• Regent’s University London Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of York Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
De Montfort University Featured Masters Courses
University of Leeds Featured Masters Courses
Cardiff University Featured Masters Courses
University of Birmingham Featured Masters Courses
University of Birmingham Featured Masters Courses
"atmosphere" AND "ocean"×
0 miles

Masters Degrees (Atmosphere And Ocean)

  • "atmosphere" AND "ocean" ×
  • clear all
Showing 1 to 9 of 9
Order by 
This course is designed for students from a mathematical background who wish to apply their skills to understanding the complex behaviour of Earth's atmosphere and oceans. Read more
This course is designed for students from a mathematical background who wish to apply their skills to understanding the complex behaviour of Earth's atmosphere and oceans. This is an exciting interdisciplinary subject, of increasing importance to a society facing climate change.

The focus of the course is on analysing the equations of fluid dynamics and thermodynamics, via mathematical and numerical modelling. Training is thus offered in both modern applied mathematics and atmosphere-ocean science, combining teaching resources from both the School of Mathematics and the School of Earth and Environment. The latter are provided by members of the School's Institute for Climate and Atmospheric Science, part of the National Centre for Atmospheric Science. Only a handful of UK universities are positioned to offer similar interdisciplinary training.

Two-thirds of the course consists of taught modules involving lectures and some computer workshops. Beyond a compulsory core of atmosphere-ocean fluid dynamics, students may choose options from applied maths (e.g., wave and stability theory), atmosphere-ocean science (e.g., climate change processes, weather forecasting), numerical methods and scientific computation. The final third of the course consists of an intensive summer project, in which students conduct an in-depth investigation of a chosen subject related to the course.

Careers
Students will be prepared for postgraduate research in applied mathematics or atmosphere-ocean science, or employment in the environmental sector.

However, given the interdisciplinary nature of the programme, graduates will have expertise and skills in a number of different areas, and should be attractive to wider range of employers.

Read less
Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Climate change and issues of air quality and extreme weather are matters of global concern, but which are inadequately understood from the scientific point of view. Read more
Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Climate change and issues of air quality and extreme weather are matters of global concern, but which are inadequately understood from the scientific point of view. