• Northumbria University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
King’s College London Featured Masters Courses
University of Leicester Featured Masters Courses
Buckinghamshire New University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Dundee Featured Masters Courses
"atmospheric" AND "scienc…×
0 miles

Masters Degrees (Atmospheric Science)

We have 64 Masters Degrees (Atmospheric Science)

  • "atmospheric" AND "science" ×
  • clear all
Showing 1 to 15 of 64
Order by 
Join us for our. Master Open Day. to find out more about our courses. This Masters will prepare you in the physical sciences and mathematics for a research career in climate, atmospheric or environmental sciences. Read more

Join us for our Master Open Day to find out more about our courses.

This Masters will prepare you in the physical sciences and mathematics for a research career in climate, atmospheric or environmental sciences. It ideally bridges the gap between undergraduate studies in physical/natural sciences and engineering, and study for a PhD.

Alternatively, if you decide to leave academia, the highly transferable skills gained from this course could lead to a research role in industry or government.

Gain a broad overview of physical problems in climate and atmospheric science, together with a sound physical understanding of natural processes. Alongside this, develop highly transferable skills to conduct research in these subjects with a strong emphasis on quantitative data analysis and physical and numerical modelling.

A career in scientific research is always interesting – sometimes exciting – but might not suit everyone. This course provides an excellent opportunity to get a taste of postgraduate research study and decide whether it is really the career for you.

Course highlights:

Interact with academics who are at the forefront of major global issues. Leeds is a leading centre of excellence across both the physical science of the climate and atmosphere science, and the resultant socio-economic impacts and processes:

National Centre for Atmospheric Science (NCAS), one of six research centres funded by the Natural Environment Research Council (NERC), providing its core atmospheric research.

Institute for Climate and Atmospheric Science (ICAS) is the UK’s most diverse academic institute for atmospheric research.

Priestley International Centre for Climate Change (PICC) a world-leading centre for policy-relevant, solution-driven climate research.

Centre for Polar Observation and Modelling (CPOM) is a research centre that studies processes in the Earth's polar latitudes that may affect the Earth's albedo, polar atmosphere and ocean circulation, and global sea level.

Develop your research skills – you will be regarded as a researcher in the School and expected to work closely with ICAS staff as well as presenting at the annual ICAS Science Conference along with academics and doctoral researchers.

Continue on to a PhD, or move into a research role in industry or government. Highly numerate graduates with training in independent research are widely sought after in many sectors.

The School's £23m building gives you access to world-class research, teaching and laboratory facilities, and dedicated computer facilities – many of which will be available to you throughout your studies.

You will be regarded as a researcher within the School and be expected to work closely with ICAS staff as well as presenting at the annual ICAS away day along with academic staff and doctoral researchers.

Programme team

Be taught by staff from across the School, primarily from ICAS. Your programme manager is Dr Ryan Neely (ICAS) who also teaches as well as regularly supervises your research project and provides tutorial support.




Read less
We engage in fundamental research in atmospheric science, both independently and in cooperation with federal and provincial laboratories and other research groups around the world. Read more

We engage in fundamental research in atmospheric science, both independently and in cooperation with federal and provincial laboratories and other research groups around the world. The emphasis of the research is on studies of processes and developing physical understanding of the atmosphere. The research commonly involves field or laboratory measurement and observation; data analysis and interpretation; and numerical model construction, modification and validation.

Research focus

Areas of interest include atmospheric models for weather and climate prediction, air pollution studies, and other environmental areas.

Research facilities

In 2012 the new Earth Sciences Building was completed. The $75 million facility was designed to inspire collaboration and creativity across disciplines.



Read less
If you have a mathematical background and want to apply your mathematical skills to understanding the complex behaviour of the Earth’s atmosphere and oceans then this could be the programme for you. Read more

If you have a mathematical background and want to apply your mathematical skills to understanding the complex behaviour of the Earth’s atmosphere and oceans then this could be the programme for you. This is an exciting interdisciplinary subject, of increasing importance to a society facing climate change.

You’ll be trained in both modern applied mathematics and atmosphere-ocean science, combining teaching resources from the School of Mathematics and the School of Earth and Environment. The latter are provided by members of the School’s Institute for Climate and Atmospheric Science, part of the National Centre for Atmospheric Science.

Only a handful of UK universities are positioned to offer similar interdisciplinary training in modern applied mathematics and atmosphere-ocean-climate science.

If you do not meet the full academic entry requirements then you may wish to consider the Graduate Diploma in Mathematics. This course is aimed at students who would like to study for a mathematics related MSc course but do not currently meet the entry requirements. Upon completion of the Graduate Diploma, students who meet the required performance level will be eligible for entry onto a number of related MSc courses, in the following academic year.



Read less
Deepen your knowledge and skills through advanced coursework and industry application to advance your career or pursue further research. Read more

Deepen your knowledge and skills through advanced coursework and industry application to advance your career or pursue further research. The Monash Master of Science is an expert master’s course that prepares you for professional employment or for PhD studies.

