• Cardiff University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Coventry University Featured Masters Courses
King’s College London Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Reading Featured Masters Courses
Cass Business School Featured Masters Courses
Northumbria University Featured Masters Courses
"audio" AND "electronics"…×
0 miles

Masters Degrees (Audio Electronics)

  • "audio" AND "electronics" ×
  • clear all
Showing 1 to 15 of 17
Order by 
The program aims to form Master graduates with a comprehensive and solid scientific and technological background in Electronics Engineering, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged. Read more

Mission and goals

The program aims to form Master graduates with a comprehensive and solid scientific and technological background in Electronics Engineering, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged.
To meet these training needs, the Master of Science in Electronics Engineering bases its roots on a full spectrum of basic courses (mathematics, classical and modern physics, computer science, signal theory, control and communications, basic electronic circuits) that are prerequisites required from the Bachelor, and focuses on the most advanced disciplines in electronic design (analog and digital electronics, solid state physics and devices, microelectronics, optoelectronics, sensors and electronic instrumentation, communications and control systems) to provide a complete and updated preparation. Upon graduating, students will have developed a “design oriented” mindset and acquired a skill to use engineering tools to design solutions to advanced electronic challenges in scientific and technological fields.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

Career opportunities

Thanks to the deep and solid scientific and technological knowledge provided, Master of Science graduates in Electronics Engineering will be able to hold positions of great responsibility, both at technical and management level, in a wide variety of productive contexts:
- Scientific and technological research centers, national and international, public or private;
- Industries of semiconductors, integrated circuits and in general of electronic components;
- Industries of electronic systems and instrumentation, such as consumer electronics (audio, video, telephone, computers, etc.), optoelectronics, biomedical, etc.;
- Electromechanical industries with high technological content such as aeronautics, transportation, aerospace, energy, robotics and plant automation, etc.;
- Work as a freelance in the design and fabrication of custom electronic systems.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electronics_Engineering_01.pdf
The Master of Science in Electronics Engineering aims to form graduates with a comprehensive and solid scientific and technological knowledge in the field of Electronics, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged. The course focuses on the most advanced aspects of Electronics (analog and digital integrated circuits design, solid state devices, microelectronics, optoelectronic devices and sensors, electronic instrumentation, communications and control systems) to provide a complete and updated professional preparation. Upon graduating, students will have developed a “design oriented” mindset enabling them to successfully deal with the complex needs of today’s industrial system. They will have also acquired a skill to use engineering tools to design solutions to advanced electronic challenges in scientific and technological fields as well as a maturity to hold positions of great responsibility both at technical and management level. The programme is taught in English.

Required background from Bachelor studies

The Master of Science in Electronics Engineering bases its roots on a full spectrum of knowledge that students are expected to have successfully acquired in their Bachelor degree, like advanced mathematics, classical and modern physics, computer science, signal and communication theory, electric circuits and feedback control, basic electronic devices and analog & digital circuit analysis.

Subjects

- Analog & Digital Integrated Circuit Design
- MEMS and Microsensors
- Electronic Systems
- Electron Devices and Microelectronic Technologies
- Signal recovery and Feedback Control
- Optoelectronic Systems and Photonics Devices
- RF Circuit Design
- Power Electronics
- Semiconductor Radiation Detectors
- FPGA & Microcontroller System Design
- Biochip and Electronics Design for Biomedical Instrumentation

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Audio engineering is a well-developed and far-reaching field encompassing the subjects of loudspeaker and microphone design, analogue and digital electronics, digital signal processing, acoustics, psychoacoustics, computer programming and more. Read more

About this course

Audio engineering is a well-developed and far-reaching field encompassing the subjects of loudspeaker and microphone design, analogue and digital electronics, digital signal processing, acoustics, psychoacoustics, computer programming and more. The widespread need for audio engineers in these fields provides an ongoing demand for well-educated and trained professionals. This MSc programme has been devised to allow good graduates of electronic engineering, music technology, or similar courses to develop the higher level expertise needed to enter the field of audio engineering, and to allow those already in it to upgrade their skills and understanding.

You'll be taught by internationally-recognised experts in the field of audio engineering, and will yourself be part of ground-breaking research in the field. We maintain close links with local, national and international industry, as well as professional bodies, ensuring
that the teaching on this course remains contemporary and relevant while bringing in a number of these key contacts to deliver guest lectures, seminars and workshops. This course is designed with a focus on innovation and critical thinking in order to develop graduates capable of driving the next generation of audio technology and remaining on the leading edge of audio engineering throughout their careers.

You’ll develop the skills and knowledge valued most by employers in the field of audio engineering. To do this we have developed the course in consultation with leading organisations in the field and have identified the areas of audio electronics, live sound reinforcement, surround sound systems and software engineering as central to the needs of the industry.

You'll develop your skills in critical thinking and innovative thinking, allowing you to remain at the leading edge of audio engineering and to drive future innovation in audio when you join the industry after graduation.

You'll learn and research in our state-of-the-art facilities including 3D multi-channel sound rooms, live event production spaces and fully equipped analogue and digital electronics laboratories.

