• University of Glasgow Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Coventry University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
De Montfort University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Cass Business School Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Northumbria University Featured Masters Courses
"automotive"×
0 miles

Masters Degrees (Automotive)

  • "automotive" ×
  • clear all
Showing 1 to 15 of 180
Order by 
This MSc in Automotive Engineering is specifically designed to enhance the employment and promotional opportunities of graduates in mechanical and automotive engineering. Read more
This MSc in Automotive Engineering is specifically designed to enhance the employment and promotional opportunities of graduates in mechanical and automotive engineering. The programme considers in depth key areas of automotive technology. Its integrated design covers both the technological and management aspects of the motor industry. The programme aims to:
-Equip you with the theory and the practice of relevant materials, technologies and analytical tools to provide solutions for automotive design and manufacturing problems
-Provide the opportunity for you to use creativity and innovation in the application of technology to the development of the automobile
-Focus on the links between vehicle programmes and the supporting skills of project management
-Develop your skills and application experience through case studies and project work
-Enhance your prospects of professional employment within the industry

Why choose this course?

-The University has been running automotive degree courses for almost forty years and is very well-established within the automotive industry
-The University of Hertfordshire is one of the top 5 UK universities whose automotive engineering degree programmes have been recognised in 2002 by the Society of Motor Manufacturers and Traders (SMMT), the trade association representing the UK automotive industry
-We have some 250 undergraduate and postgraduate students reading automotive engineering so are one of the largest providers of automotive engineering degree courses in the UK
-We have excellent facilities in automotive engineering technology including a new automotive centre with engine test facilities

Professional Accreditations

Accredited for Chartered Engineer (CEng) status by the Institution of Engineering and Technology (IET) and by the Royal Aeronautical Society (RAeS).

Careers

This programme is specifically designed to enhance the employment and promotional opportunities of graduates in mechanical and automotive engineering. It offers you an overview of the automotive industry which will be invaluable in job applications and will help to fast-track your career in the new product introduction phase of the industry.

Teaching methods

The School of Engineering and Technology has a reputation for innovation in teaching and learning, where nearly all MSc modules are delivered through a combination of traditional face-to-face teaching and backup tutorial's using the University's StudyNet web based facility. StudyNet allows students to access electronic teaching and learning resources, and conduct electronic discussion's with staff and other students. A heavy emphasis is placed on theory and practice, and the School of Engineering and Technology has a policy of using industrial standard software wherever possible. The School of Engineering and Technology also operate an open access laboratory, and computer policy, that will help students complete coursework and assignments, at a scheduled pace and on time.

Structure

Core Modules
-Advanced Engines & Power Systems
-Auto Materials & Manufacture
-Automotive Dynamics & Safety
-Automotive Electrical Systems
-CFD Techniques
-FEA & Applications
-Integrated Product Engineering
-MSc Project
-Operations Research

Read less
This Automotive Design MA course is suitable for both aspiring practitioners of automotive design and those aiming for design management positions. Read more
This Automotive Design MA course is suitable for both aspiring practitioners of automotive design and those aiming for design management positions.

This course will equip you with the skills required of a designer in the automotive industry. It contains elements of two and three-dimensional design and provides the opportunity to apply CAD to automotive projects.

WHY CHOOSE THIS COURSE?

-Lectures delivered by senior figures in automotive design and business
-Option of working on a project set by the automotive industry
-Recent collaborators include PSA (Peugeot-Citroen), Ford and Renault

WHAT WILL I LEARN?

The first term will be spent achieving a grounding in the basics of automotive design. Vehicle packaging, automotive modelling, and the business of the automotive industry are all covered in lectures, seminars and studio classes within the first three months. We have an ongoing programme of visiting lectures delivered by senior figures in automotive design, automotive journalism and business.

The second term will involve further skill developments plus a 'live' design project run in conjunction with the automotive industry. Our recent collaborators include PSA (Peugeot-Citroen), Ford and Renault. During this exciting project you will learn to work in teams to achieve a design output for demanding clients.

During the third term you will undertake more design projects and start researching for your MA major project. Your major project takes up the whole of the final term, leading up to the industry-sponsored MA Degree Show at the end of the year.

TEACHING CONTACT HOURS

We do not offer a part-time evening or weekend pattern of delivery, but if you wish to study part time during the day, please contact the course director to explore further.

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

Recent graduates have been recruited by manufacturers and consultants in Europe and the Far East keen to acquire their skills in and knowledge of the automotive design process. Career options include:
-Automotive design
-Research
-Teaching and design management

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
Automotive industry design is undergoing a very swift and radical change and this course prepares automotive engineers to deal with this complex and fast development. Read more
Automotive industry design is undergoing a very swift and radical change and this course prepares automotive engineers to deal with this complex and fast development. Our applied approach to design, manufacture and testing of automotive products ensures that our graduates are ready for automotive industry, with excellent employability prospects. In addition, our location is in the heart of one of Europe's biggest concentrations of high-tech businesses and the UK motorsport valley. This offers unrivalled opportunities for students to collaborate with automotive industry and their supply chain. It keeps students abreast with the current developments in automotive technologies, production methods, processes and management techniques. Our teaching is centred around our state-of-the-art laboratories in a purpose-designed engineering building.

Why choose this course?

You will be taught in a purpose-designed engineering building, by staff with exceptional knowledge and expertise in their fields. Lecturers include world-leaders in research on sustainable vehicle engineering, and those with experience of designing and working with major automotive manufacturers such as TATA, MAN and BMW. Our visiting speakers from business and industry provide professional perspective, preparing you for an exciting career; for more information see our industrial lecture series schedule. We have close links with industry including the BMW MINI plant in Oxford, Porsche, Ford, MAN, MIRA and other national and international partners. Our research incorporates the latest developments within the sector with high profile visiting speakers contributing to our invited research lectures.