An advanced program for science graduates with an undergraduate degree in a related discipline, depending on your interests, you will be able to choose from the following disciplines that leads to a specialist award:

  • Astrophysics
  • Atmospheric science
  • Earth science
  • Physics

Course structure

The course is structured into four parts, Part A. Advanced studies, Part B. Research project, Part C. Extended studies, and Part D. Advanced research project.

Part A. Advanced studies

These studies consolidate the student's theoretical and/or technical knowledge in an area of specialisation and provide an introduction to research methodologies appropriate to the chosen discipline.

Part B. Research project

This part is designed to develop student's ability to establish, plan and execute a research project under the guidance of an academic supervisor.

Part C. Extended studies

These studies will deepen the student's understanding of specific topics and advanced elements within their chosen discipline.

Part D. Advanced research project

This is the culmination of the program.  Students will establish, plan, execute and report on an advanced research project. Students will work closely with an academic supervisor on a chosen topic.



Read less
The University of Worcester welcomes applications to undertake research towards MPhil and PhD degrees in Atmospheric Science. Research at Worcester has grown significantly in the last 10 years as the University itself has expanded. Read more
The University of Worcester welcomes applications to undertake research towards MPhil and PhD degrees in Atmospheric Science.

Research at Worcester has grown significantly in the last 10 years as the University itself has expanded. As a research student you will join a vibrant student community in our Research School and become part of our dynamic research environment.

You will have the opportunity to be supervised by leading researchers in your field and take advantage of our rich Researcher Development programme which will help you to develop the skills and knowledge you need to complete your research degree but also enhance the skills you will need in any future career.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Applied Analytical Science (LCMS) at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Applied Analytical Science (LCMS) at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

World demand for mass spectrometry (MS) and chromatography has grown at an unprecedented rate, with qualified graduates in short supply and highly sought-after. Postgraduate (PG) training is essential as undergraduates are not taught to the required depth. Swansea is the only UK institution to offer a range of schemes solely dedicated to these topics, drawing upon expertise in the Institute of Mass Spectrometry (IMS), based at a long established UK centre of excellence.

Key Features

Course content designed for the needs of industry:

Essential topics such as fundamentals of mass spectrometry and separation science, professional management of laboratory practice, data analysis and method development.

Extensive training in a research-led Institute:

To improve their analytical science skills to professional levels required for the workplace.

Highly practical course and extensive in-house equipment:

MRes Applied Analytical Science (LCMS) students can experience more in-depth and ‘hands-on’ learning than most current analytical MRes programmes. Additional sessions including experiment design, health and safety, and laboratory skills are held in preparation of the research project, to ensure students are adequately equipped for project work.

Taught modules encourage problem solving skills, involving relevant simulated (pre-existing) scenarios:

To develop analytical thinking, professional and academic skills through advanced practical and theoretical studies and the submission of a scientifically defensible thesis.

Participation of expert industrial guest lecturers:

Unique opportunities to network with potential employers and enhanced employability prospects in highly skilled and relevant areas such as pharmaceuticals, agriculture, food and nutrition, homeland security, clinical diagnostics, veterinary and forensic science, environmental analysis, plus marketing and sales, to name a few.

Assessments that encourage transferrable skills essential for employment:

Including case studies, problem sheets, data processing and informatics exercises in addition to the traditional examinations and essay based assignments.

Modules

All MRes Applied Analytical Science (LCMS) students will complete the following taught modules:

Mass spectrometry – basics and fundamentals

Separation science and sample handling

Data analysis and method development

Professional management and laboratory practice

MRes students will also be expected to complete a 120 credit research thesis with a viva.

Professional Accreditation

Professional Development (PD) Portfolio

This will enable students to organise and highlight current competencies and training needs into a single document. This can be essential in documenting necessary requirements for continued professional development with a relevant professional body (i.e. Royal Society of Chemistry, RSC, CChem status).

A PD portfolio will typically contain:

- Educational training and experience

From external parties such as National Mass Spectrometry Facility (NMSF), industrial guest lecturers, and educational exercises recognised by the RSC.

- Practical/instrument training and experience

From external parties such as NMSf and instrument manufacturers.

- Research training and experience

MRes project - health and safety, project training, laboratory practice competency framework test and research

- Qualifications

Plus any affiliations and CV.

This will be an organised and detailed record of competencies for presenting to prospective employers with the potential to offer Swansea University (SU) PG students an edge in ensuring gainful relevant employment.

Accreditation.

An application to the Royal Society of Chemistry will be submitted after the first year of study.

Careers and Employability

Course content designed for the needs of industry

Fundamentals of mass spectrometry and separation science, professional management of laboratory practice, data analysis and method development.

Extensive training in a research-led Institute

Highly practical course and extensive in-house equipment

Experience more in-depth and ‘hands-on’ MRes than most Applied Analytical Science courses.