You’ll study modules such as:

Audio Electronics
Audio Innovation
Live Sound System Design and Optimisation
Independent Engineering Scholarship
Advanced Surround Systems
Audio Software Engineering
Negotiated Technical Module

Read less
Fascinated by the science of sound? Southampton Solent University’s applied acoustics masters programme can provide you with the skills and knowledge required to work in a range of acoustics fields. Read more

Overview

Fascinated by the science of sound? Southampton Solent University’s applied acoustics masters programme can provide you with the skills and knowledge required to work in a range of acoustics fields. Suitable graduate destinations include consultancy, engineering, environmental health, built environment work or further study at PhD level.

Taught by experts with experience in both research and industry, you can get hands-on experience and learn to use the latest measurement, simulation and modelling technology. You will also study important acoustics principles including how humans respond to sound, acoustic physics, and how sound interacts with our environment.

- Students learn from industry experts with strong backgrounds in industry, research and consultancy roles.
- Southampton Solent’s on-campus acoustics consultancy provides students with the opportunity to work with real clients.
- The curriculum is informed by industry partners and Solent’s strong track record of acoustics research.
- Solent has a 10-year history of successful graduate employment in the acoustic industries.
- Students are given the opportunity to tailor the programme to their own career ambitions by picking from a range of optional units.
- Students have free access to the latest industry-standard technology including a state-of-the-art 3D digital Cinema with Dolby Atmos; a Hemi-anechoic chamber; CadnaA, EASE and CATT software; and a wide variety of lab and field test equipment.

The industry -

Acoustics offers an intellectual and practical challenge across a wide range of sectors - from manufacturing or construction to architecture, telecommunications and engineering.

Acousticians could be involved in designing and planning exciting new infrastructure projects such as airports, motorways and sports arenas; could be responsible for making aeroplanes and cars quieter; or could work on improving the sound quality of consumer electronics. Acousticians are also involved in the design of new buildings – from flats and houses through to skyscrapers and concert halls.

The programme -

Taught by experts with strong research and industry backgrounds, MSc Applied Acoustics offers students the chance to gain hands-on experience with the latest measurement, simulation and modelling technology. Students also study relevant scientific principles such as how humans respond to sound, acoustic physics, and how sound interacts with our environment.

We have excellent links with the Institute of Acoustics (IoA) and the Association of Noise Consultants, as well as a number of commercial companies across the sector. These include KP Acoustics, with whom we have a formal partnership for work placement and mentoring. The course has also been designed to meet the requirements for professional IoA registration.

To aid study and help perfect techniques, students have full access to the University’s laboratory and studio facilities. Students will be able to undertake acoustic measurement and laboratory projects using a wide range of test equipment such as sound level meters, a 16-channel data acquisition system, head and torso simulators, a laser vibrometer and ambisonic microphones. Students will also have access to cutting-edge simulation and modelling software, including MATLAB, NI Labview, CadnaA, CATT Acoustic, and EASE.

The University also offers access to specialist facilities for the testing and demonstration of acoustic and electro-acoustic principles, including a hemi-anechoic chamber, audio isolation booths for sound recording and audiometric testing, and the University’s own digital 3D cinema.

Thanks to the course team’s strong industry connections, students have access to guest speakers from a range of relevant organisations. Previous speakers have included Mark Murphy and Jim Griffiths (Vanguardia Consulting), Nicholas Jones (Hilson Moran) and Phil McIlwain (Westminster City Council).

Course Content

Programme specification document - http://mycourse.solent.ac.uk/course/view.php?id=6152

Teaching, learning and assessment -
The course is taught through classroom seminars/lectures, laboratory sessions and independent learning, as well as your supervised research project. While some laboratory sessions entail working in a group, all assessment is individual.

Partial credit can be awarded to holders of the Institute of Acoustics diploma in acoustics and noise control against equivalent taught modules of the MSc. Please contact the course team for further information.

Work experience -

There are a number of opportunities for work experience with professional partners and contacts, as well as through the University’s own Solent Acoustics consultancy.

Past students have worked on a range of projects, including for Truck Festival, Isle of Wight Festival, Westminster City Council and KP Acoustics.

Additionally, the Professional Skills and Practice unit involves organising your own work placement with an external company, supported by staff and making use of the course team’s industry contacts.

Assessment -

The course is assessed through a mixture of coursework, projects, presentations and practical and written examinations.

Our facilities -

On the master’s course you will have access to a wide range of specialist equipment and facilities, including:

- Hemi-anechoic chamber with 16-channel National Instruments data acquisition system.
- NTi Flexus electroacoustic analysis system with turntable.
- Wide range of Class 1 and 2 Sound level meters.
- Cirrus Research Dosebadge workplace noise assessment kits.
- Building acoustics systems including conical and dodecahedral loudspeakers and tapping machine.
- B&K Head and Torso Simulators (HATS).
- Environmental noise measurement kits.
- Polytec Laser Vibrometer.
- Larson Davis Hand Arm vibration measurement system.
- Siemens Unity and Amplivox audiometers and Larson Davis Audiometer calibration system.
- Computer suites with EASE, CATT and CadnaA acoustic modelling software.

Web-based learning -

Solent’s virtual learning environment provides quick online access to assignments, lecture notes, suggested reading, discussion forums and other course information.

You will also receive a subscription to the online video tutorial resource Lynda.com, to help learn extra professional skills.

The Professional Skills and Practice optional module is a distance/online module, supported through the virtual learning environment.

Why Solent?

What do we offer?

From a vibrant city centre campus to our first class facilities, this is where you can find out why you should choose Solent.

Facilities - http://www.solent.ac.uk/about/facilities/facilities.aspx

City living - http://www.solent.ac.uk/studying/southampton/living-in-southampton.aspx

Accommodation - http://www.solent.ac.uk/studying/accommodation/accommodation.aspx

Career Potential

Acoustics offers an intellectual and practical challenge across a wide range of sectors, from manufacturing or construction to architecture, telecommunications or various engineering industries.

Acousticians could be involved in designing and planning exciting new infrastructure projects such as airports, motorways and sports arenas, or could be responsible for making airplanes and cars quieter, or improving the sound quality of a television or computer.

Acousticians are also involved in the design of new buildings – from flats and houses through to skyscrapers and concert halls.

Career destinations -

Examples of career destinations include:

- acoustic engineer
- audio system designer
- recording studio and concert hall designer
- environmental health officer
- environmental consultant
- audio engineer
- health and safety officer
- building control officer.

Links with industry -

We have excellent links with the Institute of Acoustics and the Association of Noise Consultants, as well as a number of companies across the sector, including KP Acoustics (with whom we have a formal partnership for work placement and mentoring).

Guest speakers from a range of different organisations regularly present seminars and workshops, which have recently included Mark Murphy and Jim Griffiths (Vangardia Consulting), Nicholas Jones (Hilson Moran) and Phil McIlwain (Westminster City Council).

The University also hosts regular industry events and conferences to which students are invited.

Transferable skills -

The MSc in Applied Acoustics offers students a wide variety of transferable skills, such as using software to analyse and present complex data, use of Geographical Information Systems (GIS) and architectural CAD modelling, problem solving, mathematics, project management and research skills.

Further study -

If you are particularly interested in research, the course offers opportunities to continue on to PhD study.

You will also have the chance to gain additional qualifications while you study, such as the Institute of Acoustics (IoA)’s certificates of competence in building acoustics measurement or environmental noise measurement, at significantly reduced cost.

There is also the opportunity to register to take the assessment for the IoA Diploma in Acoustics and Noise Control while taking the MSc (registration fee applies).

Examples of employment obtained by recent graduates -

Solent graduates have gone on to work in acoustics roles for Apple (acoustic engineer), Accon UK, Samsung (audio engineer), Cole Jarman Associates, Hilson Moran, Mott Macdonald, KP Acoustics, Hann Tucker Associates, Hoare Lea, Vangardia Consulting and Clarke Saunders Associates, among others.

Next steps

Looking to hone your knowledge of acoustics while boosting your employability? With top-of-the-line facilities, an experienced teaching team and a history of delivering world-class acoustics tuition, Southampton Solent University’s MSc Applied Acoustics will help equip you with the skills you need to thrive in a range of exciting careers.

Read less
This course delivers a broad coverage of all major disciplines in Electrical Power, including power electronics, electric drives, electrical machine design and power systems. Read more
This course delivers a broad coverage of all major disciplines in Electrical Power, including power electronics, electric drives, electrical machine design and power systems. It also covers important electrical power themes such as renewable energy systems and electric vehicles.

The Electrical Power MSc covers the following key subject areas:
-Electrical Machines
-Power Electronics
-Electric Drives
-Power System Operation
-Control of Electrical Power

A feature of the course is design of electrical systems for transportation and renewable energy applications. This is a particular specialisation of researchers in the School of Electrical and Electronic Engineering.

You will develop a knowledge of industry standard computer aided design and analysis techniques appropriate to electrical power such as the use of software packages such as MagNet, MATLAB, Simulink, PSpice and ERACS.

Throughout the course you use industry standard test and measurement equipment, experimental hardware, and software packages relevant to the field of electrical and power engineering.

The course comprises a mixture of lectures, tutorials, coursework and practical laboratory classes. You will research a specialist topic of your choice through an in-depth project. Innovative educational techniques are designed to equip you with practical design skills and research methodologies.

As a graduate of this course you are equipped with the knowledge and practical experience to embark on a career as an engineer in the field of Electrical Power. You will also have skills in research and knowledge acquisition and a solid foundation for further postgraduate studies in the field of electrical engineering and power engineering.

Delivery

You take modules to a total value of 180 credits over three semesters. Taught modules, worth 120 credits, take place during the first and second semesters with exams held in January and May/June. An individual project, worth 60 credits, is undertaken over semesters two and three.

Background reading and design work take place during the second semester. The majority of experimental work and preparation of your dissertation takes place during the semester three.

Teaching takes place in lecture theatres equipped with audio visual equipment. Blackboard, a web based Virtual Learning Environment (VLE) supports your taught modules. Practical sessions are in small groups with experts in the field of Power Electronics, Electric Drives, Machines, and Power Systems and in modern laboratory and computing facilities.

Employability

We collect information from our graduates six months after they leave University. This is part of the Destination of Leavers from Higher Education (DLHE) survey that every UK higher education institution takes part in.

Accreditation

The course is accredited by the Institution of Engineering and Technology (IET) and Engineering Council, and therefore provides a good foundation for professional registration.

Read less
Why you should choose this course. -You're looking for a course offering an-depth study of cutting-edge compositional techniques, methodologies and associated aesthetics. Read more
Why you should choose this course:
-You're looking for a course offering an-depth study of cutting-edge compositional techniques, methodologies and associated aesthetics
-You want to learn in state-of-the-art facilities, including our £2.5 million electroacoustic studio complex
-You want to pursue a career as a composer working with technology and audio-media, or a PhD in electroacoustic composition

Course description

This course provides an in-depth knowledge of cutting-edge compositional techniques, methodologies and associated aesthetics in creative work that intersects with technology and other artistic or scientific forms. It serves as excellent preparation for a career as a composer working with technology and audio-media, and it provides all the training necessary for embarking on and envisioning novel strands for a PhD in electroacoustic composition, including those informed by other scientific and arts form.

All teaching, research and compositional work is carried out in the NOVARS Research Centre for Electroacoustic Composition, Performance and Sound Art with its state-of-the-art £2.5 million electroacoustic studios. Opportunities for the performance of new works are offered using the 55-loudspeaker sound diffusion system of MANTIS (Manchester Theatre in Sound) and through events such as the Locativeaudio Festival (locativeaudio.org) and Sines and Squares Festival for Analogue Electronics and Modular Synthesis (sines-squares.org). Acousmatic, mixed, live electronic and multimedia works are all possible, with composers able to incorporate the spatialisation of sound and interactive new game-audio media into the presentation of their work.

In addition to the final portfolio, all electroacoustic music and interactive media composition students take the compulsory course unit Composition Project and the further compulsory taught course unit, Fixed Media and Interactive Music . Optional course units normally include Aesthetics and Analysis of Organised Sound, Interactive Tools and Engines, Contemporary Music Studies, Advanced Orchestration, and Historical or Contemporary Performance. There are also choices outside the MusM Composition (subject to course director approval), such as Computer Vision, Mobile Systems, Mobile Communications, Ethno/Musicology in Action: Fieldwork and Ethnography , and Work Placement (Institute of Cultural Practices).

Aims

This programme aims to:
-Build on undergraduate studies, developing skills in electroacoustic composition to Master's level.
-Increase knowledge and a systematic understanding of electroacoustic music.
-Foster the particular creative talents of each individual student.
-Provide all the training necessary for embarking on a PhD in electroacoustic composition.
-Prepare students for a career as a composer and in the wider music industry where critical judgement and developed powers of communication are needed.

Special features

The NOVARS studio complex supports a broad range of activities in the fields of electroacoustic composition and new media. The studios incorporate the newest generation of Apple computers, Genelec, PMC and ATC monitoring (up to 37-channel studios) and state-of-the art licensed software (including Pro Tools HD, Max MSP, GRM Tools, Waves, Ircam's Audiosculpt and Reaper and, for Interactive Media work, Oculus Rift, Unreal Engine 4, Unity Pro and open-source Blender3D). Location and performance work is also supported by a new 64-channel diffusion system.

Postgraduate students at the NOVARS Research Centre play an active role in the planning, organisation and execution of performance events such as the Sines & Squares Festival and MANTIS Festival (over 20 editions since 2004), and projects such as LocativeAudio and our regular Matinée presentations. Relevant training, including rigging and de-rigging the MANTIS system, health and safety, sound diffusion workshops, organisation of Calls for Works when needed, etc., is an important part of the course.

Career opportunities

Graduates of this programme have pursued successful careers in musical and non-musical fields. Some continue to further study via a PhD before securing an academic position. Some go on to teach in schools or further education, both in the UK and overseas. Other areas of work for which advanced compositional training has been directly relevant include recording studios, entrepreneurships, the creative industries, music publishing, music journalism and performance. Careers outside of music have included computer programming, theatre, accountancy, law, social work and human resources.

Read less
Taught by internationally-recognised experts in the University’s Advanced Technology Institute (ATI), this programme will see you discover the practical implementation of nanoscience and quantum engineering, nanomaterials, nanotechnology for renewable energy generation and storage. Read more
Taught by internationally-recognised experts in the University’s Advanced Technology Institute (ATI), this programme will see you discover the practical implementation of nanoscience and quantum engineering, nanomaterials, nanotechnology for renewable energy generation and storage.

You will gain specialised skills through an individual research project within our research groups, using state-of-the-art equipment and facilities.

PROGRAMME OVERVIEW

The programme's broad theme is the practical implementation of nanoscience and quantum engineering, nanomaterials and nanotechnology.

The programme covers the fundamentals behind nanotechnology and moves on to discuss its implementation using nanomaterials – such as graphene – and the use of advanced tools of nanotechnology which allow us to see at the nanoscale, before discussing future trends and applications for energy generation and storage.

You will gain specialised, practical skills through an individual research project within our research groups, using state-of-the-art equipment and facilities. Completion of the programme will provide you with the skills essential to furthering your career in this rapidly emerging field.