In REF 2014 57% of the department's research was judged to be of world leading quality or internationally excellent with 96% being internationally recognised. Regular visits to automotive industry and their supply chain provide students with opportunities to explore technical challenges and the latest technology - to get a flavour of the activities within our department see 2015 highlights. You will have the opportunity to join our acclaimed Formula Student team (OBR), mentored by our alumni and visiting lecturers from automotive and motorsport industry. You will put theory into practice by competing with the best universities from around the world. Find out more about Formula Student at Brookes by visiting the Oxford Brookes Racing website: https://obr.brookes.ac.uk/

Professional accreditation

Accredited by the Institution of Mechanical Engineers (IMechE) and The Institute of Engineering and Technology meeting the academic requirements for full Chartered Engineer status.

This course in detail

The course is structured around three periods: Semester 1 runs from September to December, Semester 2 from January to May, and the summer period completes the year until the beginning of September.

To qualify for a master's degree you must pass the compulsory modules, one of two alternative-compulsory modules and one optional module, along with the dissertation.

Compulsory modules
-Advanced Vehicle Dynamics
-Sustainable Engineering Technology.
-Advanced Engineering Management

Alternative-compulsory modules (you must pass at least one of these):
-Noise, Vibration and Harshness
-Vehicle Crash Engineering

Optional modules (you take one of these, unless you take both alternative-compulsory modules above):
-Advanced Vehicle Aerodynamics
-Engineering Reliability and Risk Management
-CAD/CAM
-Advanced Powertrain Engineering

The Dissertation (core, triple credit) is an individual project on a topic from automotive engineering, offering an opportunity to develop a high level of expertise in a particular area of automotive engineering, including use of industry-standard software and/or experimental work, the module will also provide you with research skills, planning techniques, project management. Whilst a wide range of industry-sponsored projects are available (e.g. MAN (Germany), VUHL (Mexico), McLaren (UK), AVL (Austria), Arctic Truck (Iceland) etc.), students are also able undertake their own projects in the UK and abroad, to work in close co-operation with a research, or commercial organisation.

Please note: As our courses are reviewed regularly as part of our quality assurance framework, the choice of modules available may differ from those described above.

Teaching and learning

Teaching staff are drawn primarily from the Department of Mechanical Engineering and Mathematical Sciences. Visiting speakers from business and industry provide further input.

Careers and professional development

Our graduates enjoy the very best employment opportunities, with hundreds of engineering students having gone onto successful careers in their chosen industry. Many of our students go on to work with leading automotive or motorsport companies in the UK and worldwide.

Read less
The aim of the programme is to equip non-engineering graduates with a STEM background to meet the stringent demands of today’s highly competitive industrial environment. Read more
The aim of the programme is to equip non-engineering graduates with a STEM background to meet the stringent demands of today’s highly competitive industrial environment. On completion of these courses students acquire a broad understanding of Engineering with a focus on aerospace engineering.

The University has been running automotive degree courses for almost forty years and is very well-established within the automotive industry. We have some 250 undergraduate and postgraduate students reading automotive engineering so are one of the largest providers of automotive engineering degree courses in the UK. We have excellent facilities in automotive engineering technology including an automotive centre with engine test facilities.

The development of skills and advancement of knowledge focus on:
-The selection of materials, process and techniques for the structural analysis and the design and construction of automotive components such as body and chassis, in relation to vibration and vehicle dynamics
-Understanding of alternative power train and fuel technologies, their impact on vehicle performance and environment
-The construction of CAE models and to assess implications of the results, the limitations of present techniques and the potential future direction of developments in the CAE field
-Appreciation of the need for process and product development relevant to the introduction of products in a cost effective and timely manner
-Critical review of the present knowledge base, its applicability, usage and relevance to enhance product and enterprise performance

Why choose this course?

This pioneering programme consists of a number of “specialist” Masters awards with an expectation that students will have studied a STEM related discipline to a Bachelor’s level or equivalent, as opposed to a “traditional” masters philosophy aimed at students from an engineering background. The programme offers options with separate entry routes for candidates transitioning from ‘Near STEM’ and ‘Far STEM’ disciplines:The Far STEM route is for first degrees where statistical analysis was a dominant feature of their analytical studies. Students will spend one to two semesters studying appropriate Level 4/5 modules in the first year then joining the Near STEM cohort (e.g., chemistry or biology). The Far STEM route is for first degrees where statistical analysis was a dominant feature of their analytical studies. Students will spend one to two semesters studying appropriate Level 4/5 modules in the first year then joining the Near STEM cohort (e.g., chemistry or biology).

Careers

The successful postgraduates of the programme will acquire the knowledge and understanding, intellectual, practical and transferable skills necessary for the analysis and synthesis of problems in engineering through a combination of experimental, simulation, research methods and case studies. They can expect to gain work in a range of disciplines within a variety of industries from specialist technical roles to positions of management responsibility.

Teaching methods

The School has a reputation for innovation in teaching and learning, where nearly all MSc modules are delivered through a combination of traditional face-to-face teaching and backup tutorial's using the University's StudyNet web based facility.
The online StudyNet is accessible 24/7 and allows students to access electronic teaching and learning resources, and conduct electronic discussion's with staff and other students. A heavy emphasis is placed on theory and practice, and the School has a policy of using industrial standard software wherever possible. The School also operate an open access laboratory, and computer policy, that will help students complete coursework and assignments, at a scheduled pace and on time.

Structure

Year 1
Core Modules
-Automotive Materials & Manufacture
-CFD Techniques
-Computing for Business and Technology
-Dynamics
-Engineering Application of Mathematics
-Engineering Fundamentals
-Mechanical Experimental Engineering
-Mechanical Science
-Operations Management

Year 2
Core Modules
-Advanced Engines & Power Systems
-Automotive Chassis & Powertrain Technology
-Automotive Dynamics & Safety
-Automotive Electrical Systems
-Integrated Product Engineering
-Operations Research

Read less
Motorsport is one of the world's most dynamic, competitive industries - and engineers that master their craft have almost unlimited career opportunities. Read more

About the course

Motorsport is one of the world's most dynamic, competitive industries - and engineers that master their craft have almost unlimited career opportunities.