Taught modules encourage problem solving skills, involving relevant simulated (pre-existing) scenarios

Assessments that encourage transferrable skills essential for employment

Professional Development (PD) Portfolio

Participation of expert industrial guest lecturers

Unique networking opportunities with relevant potential employers for enhanced employability in areas such as:

- Pharmaceuticals

- Food and Nutrition

- Clinical diagnostics

- Forensics

- Environment

- Agriculture

- Homeland security

- Marketing and sales

- Veterinary

- Cosmology

- Geology

- Textile manufacture

- Archaeology

Facilities

Applied Analytical Science graduates will be extensively trained in a research-led institute. The highly practical nature of the course and extensive in-house equipment will enable students to experience a more in-depth and 'hands-on' MRes than most current analytical courses.

Instrumentation/techniques within IMS include:

Liquid chromatography/high resolution tandem mass spectrometry (LC/HRMS and LC/HRMSn)

Liquid chromatography/mass spectrometry (LC/MSn); low resolution MS.

Nano-liquid chromatography/mass spectrometry (nano-LC/MS)

Gas chromatography/mass spectrometry (GC/MS)

Liquid chromatography/ultraviolet spectrophotometry (LC/UV)

Liquid chromatography/diode array (LC/DAD)

Electrospray ionisation-mass spectrometry (ESI-MS)

Atmospheric pressure chemical ionisation-mass spectrometry (APCI-MS)

Electron ionisation-mass spectrometry (EI-MS)

Chemical ionisation-mass spectrometry (CI-MS)

Liquid secondary ion-mass spectrometry (LSI-MS i.e. ‘Fast Atom Bombardment’, FAB),

Matrix-assisted laser desorption/ionisation-mass spectrometry (MALDI-MS)

We routinely carry out a number of sample preparation techniques including:

Solid phase extraction (SPE)

Liquid-liquid extraction (LLE)

Electrophoretic techniques

Affinity extraction

Ion-exchange

Precipitation



Read less
Goal of the pro­gramme. Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Read more

Goal of the pro­gramme

Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Climate change and issues of air quality and extreme weather are matters of global concern, but which are inadequately understood from the scientific point of view. Not only must further research be done, but industry and business also need environmental specialists with a strong background in natural sciences. As new regulations and European Union directives are adopted in practice, people with knowledge of recent scientific research are required.

Upon graduating from the Programme you will have competence in

  • Applying experimental, computational and statistical methods to obtain and analyse atmospheric and environmental data
  • Knowledge applicable to solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication
  • Making systematic and innovative use of investigation or experimentation to discover new knowledge
  • Reporting results in a clear and logical manner

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The six study lines are as follows:

Aer­o­sol phys­ics

Aerosol particles are tiny liquid or solid particles floating in the air. Aerosol physics is essential for our understanding of air quality, climate change and production of nanomaterials. Aerosol scientists investigate a large variety of phenomena associated with atmospheric aerosol particles and related gas-to-particle conversion using constantly improving experimental, theoretical, model-based and data analysis methods.

Geo­phys­ics of the hy­dro­sphere

Hydrospheric geophysics studies water in all of its forms using physical methods. It includes hydrology, cryology, and physical oceanography. Hydrology includes the study of surface waters such as lakes and rivers, global and local hydrological cycles as well as water resources and geohydrology, the study of groundwater. Cryology focuses on snow and ice phenomena including glacier mass balance and dynamics, sea ice physics, snow cover effects and ground frost. Physical oceanography covers saline water bodies, focusing on describing their dynamics, both large scale circulation and water masses, and local phenomena such as surface waves, upwelling, tides, and ocean acoustics. Scientists study the hydrosphere through field measurements, large and small scale modelling, and formulating mathematical descriptions of the processes. 

Met­eor­o­logy

Meteorology is the physics of the atmosphere. Its best-known application is weather forecasting, but meteorological knowledge is also essential for understanding, predicting and mitigating climate change. Meteorologists study atmospheric phenomena across a wide range of space and time scales using theory, model simulations and observations. The field of meteorology is a forerunner in computing: the development of chaos theory, for example, was triggered by the unexpected behaviour of a meteorological computer model. Meteorology in ATM-MP is further divided into dynamic meteorology and biometeorology. Dynamic meteorology is about large-scale atmospheric dynamics, modelling and observation techniques, whereas biometeorology focuses on interactions between the atmosphere and the underlying surface by combining observations and modelling to study the flows of greenhouse gases and energy with links to biogeochemical cycles, for example.

Biogeo­chem­ical cycles

Biogeochemistry studies the processes involved in cycling of elements in terrestrial and aquatic ecosystems by integrating physics, meteorology, geophysics, chemistry, geology and biology. Besides natural ecosystems, it also studies systems altered by human activity such as forests under different management regimes, drained peatlands, lakes loaded by excess nutrients and urban environments. The most important elements and substances studied are carbon, nitrogen, sulphur, water and phosphorus, which are vital for ecosystem functioning and processes such as photosynthesis. Biogeochemistry often focuses on the interphases of scientific disciplines and by doing so, it also combines different research methods. It treats ecosystems as open entities which are closely connected to the atmosphere and lithosphere. You will thus get versatile training in environmental issues and research techniques. As a graduate of this line you will be an expert in the functioning of ecosystems and the interactions between ecosystems and the atmosphere/hydrosphere/lithosphere in the context of global change. You will have knowledge applicable for solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication.

Re­mote sens­ing

Remote sensing allows the collection of information about the atmosphere, oceans and land surfaces. Various techniques are applied for monitoring the state and dynamics of the Earth system from the ground, aircraft or satellites. While Lidar and radar scan from the surface or mounted on aircraft, instruments on polar orbiting or geostationary satellites permit measurements worldwide. In atmospheric sciences remote sensing has found numerous applications such as observations of greenhouse and other trace gases, aerosols, water vapour, clouds and precipitation, as well as surface observations, for example of vegetation, fire activity, snow cover, sea ice and oceanic parameters such as phytoplankton. Synergistic satellite data analysis enables the study of important processes and feedback in the climate system. Remote sensing advances climate research, weather forecasting, air quality studies, aviation safety and the renewable energy industry.

At­mo­spheric chem­istry and ana­lysis

Atmospheric chemistry studies the composition and reactions of the molecules that make up the atmosphere, including atmospheric trace constituents and their role in chemical, geological and biological processes, including human influence. The low concentrations and high reactivity of these trace molecules place stringent requirements on the measurement and modelling methods used to study them. Analytical chemistry is the science of obtaining, processing, and communicating information about the composition and structure of matter and plays an essential role in the development of science. Environmental analysis consists of the most recent procedures for sampling, sample preparation and sample analysis and learning how to choose the best analytical methods for different environmental samples. Physical atmospheric chemistry studies focus on the reaction types and reaction mechanisms occurring in the atmosphere, with emphasis on reaction kinetics, thermodynamics and modelling methods.



Read less
Our Climate Change. Environment, Science & Policy MSc course is an opportunity for graduates of geography, physical sciences, engineering and computer sciences to explore specific issues relating to climate and environmental change at an advanced level. Read more

Our Climate Change: Environment, Science & Policy MSc course is an opportunity for graduates of geography, physical sciences, engineering and computer sciences to explore specific issues relating to climate and environmental change at an advanced level. You will explore a wide range of critical topics focusing on human-originated influences on the terrestrial, hydrological and atmospheric environments, and their biological, physical and societal consequences.

Key benefits

  • Gain an up-to-date understanding of the nature and processes of environmental changes occurring in Earth’s terrestrial, hydrological and atmospheric environments.
  • Study the methods used to examine the potential future consequences of environmental changes.
  • Learn to evaluate and analyse environmental change research critically and reflect on the strengths and weaknesses and potential societal implications of the science.
  • Develop an understanding of the scientific evidence needed for policymakers and society to respond to the problems associated with global and regional environmental changes impacting the Earth.

Description

The Climate Change: Environment, Science & Policy MSc is a flexible course allowing you to study either a Policy or a Science pathway. Our course will provide you with an in-depth understanding of the processes and the nature of environmental changes occurring in the Earth’s terrestrial, hydrological and atmospheric environments. You will also develop essential research, analysis and critical-thinking skills that will help you to understand and interpret scientific evidence and also respond to the problems associated with global and regional environmental changes in the Earth’s system.

The study course is made up of optional and required modules and you must take the minimum of 180 credits for the course. If you are studying full-time, you will complete the course in one year, from September to September. If you are studying part-time, your course will take two years to complete. You will take the required combination of required and optional modules over this period of time, with the dissertation in your second year.

Course format and assessment

Teaching

We will teach you through a combination of lectures and seminars, and you will typically have 20 hours of this per module. We also expect you to undertake 180 hours of independent study for each module. For your 12,000 word dissertation, we will provide four workshops and five hours of one-to-one supervision to complement your 587 hours of independent study.

As part of a two-year schedule, part-time students typically take the required 40-credit taught module and 40 credits of optional module in year 1. They will then take a 60 credit dissertation module and 40 credit optional modules in year 2. Typically, one credit equates to 10 hours of work.

Assessment

Performance on taught modules in the Geography Department is normally assessed through essays and other written assignments, oral presentations, lab work and occasionally by examination, depending on the modules selected. All students also undertake a research-based dissertation of 12,000 words.

Career prospects

Our MSc is designed to prepare you for a career in environmental change research, consultancy and/or policy development. It provides interdisciplinary research training for those going onto a PhD in environmental and/or Earth system science within King's or elsewhere, and students entering the job market immediately after graduation are expected to be highly marketable in three main areas: local and national governmental and non-governmental agencies (eg Environment Agency, County Councils, Nature Conservancies); environmental consultancies and businesses (eg environmental informatics providers; environmental businesses - including carbon trading; insurance; waste management and energy industries), and policy development organisations (eg such government departments as Defra). The Seminars in Environmental Research, Management and Policy module offers you the chance to hear and meet practitioners in many of these key areas.