The delivery of media content relies on many layers of sophisticated signal engineering that can process images, video, speech and audio – and signal processing is at the heart of all multimedia systems.

Our Mobile Media Communications programme explains the algorithms and intricacies surrounding transmission and delivery of audio and video content. Particular emphasis is given to networking and data compression, in addition to the foundations of pattern recognition.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and an extended project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-RF and Microwave Fundamentals
-Nanoscience and Nanotechnology
-Molecular Electronics
-RF Systems and Circuit Design
-Nanofabrication and Characterisation
-Energy Economics and Technology
-Semiconductor Devices and Optoelectronics
-Microwave Engineering
-Nanoelectronics and Devices
-Nanophotonics Principles and Engineering
-Renewable Energy Technology
-Engineering Professional Studies 1
-Engineering Professional Studies 2
-Extended Project

NANOTECHNOLOGY AT SURREY

We are one of the leading institutions developing nanotechnology and the next generation of materials and nanoelectronic devices.

Taught by internationally-recognised experts within the University’s Advanced Technology Institute (ATI), on this programme you will discover the practical implementation of nanoscience and quantum engineering, nanomaterials and nanotechnology.

You will gain specialised skills through an individual research project within our research groups, using state-of- the-art equipment and facilities.

The ATI is a £10 million investment in advanced research and is the flagship institute of the University of Surrey in the area of nanotechnology and nanomaterials. The ATI brings together under one roof the major research activities of the University from the Department of Electronic Engineering and the Department of Physics in the area of nanotechnology and electronic devices.

EDUCATIONAL AIMS OF THE PROGRAMME

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing and Communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:
-Underpinning learning – know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin Nanoscience and nanotechnology for renewable systems
-Engineering problem solving - be able to analyse problems within the field of nanoscience and nanotechnology and more broadly in electronic engineering and find solutions
-Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within Nanoscience, nanotechnology and nanoelectronics for renewable energy
-Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
-Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Research and development investigations - be able to carry out research-and- development investigations
-Design - where relevant, be able to design electronic circuits and electronic/software products and systems
-Demonstrate transferable skills such as problem solving, analysis and critical interpretation of data, through the undertaking of the extended 90-credit project
-Know how to take into account constraints such as environmental and sustainability limitations, health and safety and risk assessment
-Have gained comprehensive understanding of design processes
-Understand customer and user needs, including aesthetics, ergonomics and usability.
-Have acquired experience in producing an innovative design
-Appreciate the need to identify and manage cost drivers
-Have become familiar with the design process and the methodology of evaluating outcomes
-Have acquired knowledge and understanding of management and business practices
-Have gained the ability to evaluate risks, including commercial risks
-Understand current engineering practice and some appreciation of likely developments
-Have gained extensive understanding of a wide range of engineering materials/components
-Understand appropriate codes of practice and industry standards
-Have become aware of quality issues in the discipline

PROGRAMME LEARNING OUTCOMES

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering.

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
The International Master in Electro acoustics offers students the opportunity to learn the fundamentals in electro acoustics and in relating fields. Read more
The International Master in Electro acoustics offers students the opportunity to learn the fundamentals in electro acoustics and in relating fields. The program offers a specialized education in:
• Electro acoustics
• Mechanics and materials
• Transducers (loudspeakers, microphones)
• Acoustic loads and acoustic radiation
• Real time signal processing
The program covers the entire range of the whole electro acoustic chain. All courses are given in English on an advanced scientific and technical level. The teaching is based on cutting-edge research in electro acoustics.

The master’s programme prepares students for careers dealing with different aspects of electroacoustics which require strong analytical and research skills, whether in the public or private sectors and for PhD studies or research activities.

General description and ECTS credits:
- Level Refresh (semester 1) - 8 ECTS: Mathematics, digital electronics, signal processing, measurement, acoustics and vibration, theoretical mechanics.
- General skills - 38 ECTS: Mathematics, programming methods, signal processing, acoustics, vibrations, vibro acoustics, acoustic waveguides, analytical modelling of transducers, radiation of transducer systems, advanced modelling of transducers (non linearities, viscothermal effects ...).
- Professional courses - 47 ECTS: Real time signal processing, audio signal processing, optical measurement methods, measurement method of transducers, 3D mechanical modelling, 3D sound, micro technologies, physics of magnets, materials for transducers, numerical modelling of transducers, application project.
- Master’s Thesis– 25 ECTS: Thesis on an electro acoustics engineering-related theme
- Elective courses – 2 ECTS: Fluid mechanics, mechanics of deformable bodies, musical acoustics, room acoustics.

Read less
This degree mirrors the two-year Masters programme structure that is common in the USA, and is an ideal stepping stone to a PhD or a career in industry. Read more
This degree mirrors the two-year Masters programme structure that is common in the USA, and is an ideal stepping stone to a PhD or a career in industry.

The optional professional placement component gives you the opportunity to gain experience from working in industry, which cannot normally be offered by the standard technically-focused one-year Masters programme.