This MSc in Automotive Motorsport Engineering at Brunel equips graduates with the qualities and transferable skills they need to flourish at a senior level in an exacting industry.

The comprehensive curriculum covers a wide range of specialist skills sought within the industry – including core modules in:

Research methods and sustainable engineering
Racing team management and vehicle testing
Advanced vehicle dynamics, IC engines, materials and manufacturing

You’ll gain practical experience through a team project, and complete a dissertation of your choice, typically covering a design, experimental, computing or analysis subject.

Aims

The speed of change in motorsport is relentless -and engineers need to inovate to succeed. From F1 pit lane mechanics to testing specialists, engine and aerodynamics maestros to team managers and financial controllers, graduates from this course have a host of exciting and varied career options open to them.

The MSc programme at Brunel University helps you develop imagination and creativity to follow a successful engineering career with a mix of modules covering automotive and motorsport engineering topics, which delivers an integrating layer on top of subject specific first degree or professional skills.

Its primary focus is to create Master's degree graduates who are well equipped with the knowledge and skills to work in a multi discipline subject area, typically encountered in the automotive and motorsport engineering industry.

Course Content

The course will allow students the option of specialising in automotive engineering or motorsport engineering, both in the optional modules and the dissertation.

Every student also produces a group project, usually carried out with four or five other students. The group project involves the design, manufacture, assembly, and testing of a single seater racing vehicle, that will take part in the annual Formula Student competition in July with over 70 teams competing in the event.

Compulsory modules:

Research Methods and Sustainable Engineering
Racing Team Management and Vehicle Testing
Advanced Vehicle Dynamics, IC Engines, Materials and Manufacturing
Major Group Project
Dissertation

Optional Modules
Students choose two of the four modules below:

Advanced Modelling and Design
Advanced Thermofluids
Racing Legislation, Finance and Sponsorship
Racing Vehicle Design and Performance

Special Features

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Brunel Automotive Lecture Series
Brunel’s Automotive Lecture Series is a special feature of the taught programmes in the areas of automotive and motorsport engineering. The Series consists of talks on technology and careers by industry leaders, alumni and expert technologists appropriate not only for late stage undergraduate and postgraduate students but also for researchers in the these areas. Topics include themes from the broader automotive and motorsport industry and its technologies including advanced powertrains, vehicle testing and advanced components.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

The Automotive and Motorsport Engineering MSc at Brunel University is accredited by the Institution of Mechanical Engineers (IMechE). This will provide a route to Chartered Engineer status in the UK.

Assessment

Modules are taught over eight months (from October to May) and are assessed by a balanced combination of examination and assignment. For the final four months (June to September), students will conduct an individual project and prepare a dissertation, allowing the opportunity to undertake original research relating to the automotive and motorsport engineering fields.

The group project is conducted throughout the year and is assessed by means of project logbooks, oral presentations and final project reports.

Read less
The aim of the programme is to equip non-engineering graduates with a STEM background to meet the stringent demands of today’s highly competitive industrial environment. Read more
The aim of the programme is to equip non-engineering graduates with a STEM background to meet the stringent demands of today’s highly competitive industrial environment. On completion of these courses students acquire a broad understanding of Engineering with a focus on aerospace engineering.

The University has been running automotive degree courses for almost forty years and is very well-established within the automotive industry. We have some 250 undergraduate and postgraduate students reading automotive engineering so are one of the largest providers of automotive engineering degree courses in the UK. We have excellent facilities in automotive engineering technology including an automotive centre with engine test facilities.

The development of skills and advancement of knowledge focus on:
-The selection of materials, process and techniques for the structural analysis and the design and construction of automotive components such as body and chassis, in relation to vibration and vehicle dynamics
-Understanding of alternative power train and fuel technologies, their impact on vehicle performance and environment
-The construction of CAE models and to assess implications of the results, the limitations of present techniques and the potential future direction of developments in the CAE field
-Appreciation of the need for process and product development relevant to the introduction of products in a cost effective and timely manner
-Critical review of the present knowledge base, its applicability, usage and relevance to enhance product and enterprise performance

Why choose this course?

This pioneering programme consists of a number of “specialist” Masters awards with an expectation that students will have studied a STEM related discipline to a Bachelor’s level or equivalent, as opposed to a “traditional” masters philosophy aimed at students from an engineering background. The programme offers options with separate entry routes for candidates transitioning from ‘Near STEM’ and ‘Far STEM’ disciplines:The Far STEM route is for first degrees where statistical analysis was a dominant feature of their analytical studies. Students will spend one to two semesters studying appropriate Level 4/5 modules in the first year then joining the Near STEM cohort (e.g., chemistry or biology). The Near STEM route is for admission of relevant first degree candidates and whose programme would have made extensive use of applied mathematics to design and explain engineering and/or scientific concepts (e.g., physics or maths).

Careers

The successful postgraduates of the programme will acquire the knowledge and understanding, intellectual, practical and transferable skills necessary for the analysis and synthesis of problems in engineering through a combination of experimental, simulation, research methods and case studies. They can expect to gain work in a range of disciplines within a variety of industries from specialist technical roles to positions of management responsibility.

Teaching methods

The School has a reputation for innovation in teaching and learning, where nearly all MSc modules are delivered through a combination of traditional face-to-face teaching and backup tutorial's using the University's StudyNet web based facility.
The online StudyNet is accessible 24/7 and allows students to access electronic teaching and learning resources, and conduct electronic discussion's with staff and other students. A heavy emphasis is placed on theory and practice, and the School has a policy of using industrial standard software wherever possible. The School also operate an open access laboratory, and computer policy, that will help students complete coursework and assignments, at a scheduled pace and on time.

Structure

Year 1
Core Modules
-Advanced Engines & Power Systems
-Automotive Chassis & Powertrain Technology
-Automotive Dynamics & Safety
-Automotive Materials & Manufacture
-CFD Techniques
-Dynamics
-Operations Management
-Operations Research

Year 2
Core Modules
-Individual Masters Project

Read less
Created in partnership with companies such as the Ford Motor Company and Jaguar Land Rover, the programme is also aimed at existing or prospective product development engineers and those working in manufacturing, particularly those working alongside product design personnel in the context of cross-functional teams and simultaneous working practice. Read more
Created in partnership with companies such as the Ford Motor Company and Jaguar Land Rover, the programme is also aimed at existing or prospective product development engineers and those working in manufacturing, particularly those working alongside product design personnel in the context of cross-functional teams and simultaneous working practice.

Students study three compulsory modules and a further three modules from a choice of five. In addition, full-time students undertake a university-based project and part-time students undertake an industry-based project.

An online study support system provides additional information and materials to facilitate student discussion.

The programme is accredited by the Institution of Mechanical Engineers (towards Chartered status).

This course is aimed at engineers working in the automotive industry who wish to extend and deepen their skills and understanding of the field, as well as recent graduates who intend to start a career in the industry.

Though primarily aimed at product development engineers, the course offers significant value to those working in the manufacturing side of the industry and those who work alongside colleagues from product design in the context of cross-functional teams. Individual modules of this MSc can be studied as short courses.

The programme is very much one of technical engineering content, sitting in a systems engineering framework.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/aero-auto/automotive-systems-engineering/

Course structure and teaching

Students study three compulsory modules, three optional taught modules and carry out an individual project. In total the course comprises 180 modular credits, made up from 6 taught modules valued at 20 credits each, plus the project which is valued at 60 credits.

The course is mostly delivered as a series of block taught modules. An online study support system provides additional information and materials to facilitate learning and discussion. Full time students undertake a University based project and part time students undertake an industry based project.

Assessment: Examination, coursework assignments and project dissertation.

Course features

- Incorporates a systems thinking framework, referring to product lifecycle, target setting, requirements capture and cascade, plus elements of business-related drivers for engineering practice.

- Provides clear links between design and manufacture, for example presenting examples where manufacturing capabilities have a large impact on design and system robustness.

- Develops advanced and specialist themes via the optional modules.

- Expertise provided from industry-based specialists.

- Individual modules can be studied as short courses.

- The MSc course was originally developed in partnership with Ford Motor Company, and we continue to work closely with the automotive industry in designing, developing and delivering our courses.

Compulsory modules

- Manufacturing Systems and Integrated Design
- Vehicle and Powertrain Functional Performance
- Vehicle Systems Analysis
- Project

Optional modules (select three)

- Body Engineering
- Powertrain Calibration Optimisation
- Sustainable Vehicle Powertrains
- Vehicle Dynamics and Control (for full time programme only)
- Vehicle Electrical Systems Integration

Careers and further Study

Graduates work primarily in product design and development groups and are sought after by a wide range of automotive companies. Students that wish to pursue other careers are well-equipped to work in a wide range of sectors within the vehicle industry.

Scholarships

Loughborough University offers five merit based competitive scholarships to the value of 10% of the programme tuition fee for international students applying for the MSc in Automotive Systems Engineering. All students applying for the course will be considered for the scholarship.

Why choose aeronautical and automotive engineering at Loughborough?

The Department of Aeronautical and Automotive Engineering is a specialist centre within one of the UK’s largest engineering universities.

The Department has 37 academic staff and nearly 150 postgraduate students on taught and research programmes. In the Government’s External Subject Review, the Department was awarded an excellent score (23/24) for the quality of its teaching.In the most recent Research Excellence Framework our subject areas featured in the top ten nationally.

- Facilities
The Department has extensive laboratories and facilities including: wind tunnels; anechoic chamber; indoor UAV testing; structures testing facilities; gas-turbine engines; eight purpose-built engine test cells; Hawk aircraft; 6-axis simulator (road and aircraft); chassis dynamometer and numerous instrumented test vehicles.
The Department hosts the Rolls-Royce University Technology Centre (UTC) in Combustion Aerodynamics and the Caterpillar Innovation and Research Centre (IRC) in engine systems.

- Research
The Department has four major research groups working across the technologies of automotive and aeronautical engineering. Each group works on a variety of research topics, ranging from the development of new low emissions combustion systems for gas turbine engines, through to fundamental investigations into the operation of hydrogen powered fuel cells.

- Career prospects
Over 87% of our graduates were in employment and/or further study six months after graduating. The Department has particularly close links with BAE Systems, Bentley, British Airways, Ford Motor Company, Group Lotus, Jaguar Land Rover, JCB, MIRA, Perkins Caterpillar, Rolls-Royce and many tier one automotive suppliers

Find out how to apply here http://www.lboro.ac.uk/departments/aae/postgraduate/apply/

Read less
This MSc course has been developed for the Jaguar Land Rover Technical Accreditation Scheme. The course is available on a part time basis, taking typically four years to complete. Read more
This MSc course has been developed for the Jaguar Land Rover Technical Accreditation Scheme.

The course is available on a part time basis, taking typically four years to complete. Students take 12 Assessed Modules over 3 years, 5 of which are Core (C) and 7 Optional (O), plus a project on a SSE topic within the automotive domain (over the final year). See the Project tab for more details.

This modular MSc is designed to prepare students for work in the demanding field of Safety Systems Engineering (SSE) by exposing them to the latest science and technology within this field. In the core module phase, the course focuses on the principles and practices in SSE across a range of domains, including automotive. In the optional module phase, the course focuses on specialist SSE and automotive topics. The projects are also designed to consider SSE topics within an automotive context.

The discipline of SSE developed over the last half of the twentieth century. It can be viewed as a process of systematically analysing systems to evaluate risks, with the aim of influencing design in order to reduce risks, i.e. to produce safer products and services. In mature industries, such as aerospace and nuclear power, the discipline has been remarkably successful, although there have been notable exceptions to the generally good safety record, e.g. Fukushima, Buncefield and the Heathrow 777 accident.