Sign up for more information. Email now

Have a question about applying to King’s? Email now



Read less
The aims of the course are to provide an understanding of key contemporary research problems in a range of disciplines in either the humanities and social sciences or physical sciences relating to the Arctic and Antarctica, and for students to undertake original research on a topic selected in consultation with members of staff. Read more
The aims of the course are to provide an understanding of key contemporary research problems in a range of disciplines in either the humanities and social sciences or physical sciences relating to the Arctic and Antarctica, and for students to undertake original research on a topic selected in consultation with members of staff.

Taught material is presented in the Michaelmas Term, usually in the form of seminars. The material is organized in two strands, suitable for students interested in the humanities and social sciences or in the natural sciences. It is examined through the submission of three essays, which can take the form of research papers. In the Lent and Easter terms students carry out research towards their dissertations. Dissertation topics are agreed with supervisors and are closely integrated with the ongoing research activities of the Scott Polar Research Institute (SPRI). Students are expected to participate in internal and external research seminars, and a research forum.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/eaggmpmps

Course detail

The outcomes of the course are achieved both through focused study of specialised aspects of research on the Arctic and Antarctic, either in terms of Arts and Humanities or the Sciences, and through the development of research skills and methods. The following outcomes of student learning are sought:

Knowledge of ideas: Students gain familiarity with an appropriate range of intellectual and methodological traditions relevant to the study of the Arctic and Antarctic. For the humanities and social science strand, students draw on material from Geography, Anthropology, Political Science and other social sciences, and understand the significance of different epistemological positions that provide the context for research. For the physical sciences strand, students will become familiar with theories and empirical work from, amongst other areas, the fields of glaciology, oceanography and atmospheric science. They will gain knowledge and understanding of the field-based, remote sensing and modelling techniques used in polar science research. The teaching is provided via lectures and seminars, research supervision via bi-weekly meetings between students and their supervisor and sessions concerning research skills. Students also attend the research seminars held in their research groups. This allows exchange of ideas and debate with more experienced academic researchers and their peers;

Critical skills: Students become skilled and critical readers of Arctic and/or Antarctic publications and data sets. This is achieved through structured reading associated with each module, as well as via supervision on the essays and dissertation;

Substantive knowledge of ideas: Students gain in-depth knowledge of substantive areas of Arctic and/or Antarctic research. This knowledge is gained in the modules on The Emerging Arctic, Northern Peoples, Polar Remote Sensing, Glacier and Ice Sheet Dynamics: Present and Past. Students gain an in-depth knowledge either of underlying patterns of development, conservation and cultural transformation in the Arctic and/or Antarctic regions, or of the physical processes at work in these regions, how these have changed in the past and are changing currently, and the methods and techniques for investigating them;

Research design skills: Students develop their capacity to frame research questions, to derive appropriate research designs, and develop awareness of different epistemological approaches. This is achieved through the ‘Research Training’ sections of course;

Practical research skills: Students gain a competence and confidence in using a range of qualitative and/or quantitative methods for gathering, analysing and interpreting data. This is achieved through the ‘Research Training’ sections of course and the dissertation;

Presentation skills: Students gain skills in the presentation of research-based evidence and argument. Students are expected to take an active role in the research seminars of the research groups to which they belong and to contribute actively to seminar discussions. They are also expected to present their dissertation aims, methods, preliminary results, and plans for future work at a student forum held part way through their dissertation research period;

Management and other transferable skills: Students gain skills in managing a research project, and its execution (including, where appropriate, elements of data management, understanding ethics and codes of good practice in cross-cultural research, understanding uncertainty, disseminating research). Several of these elements are taught in the ‘Research Training’ sections of course, and then are extended and applied via the dissertation research, which has individual supervision from an experienced researcher.

Assessment

- 20,000 word dissertation that, at the discretion of the examiners, can include an oral examination on the thesis and the essays and on the general field of knowledge.
- Three essays or other exercises of up to 4,000 words each.

Continuing

70% overall in MPhil.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

AHRC for Arts and History topics approved by the AHRC DTP at University of Cambridge.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
Improving air quality through the control of pollutant emissions is a high priority and global challenge. To control, monitor and model atmospheric emissions requires in-depth understanding of the sources of emission, atmospheric chemistry, dispersion modelling and emissions technology. Read more

Improving air quality through the control of pollutant emissions is a high priority and global challenge. To control, monitor and model atmospheric emissions requires in-depth understanding of the sources of emission, atmospheric chemistry, dispersion modelling and emissions technology.

Who is it for?

The MSc in Atmospheric Emission Technology course is designed to provide up-to-date knowledge focusing on international and industrial emission monitoring and control technologies. The latest atmospheric and air quality policy and modelling developments will be introduced to prepare you for a career as air quality monitoring and emissions technology experts within industry, environmental consultancies or regulators.

Why this course?

Currently there is a scarcity of higher education courses in topics that are relevant to air quality management. This course will provide a future generation of professionals in the air quality and air pollution control sectors, with comprehensive understanding of sources and dispersion of atmospheric pollutants linked with key industrial processes and vehicle/aircraft emission.

Informed by Industry

The course offers unique practical experience in the NERC/Met Office Facility for Airborne Atmospheric Measurement (FAAM) base in the Centre for Atmospheric Informatics and Emissions Technology at Cranfield.

Many academics in the teaching team have significantly experience working in close collaboration with environmental consultancies, the emission monitoring and control industry, and regulators.

Course details

The course comprises eight assessed modules, a group project and an individual research project.

Group project

The group projects are founded on group-based research programmes typically undertaken between February and April. The projects are designed to integrate knowledge, understanding and skills from the taught modules in a real-life situation.

Individual project

The thesis project, typically delivered between May and September, further develops research and project management skills that provide the ability to think and work in an original way; contribute to knowledge; overcome genuine problems; and communicate through a thesis and oral exam. Each student is allocated a supervisor who will guide and assess the student's work.

Assessment

Taught modules: 40%, Group projects: 20%, Individual project: 40%

Your career

We aim to develop this course as a recognised and sought-after qualification within the professional environmental field in the UK and abroad. Successful students will develop diverse and rewarding careers in environmental regulation, public sector organisations (e.g. Defra and Environmental Agency), environmental and business consultancies and process industries in private sectors.

We have been providing Masters level training for over 20 years. Our strong reputation and links with potential employers provide you with outstanding opportunities to secure interesting jobs and develop successful careers. 

Our applied approach and close links with industry mean 93% of our graduates find jobs relevant to their degree or go on to further study within six months of graduation. Our careers team support you while you are studying and following graduation with workshops, careers fairs, vacancy information and one-to-one support.



Read less
Research profile. This masters by research programme is an opportunity to carry out a substantial piece of research in any of the following major branches of geosciences. Read more

Research profile

This masters by research programme is an opportunity to carry out a substantial piece of research in any of the following major branches of geosciences:

  • Atmospheric Science
  • Climate Change
  • Ecological Sciences
  • Environmental Geochemistry
  • Environmental Geoscience
  • Environmental Sustainability
  • Exploration Geophysics
  • Geoinformatics
  • Geology
  • Geophysics
  • Glaciology
  • Human Geography
  • Meteorology
  • Oceanography
  • Palaeoclimatology
  • Petroleum Geology
  • Physical Geography
  • Remote Sensing

The programme allows you to work on research throughout the year, and your work will be judged solely on your final dissertation. You can follow taught courses by arrangement with your supervisor, but none are required.

The programme aims to provide a structured approach to basic research training, allowing you to explore an area of research that may be subsequently developed into a PhD. You may also have the opportunity to develop links with research projects at national and international levels.

The School has the largest geoscience research group in the UK, with about 370 academics and researchers. The ambition and quality of our research was reflected in the latest Research Assessment Exercise, where 66% of our research was rated within the top two categories: world-leading and internationally excellent.

All research students are affiliated to one a research institute, which provides a forum for the development of ideas, collaboration, and dissemination of results, and an environment for training, development and mentoring of research students and early-career researchers. Our research institutes each have a very active seminar series drawing distinguished external guests as well as internal speakers, and you will be encouraged to attend and participate.

Programme structure

You can follow taught courses by arrangement with your supervisor, but none are required.



Read less
This programme offers expert understanding of the latest developments in geographical information science (GIS), mixing practical training, theoretical knowledge and an ability to apply learned skills in any software environment. Read more

This programme offers expert understanding of the latest developments in geographical information science (GIS), mixing practical training, theoretical knowledge and an ability to apply learned skills in any software environment.

This programme can be tailored to your interests and career goals, offering hands-on experience in geographical problem solving. A field trip to Perthshire focuses on techniques for capturing geospatial information.

Programme structure

Courses reflecting the industry’s needs prepare you for employment.

Compulsory courses typically will be:

  • Research Practice and Project Planning
  • Spatial Modelling and Analysis
  • Technological Infrastructures for GIS
  • Dissertation

Option courses:

In consultation with the Programme Director, you will choose from a range of option courses. We particularly recommend:

  • Active Remote Sensing: Radar and Lidar
  • Atmospheric Quality and Global Change
  • Business Geographics
  • Data Integration and Exchange
  • Data Mining and Exploration
  • Ecosystem Services 1: Ecosystem Dynamics and Functions
  • Ecosystem Services 2: Ecosystem Values and Management
  • Environmental Impact Assessment
  • Forests and Environment
  • ICT for Development
  • Introduction to Environmental Modelling
  • Introduction to Three Dimensional Climate Modelling
  • Land Use/Environmental Interactions
  • Marine Systems and Policies
  • Object Orientated Software Engineering: Spatial Algorithms
  • Passive Earth Observation: New Platforms, Sensors, and Analytical Methods
  • Participation in Policy and Planning
  • Principles and Practice of Remote Sensing
  • Principles of Geographical Information Science
  • Technologies for Sustainable Energy
  • Water Resource Management

Courses are offered subject to timetabling and availability and are subject to change.

Career opportunities

Demand for GIS expertise is growing at an unprecedented rate. The proven ability of our graduates means our internationally recognised programme is held in high regard by employers.

Graduates work worldwide in public and private sector organisations, such as Microsoft, Google, General Electric Aerospace, The World Bank, British Antarctic Survey, The World Conservation Monitoring Centre, Unisys, British Airways, the Forestry Commission, DEFRA and Registers of Scotland.

The programme is accredited by the Royal Institution of Chartered Surveyors.

Related programmes

You may also be interested in the following programmes:

Student experience

Would you like to know what it’s really like to study at the School of GeoSciences?

Visit our student experience blog where you can find articles, advice, videos and ask current students your questions.



Read less
The Master's degree in Aerospace Science and Technology provides advanced training in the sciences and technology that are currently most widely used and applied in the fields of aeronautics and space exploration. Read more

The Master's degree in Aerospace Science and Technology provides advanced training in the sciences and technology that are currently most widely used and applied in the fields of aeronautics and space exploration. Graduates of this master’s degree will have been trained in an interdisciplinary area of knowledge that includes the study of theoretical and practical groundwork, techniques, methods and processes, and will be skilled at promoting, defining and managing innovative research projects.

The whole program consists of a total of 90 ECTS credits distributed in three semesters of 30 credits each. Students may enrol the program in September (mostly recommended) or February. Fall semester is devoted to mandatory courses and spring semester to elective courses. Once students have completed 60 credits in courses, the Master Thesis (30 credits) is performed at a University department or at an aerospace company.

Graduates from this Master's degree will be experts qualified to work in:

- University departments, institutes or research centers in order to produce a doctoral thesis.

- R&D&I departments in industry in the aerospace field or similar.

This Master is organized by the UPC Castelldefels School of Telecommunication and Aerospace Engineering (EETAC) with the collaboration of the Centre National d'Études Spatiales (CNES), the European Space Agency (ESA), and the Universitat Autònoma de Barcelona (UAB).

Professional opportunities

Graduates from this master’s degree will be experts qualified to work in:

· University departments, institutes or research centers in order to produce a doctoral thesis.

· R&D&I departments in industry in the aerospace field or similar.

Competencies

Generic competencies

Generic competencies are the skills that graduates acquire regardless of the specific course or field of study. The generic competencies established by the UPC are capacity for innovation and entrepreneurship, sustainability and social commitment, knowledge of a foreign language (preferably English), teamwork and proper use of information resources.

Specific competencies

On completion of the course, students will be able to:

  • Demonstrate in-depth knowledge of the theoretical and experimental tools used in different areas within the aerospace field.
  • Use scientific programming techniques and basic and advanced numerical methods competently.
  • Demonstrate advanced knowledge of the most relevant physical aspects of aerospace systems.
  • Demonstrate in-depth knowledge of the different types of materials used in the construction of aerospace vehicles.
  • Demonstrate knowledge of the tools, devices and systems that enable the analogue or digital conditioning of signals.
  • Demonstrate an up-to-date awareness of the main characteristics of international aerospace research.
  • Demonstrate broad knowledge of R&D&I activities in the companies in the sector in this region.
  • Define the context and the variables that affect research projects.
  • Approach research problems consistently and with good scientific working methods.
  • Show initiative and originality in considering new approaches to an open problem and in considering new problems.
  • Produce a doctoral thesis.
  • Understand the dynamic of the artificial satellites orbiting the Earth and have a detailed and objective vision of the capacities of very low-mass satellites.
  • Calculate interplanetary trajectories.
  • Understand the concepts of analysis and design of controllers for uncertain systems.
  • Demonstrate detailed knowledge of the basic structure of the data bus of artificial satellites and the atmospheric phenomena that most affect aerial operations.
  • Demonstrate knowledge of the differences in behavior of materials on a macro- and a nanoscale and identify the specific characteristics of nanoscale processes for the conceptual design of sensors, materials and support systems for life in space.
  • Understand the characteristics of platforms for obtaining microgravity and the behaviour of different physical systems in microgravity.
  • Design an experiment to carry out in parabolic flight.
  • Understand the operation of UAVs and the rigorous formulation of measurement algorithms and how to guarantee their quality.
  • Design and implement automatic measuring systems and show knowledge of the tools, devices and systems that enable the conditioning of analogue and digital signals.
  • Demonstrate knowledge of the systems that support human life on inter-planetary missions and the main elements of the design of a life support system.
  • Design electronic on-board equipment in which microtechnologies play an important role.
  • Categorise satellite communication systems and demonstrate knowledge of the characteristics of DVB-S, DVB-S2 and DVB-RCS systems. 


Read less
Our course provides you with a strong grounding in the quantitative and qualitative skills required to address environmental questions in addition to subject-specific knowledge and understanding. Read more

Our course provides you with a strong grounding in the quantitative and qualitative skills required to address environmental questions in addition to subject-specific knowledge and understanding.

Following the taught element you have the opportunity to apply your skills and knowledge in a research project.