PROGRAMME OVERVIEW

The Electronic Engineering Euromasters programme is designed for electronic engineering graduates and professionals with an interest in gaining further qualifications in advanced, cutting-edge techniques and technologies. Current pathways offered include:
-Communications Networks and Software
-RF and Microwave Engineering
-Mobile Communications Systems
-Mobile and Satellite Communications
-Mobile Media Communications
-Computer Vision, Robotics and Machine Learning
-Satellite Communications Engineering
-Electronic Engineering
-Space Engineering
-Nanotechnology and Renewable Energy
-Medical Imaging

Please note that at applicant stage, it is necessary to apply for the Electronic Engineering (Euromasters). If you wish to specialise in one of the other pathways mentioned above, you can adjust your Euromaster programme accordingly on starting the course.

PROGRAMME STRUCTURE

This programme is studied full-time over 24 months and part-time over 60 months. It consists of ten taught modules and an extended project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Digital Communications
-Digital Signal Processing A
-Object Oriented Design and C++
-RF and Microwave Fundamentals
-Nanoscience and Nanotechnology
-Space Dynamics and Missions
-Space Systems Design
-Antennas and Propagation
-Image Processing and Vision
-Fundamentals of Mobile Communications
-Principles of Telecommunications and Packet Networks
-Space Robotics and Autonomy
-Speech and Audio Processing and Recognition
-Satellite Communication Fundamentals
-Satellite Remote Sensing
-Molecular Electronics
-RF Systems and Circuit Design
-Internet of Things
-Nanofabrication and Characterisation
-Space Avionics
-Applied Mathematics for Communication Systems
-Data and Internet Networking
-Digital Design with VHDL
-Computer Vision and Pattern Recognition
-Mediacasting
-Semiconductor Devices and Optoelectronics
-AI and AI Programming
-Advanced Signal Processing
-Advanced Guidance, Navigation and Control
-Image and Video Compression
-Launch Vehicles and Propulsion
-Advanced Mobile Communication Systems
-Microwave Engineering Optional
-Nanoelectronics and Devices
-Network and Service Management and Control
-Operating Systems for Mobile Systems Programming
-Advanced Satellite Communication Techniques
-Nanophotonics Principles and Engineering
-Mobile Applications and Web Services
-Spacecraft Structures and Mechanisms
-Space Environment and Protection
-Renewable Energy Technologies
-Engineering Professional Studies 1 (with industrial Placement)
-Engineering Professional Studies 1
-Engineering Professional Studies 2
-Extended Project

PARTNERS

The MSc Euromasters complies with the structure defined by the Bologna Agreement, and thus it is in harmony with the Masters programme formats adhered to in European universities. Consequently, it facilitates student exchanges with our partner universities in the Erasmus Exchange programme.

A number of bilateral partnerships exist with partner institutions at which students can undertake their project. Current partnerships held by the Department include the following:
-Brno University of Technology, Czech Republic
-University of Prague, Czech Republic
-Universität di Bologna, Italy
-Universität Politècnica de Catalunya, Barcelona, Spain
-Universita' degli Studi di Napoli Federico II, Italy

EDUCATIONAL AIMS OF THE PROGRAMME

The taught postgraduate degree programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in electronic engineering, physical sciences, mathematics, computing and communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

A graduate from this MSc programme should:
-Know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin electronic engineering
-Be able to analyse problems within the field of electronic engineering and find solutions
-Be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within electronic engineering
-Be aware of the societal and environmental context of his/her engineering activities
-Be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Be able to carry out research-and-development investigations
-Be able to design electronic circuits and electronic/software products and systems

Enhanced capabilities of MSc (Euromasters) graduates:
-Demonstrate transferable skills such as problem solving, analysis and critical interpretation of data, through the undertaking of the extended 90-credit project
-Know how to take into account constraints such as environmental and sustainability limitations, health and safety and risk assessment
-Have gained comprehensive understanding of design processes
-Understand customer and user needs, including aesthetics, ergonomics and usability
-Have acquired experience in producing an innovative design
-Appreciate the need to identify and manage cost drivers
-Have become familiar with the design process and the methodology of evaluating outcomes
-Have acquired knowledge and understanding of management and business practices
-Have gained the ability to evaluate risks, including commercial risks
-Understand current engineering practice and some appreciation of likely developments
-Have gained extensive understanding of a wide range of engineering materials/components
-Understand appropriate codes of practice and industry standards
-Have become aware of quality issues in the discipline

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Use of quantitative methods for problem solving. Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Develop a deep understanding of the technologies and principles behind modern music production and distribution. Learn advanced recording techniques, acoustics, mastering, digital sound synthesis, music software development and sound design. Read more
Develop a deep understanding of the technologies and principles behind modern music production and distribution. Learn advanced recording techniques, acoustics, mastering, digital sound synthesis, music software development and sound design.

“The MSc Music Technology has been a hugely enriching experience for me. The staff are enthusiastic and passionate about their fields and the richness of resources available is quite stunning.” Nick McCabe, Guitarist: Black Submarine, The Verve.

MSc Music Technology students benefit from superb resources including flagship recording and mixing studio with SSL AWS 900. We are also an Avid Learning Partner, so students have an opportunity to take Pro Tools Accreditation up to Avid 210M.