Various trends pose challenges for traditional approaches to SSE. For example, classical hazard and safety analysis techniques deal poorly with computers and software where the dominant failure causes are errors and oversights in requirements or design. Thus these techniques need extending and revising in order to deal effectively with modern systems. Also, in our experience, investigation of issues to do with safety of computer systems have given some useful insights into traditional system safety engineering, e.g. into the meaning of important concepts such as the term hazard. The optional modules allow students to investigate such areas as the contribution of software, human factors or operational factors within an automotive engineering context in more depth.

Learning Outcomes
The course aims to provide participants with a thorough grounding and practical experience in the use of state-of-the-art techniques for development of safety critical systems, together with an understanding of the principles behind these techniques so that they can make sound engineering judgements during the design, deployment and operation of such systems. Graduates completing the course will be equipped to participate in safety-critical systems engineering related aspects of industry and commerce.

New areas of teaching will be developed in response to new advances in the field as well as the requirements of the organisations that employ our graduates.

The course aims to equip students with knowledge, understanding and practical application of the essential components of System Engineering, to complement previously gained knowledge and skills. A York System Safety Engineering with Automotive Applications graduate will have a knowledge and understanding of the essential areas, as represented by the core modules, knowledge and understanding on a number of specialist topics, as represented by the optional modules. and an ability to identify issues with the safety process in a particular project, identify responses to this gap and evaluate the proposal, as represented by the project.

Transferable Skills
Information-retrieval skills are an integrated part of many modules; students are expected to independently acquire information from on-line and traditional sources. These skills are required within nearly all modules.

Numeracy is required and developed in some modules. Time management is an essential skill for any student in the course. The formal timetable has a substantial load of lectures and labs. Students must fit their private study in around these fixed points. In addition, Open Assessments are set with rigid deadlines which gives students experience of balancing their time between the different commitments.

All students in the University are eligible to take part in the York Award in which they can gain certified transferable skills. This includes the Languages for All programme which allows students to improve their language skills.

Projects

The MSc System Safety Engineering with Automotive Applications project for part-time students is 60 credits in length:
-Literature survey on a subject to determine the state of the art in that area
-A gap in the state of the art identified in the first part is addressed, a proposal made and evidence provided for the proposal. This project is completed in September of a student's fourth year

The Project(s) enable(s) students to:
-Demonstrate knowledge of an area by means of a literature review covering all significant developments in the area and placing them in perspective
-Exhibit critical awareness and appreciation of best practice and relevant standards
-Investigate particular techniques and methods for the construction of safe systems, possibly involving the construction of a prototype
-Evaluate the outcome of their work, drawing conclusions and suggesting possible further work in the area

The project(s) address(es) a technical problem concerned with real issues in the automotive domain. It should, if possible, include the development and application of a practical method, technique or system. It is a natural progression from the taught modules, and builds on material covered in them. It addresses the problem from an automotive system safety perspective, including hardware, software or human factors. It will typically have an industrial flavour, students are encouraged, with the help of their managers and academic staff, to select a project which is relevant to their own work.

The project begins at the start of the Autumn term after completion of the taught modules, and lasts 12 months part-time. There are three weeks attendance at York during the project, for progress assessment and access to library facilities: in October near the start of the project; and in the following January and July.

Read less
The Automotive Retail Management course is suitable for Dealer Principals, Managers, Supervisors and Team Leaders. See the website http://www.lboro.ac.uk/departments/sbe/executive-education/programmes/accredited/arm/. Read more
The Automotive Retail Management course is suitable for Dealer Principals, Managers, Supervisors and Team Leaders.

See the website http://www.lboro.ac.uk/departments/sbe/executive-education/programmes/accredited/arm/

About the Programme

The postgraduate programmes are specially designed for experienced managers seeking to develop practical skills whilst working towards a university award.

Certificate in Automotive Retail Management:
The Certificate programme particularly benefits managers, supervisors and team leaders, and provides a route to a Postgraduate Diploma in Automotive Retail Management.

Diploma in Automotive Retail Management:
The Diploma programme is designed for aspiring and existing dealer principals, managers, supervisors and team leaders, and provides a sound basis for those seeking to extend their studies to MSc and MBA level.

MSc in Automotive Retail Management:
Dealer principals and managers who have graduated in the Diploma may extend their qualification to an MSc by completing a further two modules and a project.

The programme aims to:
- Develop individual skills and prepare participants for management career progression in the automotive retail sector, mainly through development of both their technical knowledge and skills, and their conceptual and analytical abilities;

- Prepare participants for automotive retail management roles in which they will be expected to contribute towards the functional and strategic management of their organisations;

- Provide participants with the opportunity to develop deep understanding in areas of particular interest by undertaking research and work-based projects;

- Enable participants to see ways in which theory can be applied in practice to complex issues with the aim of improving business and management practice;

- Enhance students’ career development in the automotive sector;

- Encourage participants to pursue personal development and lifelong learning skills and be self-motivating;

- Provide a relevant, practical and constantly updated programme through close links with the automotive industry.

Structure and Delivery

Both the Certificate and the Diploma will each extend over a period of 12 months (totalling 24 months for completion of both stages). The programmes involve a combination of short daytime modules, work-based assignments and projects. Both programmes are also delivered via block release; learning methods and assessment are tailored to participants’ needs.

The MSc stage is completed by undertaking an additional two short daytime modules and a supervised project, requiring a total of 12 months study.