Aims

The aim of this programme is to

  • provide interdisciplinary foundation training for students from a natural science or engineering background intending to pursue a career, with or without further postgraduate training, in pollution control, environmental management or resource conservation.
  • provide an understanding of the nature of explanation in social science, natural science and engineering as applied to research or other investigative activity in pollution control and environmental management.
  • provide generic and subject-specific training in research design and methods of data collection and analysis.
  • provide subject-specific training in the social, economic, legal, planning and engineering dimensions of environmental protection and resource conservation tailored to the student's research interests and/or career needs.
  • provide subject-specific training on how natural systems function and the perturbations to those systems arising from human activity, again tailored to the student's research interests and/or career needs.
  • meet the needs of employers that require an ability to bring sound science and current thinking to environmental problems.
  • foster interdisciplinary study within the School and within the University through provision of high quality students to carry out projects.
  • enable the student systematically to research the area of environmental pollution via the literature and create an ordered structured report on a subject of relevance to the course and their own interests.

Course unit details

The programme is divided into three parts :

  • 60 credits of Core taught course units running from October to May
  • 60 credit taught courses comprised of four optional 15 credit modules running from January to May.
  • 60 credit research project carried out from April to the middle of September. 

Students can swap between this course and the Masters in Applications in Environmental Science subject to academic performance in the 60 credit core taught element.

For a detailed description of modules please visit:

http://www.environmentalsciences.ls.manchester.ac.uk/courses/pollutionandenvcontrol/coursestructure/

Course collaborators

Teaching and research in environmental sciences are facilitated by strong collaborative links with the Greater Manchester Geological Unit, an independent body of consultants engaged in practical urban geoscience in the Manchester area.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

Governments, industry and society, in all countries, are increasingly aware of the importance of securing sustainable development through cost-effective pollution controls and resource conservation. As a result, there is a growing need, internationally, for suitably qualified personnel in the environmental authorities of central and local government, industry and commerce, consultancy and research. Moreover, the resulting legal requirements on the part of governments and industry to conform to national and international agreements and regulations means that such demand will remain even during periods of economic austerity and retrenchment.

Employers are increasingly requiring environmental science graduates to have a strong grounding in the quantitative and qualitative skills required to address environmental questions in additional to subject-specific knowledge and understanding. Our programmes address these requirements through a core of skills-based modules with the emphasis on synthesis.

Career destinations of graduates

Graduates from the existing Pollution and Environmental Control Masters have been very successful in obtaining relevant environment-related employment in areas such as industry, local and central authorities, the regulatory sector, consultancies, education and research. Typically, between 20 and 30% of students completing the programme undertake postgraduate research immediately after graduation.

We expect that graduates from the new Applications in Environmental Science Masters will be attractive to employers in the environmental authorities of central and local government, industry and commerce, consultancy and research. The experience gained during an industrial placement will be especially valuable to employers.



Read less
Weather and climate are integral parts of the Earth system. The monitoring of meteorological variables, together with the knowledge and modelling of underlying processes, are key to understanding our interaction with the natural environment. Read more

Weather and climate are integral parts of the Earth system. The monitoring of meteorological variables, together with the knowledge and modelling of underlying processes, are key to understanding our interaction with the natural environment.

This programme provides comprehensive training in understanding, modelling and prediction of atmospheric processes; as well as the collection, management, supply and application of atmospheric data for the needs of a variety of public and private sectors. The course also demonstrates how these create opportunities or pose problems for the successful operation of natural and human systems. Our aim is that upon graduation you will be able to compete for careers in Meteorology and Climatology.

Course details

This well-established programme was developed in response to industry and research institution requirements for applied meteorologists and climatologists. This demand continues, partially due to the growing attention of the society to climate change, its mitigation and adaptation to it.

Skills gained

The programme aims to:

  • Provide training in theoretical and applied aspects of atmospheric physics and dynamics, quantitative modelling techniques, weather forecasting, climate prediction and observation of atmospheric processes
  • Equip you with the skills of quantitative and statistical analysis with regards to atmospheric data processing and management
  • Enable you to apply theoretical concepts and analytical techniques to the resolution of environmental and socio-economic problems that have an atmospheric origin
  • Develop your independent research ability
  • Convert participants with non-environmental backgrounds to applied meteorologists and climatologists
  • Develop your communication skills using traditional and IT-based media

Learning and teaching

Taught modules involve lectures, practical classes and supporting tutorials. Modules are provided by staff, supported by seminars from invited experts. Vocational awareness is developed through a 'work experience' week in which course participants gain hands-on experience for instance in a commercial weather forecasting environment.

The programme has been accredited by the Royal Meteorological Society to provide training for Chartered Meteorologists (CMet). The RMS 'Chartered Meteorologist' accreditation scheme provides the highest level of professional qualification in meteorology and will satisfy clients and employers that individuals have reached a specified level of knowledge and experience in the subject equivalent to that of Chartered status in any other profession.

Employability

The MSc course in Applied Meteorology and Climatology was initiated in 1963/64. It was developed in response to industry and research institution requirements for applied meteorologists and climatologists. This demand still continues. For example, over the period of the last decade, about 45 percent of graduates from the course have entered employment directly related to applied meteorology and climatology, while 37 percent have taken up research posts in this area.



Read less

Show 10 15 30 per page



Cookie Policy    X