Taught modules include:
-Audio Recording
-Mastering and Signal processing
-Acoustics
-Modern Composition
-Advanced Pro Tools Techniques
-Electronics
-Electroacoustic Composition

Graduate destinations

Excellent destinations for graduates. Just some of the routes taken by our students after graduating:
-Software engineering (SSL)
-Environmental acoustics (RPS Group Acoustic Consultants, Hann Tucker Associates)
-Education
-Live sound
-Film sound

Read less
The programme aims at preparing engineers to develop and use information technology tools so as to satisfy the widest variety of applications. Read more

Mission and Goals

The programme aims at preparing engineers to develop and use information technology tools so as to satisfy the widest variety of applications. Compared to the Bachelor of Science, Master of Science students acquire greater ability to model and solve complex problems, integrating different advanced skills and technologies. The programme comprises three tracks: Communication and Society Engineering, Sound and Music Engineering, Data Engineering.

The teaching language is English.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/computer-science-and-engineering/computer-science-and-engineering-track-como/

Career Opportunities

The information technology engineer operates mainly in companies manufacturing and distributing information technology and robotics equipment and systems, companies providing products and services with a high information technology content, private organisations and public administration using information technology to plan, design, manage, decide, produce and administrate.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Computer_science_and_engineering_CO_01.pdf
The Master of Science programme in Computer Science and Engineering aims at training engineers able to develop and use information technology tools so as to satisfy the widest variety of applications. Four tracks are available, corresponding to four main cultural areas. The “Communication and Society Engineering” track focuses on the integration of computer science and communication skills, for designing, implementing, presenting and evaluating innovative multimedia applications. The methodologies for the management of data, such as data mining, pattern recognition, information retrieval, constitute the core of the “Data Engineering” track. The “ICT Engineering, Business and Innovation” track aims at building professional profiles that combine a solid computer science background with managerial capabilities, through a selection of computer science and management courses, integrated with a broad cross-disciplinary project, carried out in collaboration with companies and Management Engineering students and professors. Finally, the “Sound and Music Engineering” track (in collaboration with the “Giuseppe Verdi” Music Conservatory of Como) focuses on the concepts and processes that are behind generation, analysis, manipulation/ processing, transport, access, coding and rendering of audio and musical signals. The programme is taught in English.

Subjects

Key subjects available:
Multimedia Interactive Applications for Web and Mobile Devices, Computer Graphics and Applications, Advanced Software Engineering, Advanced Computer Architectures, Performance Evaluation of Computer Systems, Multimedia Information Retrieval, Multimedia Signal Processing, Sound Analysis, Synthesis and Processing, Electronics and Electroacoustic.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/computer-science-and-engineering/computer-science-and-engineering-track-como/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/computer-science-and-engineering/computer-science-and-engineering-track-como/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Signal processing is recognised as a core technology in rapidly growing areas such as sensor networks, medical devices and renewable energy, audio, image and video systems. Read more

Why this course?

Signal processing is recognised as a core technology in rapidly growing areas such as sensor networks, medical devices and renewable energy, audio, image and video systems. It’s the underpinning technology of all communication including the internet, wireless and satellite.

We’ve been carrying out research and development in signal processing for more than 30 years. Many of today’s industry leaders are alumni of the University and this industry awareness and experience underpins this specialised degree.

This MSc aims to address the growing skills shortage in industry of engineers who have an understanding of the complete signal processing design cycle. It’s also essential preparation if you’re considering advanced research in applied signal processing.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/signalprocessing/

What you’ll study

There are two semesters of compulsory and optional classes, followed by a three-month practical research project in a specialist area. There’s the opportunity to carry this out through the department's competitive MSc industrial internships.

The internships are offered in collaboration with selected department industry partners eg ScottishPower, SmarterGridSolutions, SSE. You'll address real-world engineering challenges facing the partner, with site visits, access and provision of relevant technical data and/or facilities provided, along with an industry mentor and academic supervisor.

Facilities

You'll have exclusive access to our extensive computing network and purpose built teaching spaces such as our Hyperspectral Imaging Centre and the DG Smith Radio Frequency laboratory, equipped with the latest technologies.

Accreditation

The course is fully accredited by the professional body, the Institution of Engineering and Technology (IET). This means that you'll meet the educational requirements to become a Chartered Engineer – a must for your future engineering career.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories. Our technical and experimental officers are available to support and guide you on individual subject material.

Each module comprises approximately five hours of direct teaching per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.

The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.

- Industry engagement
Interaction with industry is provided through our internships, teaching seminars and networking events. The department delivers monthly seminars to support students’ learning and career development. Xilinx, Texas Instruments, MathWorks, and Agilent are just a few examples of the industry partners you can engage with during your course.

Assessment

A variety of assessment techniques are used throughout the course. You'll complete at least six modules. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.

Assessment of the summer research project/internship consists of four elements, with individual criteria:
1. Interim report (10%, 1,500 to 3,000 words) – the purpose of this report is to provide a mechanism for supervisors to provide valuable feedback on the project’s objectives and direction.

