abu Dhabi. You will participate in design competitions, internships and sponsored projects from the Big 3 and Tier 1 and 2 suppliers. With these exceptional networking advantages, CCS is the ideal place to develop the knowledge, skills and entrepreneurial outlook that will enable you to influence the future of transportation.

Read less
An understanding of Advanced Digital Systems Engineering is vital to the design of most modern electronic devices and systems. Read more

An understanding of Advanced Digital Systems Engineering is vital to the design of most modern electronic devices and systems. The Advanced Digital Systems Engineering MSc enables you to develop advanced skills in the major aspects of modern embedded systems design at hardware, software and firmware levels.

Recent advances in chip fabrication technologies now mean that it is possible to use embedded system technology in an increasing number of technically demanding applications and engineers with skills in embedded system design are in high demand. In the EU it has been estimated that over 600,000 new jobs in embedded systems will be created over the next 10 years.

Advanced Digital Systems Engineering has a central role in computer systems, mobile and wireless communications, consumer electronics and automotive engineering and is important in the design of modern instrumentation and measurement systems used for industrial automation and manufacturing processes.

The MSc programme uses practical examples in instrumentation, monitoring, control, computing and communication to illustrate the evolving technology. Graduates are able to develop embedded systems using a variety of technology platforms in a wide range of applications including communications, consumer electronics, automotive electronics, industrial control, instrumentation and measurement.



Read less

Show 10 15 30 per page



Cookie Policy    X