Modules

Core Modules (Certificate, Diploma, MSc):
All students irrespective of their qualification aim will study the following modules:
- Introduction to Business Planning
- Generating Customer Loyalty
- Operations Management
- Foundations of Management
- Finance for Managers
- Decision Systems

Find out how to apply here http://www.lboro.ac.uk/departments/sbe/executive-education/apply/

Read less
This course provides a dynamic opportunity to develop engineering skills for the automotive industry. It aims to provide in-depth understanding of modern developments in vehicle design, vehicle dynamic control systems, vehicle propulsion systems and vehicle structures. Read more
This course provides a dynamic opportunity to develop engineering skills for the automotive industry. It aims to provide in-depth understanding of modern developments in vehicle design, vehicle dynamic control systems, vehicle propulsion systems and vehicle structures. You will build, test and analyse the performance of vehicle control systems, dynamic systems and automotive sub-systems. You will have the opportunity to showcase your specialist skills and interests and demonstrate independent learning via an automotive-focused project, assessed through the production and examination of a thesis, which completes the MSc.

The automotive sector offers a unique and exciting career for graduates. The UK automotive sector alone employs 770,000 people and has 13 research and development centres. According to a report published by the Automotive Council UK, ‘up to 5,000 vacancies are unfilled in the automotive industry due to skills shortages’. This is further reflected in announcements from Ford, Rolls-Royce, Bentley and Jaguar Land Rover in recent years regarding investment in the UK automotive sector.

This course starts in September 2017 and January 2018. Please note that January starters will have a course duration of approximately 15 months.

Non-means-tested loans of up to a maximum of £10,000 will be available to postgraduate master’s students.

Features and benefits of the course

-A unique feature of this programme is the practical application provided by the linking of the project to the automotive industry, from specialist companies such as Bentley to large scale producers such as Ford.
-Engineering facilities are excellent with a dedicated £4m heavy engineering workshop for research and teaching in surface engineering, materials and dynamics, and state-of-the-art kit including rapid prototyping machines and water jet cutters.
-Research in the School of Engineering was rated 'internationally excellent' in the most Research Excellence Framework (2014).
-You will learn from industrial case studies and use the latest, industry standard software.
-The main student intake is in September but it is also possible to begin studying in January.

About the Course

Our engineering Masters programmes are designed to meet the needs of an industry which looks to employ postgraduates who can learn independently and apply critical thinking to real-world problems. Many of the staff who teach in the School also have experience of working in industry and have well-established links and contacts in their industry sector, ensuring your education and training is relevant to future employment.

Assessment details

You will be assessed through a combination of written reports, oral presentations, practical assignments and written examinations.

Read less
This course is aimed at engineering graduates who wish to work in the automotive industry, with particular focus on the design, performance and operation of automotive powertrains and vehicle systems. Read more
This course is aimed at engineering graduates who wish to work in the automotive industry, with particular focus on the design, performance and operation of automotive powertrains and vehicle systems.

Our graduates have the technical and managerial skills and expertise that are highly sought after by the automotive industry.

Our course will not only help prepare you for an exciting career in the industry, but it will also help prepare you to continue your studies onto a Doctor of Philosophy research programme.

Many distinction-level graduates from this programme stay on for a PhD, often funded in part by the University of Bath.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/automotive/index.html

Learning outcomes

By studying our MSc in Automotive Engineering you will:

- Understand the vehicle design process and the operation and performance of important sub-systems
- Analyse current and projected future environmental legislation and the impact this has on the design, operation and performance of automotive powertrain systems
- Analyse in detail the operation and performance indicators of transmission systems, internal combustion engines and after treatment devices.

Collaborative working

The programme includes traditionally taught subject-specific units and business and group-orientated modular work. These offer you the chance to gain experience in design, project management and creativity, while working with students from other subjects.

- Group project work
In semester 2 you undertake a cross-disciplinary group activity for your professional development, simulating a typical industrial work situation.

- Individual project work
In the final semester, you undertake an individual research project directly related to key current research at the University, often commissioned by industry.

Structure

See programme catalogue (http://www.bath.ac.uk/catalogues/2015-2016/me/me-proglist-pg.html#B) for more detail on individual units.

Semester 1 (October-January):
The first semester of our course allows students to choose from a range of fundamental and more advanced lecture courses covering the analysis methods and modelling techniques that are used in the simulation, design and manufacture of modern vehicles and powertrains.

- Five taught units
- Includes coursework involving laboratory or small project sessions
- Typically each unit consists of 22 hours of lectures, may involve a number of hours of tutorials/exercises and laboratory activity and approximately 70 hours of private study (report writing, laboratory results processing and revision for examinations)

Semester 2 (February-May):
In Semester 2 you will study both technical specialist units and project-based units. You will develop your professional understanding of engineering in a research and design context. You will gain analytical and team working skills to enable you to deal with the open-ended tasks that typically arise in practice in present-day engineering.

- The semester aims to develop your professional understanding of engineering in a business environment and is taught by academic staff with extensive experience in industry
- Group projects in which students work in a multi-disciplinary team to solve a conceptual structural engineering design problem, just as an industrial design team would operate
- Individual project preliminary work and engineering project management units

Summer/Dissertation Period (June-September):
The full time summer project gives students the opportunity to develop their understanding of aspects of the automotive material covered in the first semester, through a detailed study related to the research interests and specialisations of a member of the academic staff. The students will often be working as part of a larger group of researchers including postgraduates, research officers and undergraduates and as such have access to the state of the art automotive test facilities within the department.

- Individual project leading to MSc dissertation
- Depending on the chosen area of interest, the individual project may involve theoretical and/or experimental activities; for both such activities students can use the department computer suites and well-equipped and newly refurbished laboratories for experimental work. The individual projects are generally carried out under the supervision of a member of academic staff. A number of industrially-based projects are available to students

Subjects covered

- Heat transfer
- Engineering systems simulation
- Engine & powertrain technologies
- Professional skills for engineering practice
- Vehicle engineering
- Vehicle dynamics & aerodynamics

Career Options

Our MSc graduates now work all over the world in various industries, while a number of them pursue their Doctorates in universities worldwide. Recent graduates have secured jobs as:

- Calibration Engineer, Ford Motor Company Ltd
- Product Engineer, Renault
- Engineering Consultant, D'Appolonia

Companies which have hired our recent graduates include:

British Aerospace
Airbus UK
Intel
Ricardo
Cambstion
Panama Canal Authority
Moog Controls Ltd

About the department

Bath has a strong tradition of achievement in mechanical engineering research and education.