2. Poster Presentation (15%) – a vital skill of an engineer is the ability to describe their work to others and respond to requests for information. The poster presentation is designed to give you an opportunity to practise that.

3. Final report (55%) – this assesses the communication of project objectives and context, accuracy and relevant of background material, description of practical work and results, depth and soundness of discussion and conclusions, level of engineering achievement and the quality of the report’s presentation.

4. Conduct (20%) - independent study, project and time management are key features of university learning. The level of your initiative & independent thinking and technical understanding are assessed through project meetings with your supervisor and your written logbooks.

Careers

With Signal Processing being a core technology in high-growth areas such as sensor networks, medical devices, renewable energy and communications, this course enables you to capitalise on job opportunities across all of these sectors, as well as in electronics design, IT, banking, and oil and gas.

Almost all of our graduates secure jobs by the time they have completed their course. They've taken up well-paid professional and technical occupations with multinationals such as Google, Microsoft, Texas Instruments, Motorola Mobility, Intel, as well as Wolfson Microelectronics, Agilent, Freescale and Thales in the vibrant national UK arena.

Find information on Scholarships here http://www.strath.ac.uk/engineering/electronicelectricalengineering/ourscholarships/.

Read less
The course gives students the opportunity to develop their existing creative music production skills using our experienced staff and world-class facilities as resources. Read more
The course gives students the opportunity to develop their existing creative music production skills using our experienced staff and world-class facilities as resources. Students who complete the award will be equipped with the skillsets necessary to compete for work related to music and sound production in the highly competitive environments of the creative industries.

Music production today not only involves being able to record, mix, and edit music in a variety of different genres and situations; it also involves an understanding of composition and arranging, an ability to work in different software environments with a high level of competence, an understanding of performance practices in different contexts, and an understanding of the relationships between music, sound and other media.

There are opportunities to develop all of these skills on the award, always with an emphasis on creativity and a focus on rigorous academic underpinning. Successful students will thus be afforded the opportunity to progress to further postgraduate research should they wish to do so.

Course content

Semester One
-Modern Composition in Context
-Audio Visual Composition
-Negotiated Study: Music
-Option module (Options include Advanced Recording Techniques, Mixing Techniques, Acoustics, Mastering and Signal Processing)

Semester Two
-Research Methods for Music
-Performance Practices
-Creative Music Software Design
-Option module (Options include Pro Tools for Music Production, Mastering Techniques, Electronics for Musicians)

Graduate destinations

Just some of the routes taken by our students after graduating:
-Software engineering (SSL)
-Environmental acoustics (RPS Group Acoustic Consultants, Hann Tucker Associates)
-Education
-Live sound
-Film sound

Read less
The Master of Science program in Telecommunications Engineering features an advanced and innovative curriculum with multidisciplinary courses in the areas of Internet services and applications, communication systems, multimedia signal processing, optical and radio technologies, and remote sensing. Read more

Mission and goals

The Master of Science program in Telecommunications Engineering features an advanced and innovative curriculum with multidisciplinary courses in the areas of Internet services and applications, communication systems, multimedia signal processing, optical and radio technologies, and remote sensing.

Students can select four possible tracks (all taught in English):
- Photonics and Radio
- Communication Networks
- Signals
- Internet Engineering (in cooperation with MSc in Computer Science and Engineering)

or define their personalized study program through a large set of available courses.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/telecommunication-engineering/

Professional opportunities

Our graduates are engineers that are expert in the design of communication systems, in organizing and managing communication networks that are part of the big Internet, and in the defining and customizing communication services. Career opportunities are available not only in the traditional sector of Telecommunications (operators and manufacturers) but in many others for which the communication services are crucial (like finance, energy, production, public services, commerce, etc.)

For more information visit the web site: http://commtech.dei.polimi.it/en/

Presentation

See http://www.polinternational.polimi.it/uploads/media/Telecommunication_Engineering_01.pdf
Communication Technologies provide the infrastructures, the services, and the applications to the users of the Information Society around the globe: electronic commerce, real-time multimedia applications, secure banking transactions, remote medical diagnosis, exchange of music and video clips on both fixed and mobile devices, technologies for observing the earth’s surface and interior for land monitoring and oil prospecting. The Master of Science in Telecommunications Engineering aims at producing engineers that are experts in the design of communication systems, in organizing and managing communication networks that are part of the big Internet, and in the defining and customizing communication services. It offers a wide range of specialization opportunities that stimulate the creativity of the students in the areas of networking, signal processing, transmission systems, and radio communications.
The programme is taught in English.

Subjects

Five specializations available:
- Networks
- Communications
- Signals
- Technologies
- Internet Engineering (joint with MS in Computer Systems Eng.)

The mandatory courses include:
- Traffic theory
- Network design
- Digital communications,
- Digital signal processing,
- Operations Research

The optional specializing courses include:
- Wireless Networks,
- Multimedia Internet,
- Internet of Things,
- Audio and video signals
- Wireless systems,
- Antennas and propagation,
- Network security and cryptography
- Radar and localization systems,

For more information please visit: http://commtech.dei.polimi.it

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/telecommunication-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/telecommunication-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less

Show 10 15 30 per page



Cookie Policy    X