We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

We offer taught MSc students the chance to carry out projects within outstanding research groupings.

Our research impact is wide and we are dedicated to working with industry to find innovative solutions to problems that affect all areas of society.

We are consistently ranked among the UK’s top 10 mechanical engineering departments in the annual league tables.

We believe in producing leaders, not just engineers.

We will give you the edge over your competitors by teaching you how technology fits into commercial settings. You will not only have access to cutting edge science and technology, we will also provide you with the skills you need to manage a workforce in demanding business environments.

For further information visit our departmental website (http://www.bath.ac.uk/mech-eng/pgt/).

Find out how to apply here - http://www.bath.ac.uk/study/pg/apply/

Read less
For Dealer Principals, Senior Managers, Departmental Managers and those aspiring to these positions. See the website http://www.lboro.ac.uk/departments/sbe/executive-education/programmes/accredited/sadm/. Read more
For Dealer Principals, Senior Managers, Departmental Managers and those aspiring to these positions.

See the website http://www.lboro.ac.uk/departments/sbe/executive-education/programmes/accredited/sadm/

About the Programme

Our MSc in Strategic Automotive Dealership Management is designed to enable managers from all marques to challenge current practice and develop solutions with the potential to significantly improve the performance of their business.

"I have gained a large range of knowledge about the Automotive Retail Industry. Coming from not knowing anything about the Industry and working with people that have worked in it their whole lives has helped a lot. I have also had to work with people from completely different backgrounds, which has taught me a lot about myself and how to treat others using people skills I have developed."

The programme will benefit highly motived senior managers, and those aspiring to these positions, who have the potential to lead themselves and their businesses into a successful future.

The programme aims to:
- Develop individual skills and develop participants management career progression in the automotive retail sector, mainly through development of both their technical knowledge and skills, and their conceptual and analytical abilities;

- Develop participants’ automotive retail management roles in which they will be expected to further develop their contribution towards the functional and strategic management of their organisations;

- Provide participants with the opportunity to develop deep understanding in areas of particular interest by undertaking research and work-based projects;

- Enable participants to see ways in which theory can be applied in practice to complex issues with the aim of improving business and management practice;

- Enhance students’ career development in the automotive sector.

- Encourage participants to pursue personal development and lifelong learning skills and be self-motivating.

- Provide a relevant, practical and constantly updated programme through close links with the automotive industry.

Structure

The course is part time and extends over a period of 33 to 36 months. It involves a combination of short daytime modules and work-based assignments and projects. Work-based assignments give you the opportunity to research key aspects of your business with the aim of delivering business improvements, maximising your return on investment.

Modules

Core Modules:
- Information and Decisions Systems
- Strategic Dealership Management
- Financial Management
- Retail Marketing Strategy
- Strategic Human Resource Management
- Leading Strategic Change
- Project
- Plus 3 work-based assignments

Optional Modules (choice of one module):
- Managing Enterprise and Innovation
- Cross Cultural and International Management

Find out how to apply here http://www.lboro.ac.uk/departments/sbe/executive-education/apply/

Read less
The TU Wien and the Slovak University of Technology in Bratislava (STU Bratislava) jointly offer with the collaboration of the Mobility Cluster of the Vienna Business Agengy a Professional MBA Program of international format. Read more
The TU Wien and the Slovak University of Technology in Bratislava (STU Bratislava) jointly offer with the collaboration of the Mobility Cluster of the Vienna Business Agengy a Professional MBA Program of international format.
Main objectives of the Professional MBA Automotive Industry are to provide knowledge and to upgrade skills for present & future managers in the automotive industry or its component suppliers.

Graduates of this program will posses profound knowledge of management within this industry and should be able to identify short-term as well as long-term challenges, to structure complex, dynamic projects, to manage independently a project using project management tools, to make right decisions in complex and difficult situations, to stay abreast of national as well as international changes.

Contents
Accounting & Controlling
Management Science
Organizational Behavior & Human Resource Management
Marketing & Competition Strategy
Corporate Finance
European & International Business Law
Managerial Economics
Communication Skills & Social Competence
Process & Quality Management in Automotive Industry
Automotive Production & Logistics
Master's Thesis
In addition to the lectures various excursions and evening discussions with well-known guest speakers from the automotive and its supplier industry are planned.

Target Group
The Professional MBA program is intended for present as well as prospective managers in the automotive and its component supplier (eg SMEs) industry. The target group mainly consists of engineers, natural scientists, economists and managers from this industry who have taken their first career steps towards management and now want to prepare themselves for a further career development.

Read less
Modern vehicles are often taken for granted and yet they represent an incredibly complex and diverse set of disciplines. Read more
Modern vehicles are often taken for granted and yet they represent an incredibly complex and diverse set of disciplines. The automotive electronics engineer has to bring together real-time software, safety critical constraints, sensor electronics, control algorithms, human factors, legislation and ethics into a working package that satisfies multiple stakeholders.

The Ricardo engineering consultancy helped to develop this course, ensuring MSc students come away equipped with industry-relevant skills. Their continued involvement includes offering the use of pioneering industry equipment through the Ricardo Universities IC Engines research facility. They also help to cultivate future engineering talent, both locally and internationally.

On this MSc course you'll explore a range of topics including interconnected communication networks, entertainment systems, safety critical software, diagnostics, alternative fuels and hybrid technologies.

In the latest Research Assessment Exercise (RAE2008), our automotive engineering research group achieved an excellent rating, with 70 per cent of its research rated as internationally excellent or world leading, and 95 per cent deemed to have been internationally recognised.

Our reputation has enabled us to invest more in our facilities.

This MSc is accredited by the Institution of Engineering and Technology on behalf of the Engineering Council as meeting the requirements for further learning for registration as a chartered engineer. Candidates must hold a CEng-accredited BEng or BSc(Hons) undergraduate degree to comply with full CEng registration requirements.

Course structure

The course starts in September. You will study four modules each term and will take exams after your Christmas and Easter vacations.

For each taught module you will have between three and four hours' contact with the lecturer each week, alongside further self-study tutorial and laboratory exercises requiring study outside of the class contact time.

After all eight taught modules have been completed you will then begin your individual project and masters dissertation stage. This final stage is full-time, but there are no classes during this phase, which ends in early September.

It is possible to study part-time study, by taking the modules at a slower rate. This can be tailored to fit around any personal or professional commitments that you may have. Please note, however, that there is no evening teaching so if you wish to study part-time then you will need to agree on study leave with your employer in order to attend the classes. The final project phase could be conducted at your place of work in some cases.

Syllabus

You will study eight modules and embark on an individual project. This project will form the basis of your dissertation.

Core modules:

Engineering with MATLAB
Sustainable Automotive Power Technology
Automotive Communication Systems
Embedded Processor Systems
Power Train Engineering
Sensors and Interfacing
Power Electronics and Actuators
An individual project on which you base your dissertation

Option modules:

Advanced Computer Systems
Secure Information Systems Engineering

Individual projects have included real-time power-train modelling for software in the loop testing, a smart grid system using electric vehicles as an energy storage resource and an experimental investigation of novel fuel injection and ignition systems for a spray-guided gasoline engine.

Our research labs

The Division of Engineering and Product Design’s research and teaching laboratories house a number of engine test cells in which world leading research is carried out. Although these labs centre on cylinders, pistons and valves they are surrounded by complex electronic equipment to control the mechanics and to monitor pressures, temperatures, chemistry and capture high speed events on computer for real-time and post-run analysis.

MSc students often carry out projects in these labs and make their contribution to research or commercial innovation. For details of these state of the art laboratories see Sir Harry Ricardo Laboratories.

Professor Stipidis and his team provide valuable state-of-the-art research into automotive communications architectures and also provide infrastructure for some of the laboratory exercises in the Automotive Communications Systems taught module.

Employability

This course serves as a training and proving ground for the next generation of researchers. It is ideal for those hoping to be employed as development or research engineers.

The MSc can also serve as the basis for further study at a doctoral level.

The nature of graduate work varies; it could be with OEM’s (Original Equipment Manufacturers) like Ford, General Motors, Jaguar Land Rover; it could be with consultants such as Ricardo, Lotus or AVL; or Tier One suppliers such as Delphi, Infineon or Denso.

Scholarships

Scholarships are available for this course. Please click the link below for more information.

https://www.brighton.ac.uk/studying-here/fees-and-finance/postgraduate/index.aspx

Read less
Our MSc Automotive Engineering course will teach you the skills you need to become a skilled engineer, capable of undertaking related tasks within and across different organisations. Read more
Our MSc Automotive Engineering course will teach you the skills you need to become a skilled engineer, capable of undertaking related tasks within and across different organisations.

What's covered in the course?

Our MSc Automotive Engineering course will teach you the skills you need to become a skilled engineer, capable of undertaking related tasks within and across different organisations.

The course will encourage creative thinking and the development of engineering leadership skills, as well as teaching you how to solve problems through research. You’ll engage in independent study, advancing your understanding and developing new skills.

In addition to further academic research opportunities, career prospects are expected to keep pace with the rapid advances in computer aided methods and intelligent technologies, hence, there is expected to be continuing demand for competent, versatile postgraduates who can design and implement innovative solutions for industry.

Why choose us?

-You’ll be introduced to industry-standard, sophisticated computer-based tools, such as mechanism analysis, computational fluid dynamics, finite element analysis and solid modelling, and have the opportunity to apply them to real engineering problems.
-Our accreditation from the Institution of Mechanical Engineers (IMechE) keeps our course fresh and relevant, as well as providing us with key industry contacts and insight.

Course in depth

Knowledge and understanding are acquired though formal lectures, tutor-led seminars and practical activities, and a range of independent learning activities. Emphasis is placed on guided, self-directed and student-centred learning with a progressively increasing independence of approach, thought and process. This independent learning includes an element of peer review in order to evaluate the effectiveness of the learning.

Lectures are used to introduce themes, theories and concepts, which are further explored in seminars. Technology enhanced learning is used, where appropriate, through the provision of online resources, discussion forums and other activities. Analytical and problem-solving skills are further developed using a range of appropriate 'real' and 'theoretical' case studies and problem-based learning scenarios.

You will be supported by a personal tutor based at the University, who will see you for regular one-to-one meetings. These meetings will generally take place at the beginning of each semester and at the end of the academic year.

The course has an emphasis on active and participative education, including practical learning, problem-based learning and group work, which will develop their skills of analysis, synthesis, decision making and the ability to cope with new and unfamiliar problems.

A range of assessment methods are employed with associated assessment criteria. Knowledge and skills are assessed, formatively and summatively, by a number of methods such as coursework, examinations (seen and unseen, open and closed-book), presentations, practical assignments, vivas, online forums, podcasts, and project work.

Modules
-Research Methods 20 credits
-Advanced Dynamics 20 credits
-Advanced Systems Engineering 20 credits
-Control Engineering 20 credits
-Vehicle Control Systems 20 credits
-Advanced Powertrains and Controls 20 credits
-Master’s Project 60 credits

Institution of Mechanical Engineers (IMechE)

The course is accredited by IMechE, ensuring our content remains fresh, relevant and replete with key industry information.

Enhancing your employability skills

This course aims to provide you with an advanced understanding of modern automotive systems and processes, and their application within industry. It will relate to the requirements of new global, environmental infrastructure and economic drivers.

There is high demand throughout the automotive industry for engineers who can demonstrate that they have both a detailed academic knowledge and advanced practical skills. Employers are also keen to employ people who can design and analyse complex systems and components within the automotive engineering environment.

Read less

Show 10 15 30 per page



Cookie Policy    X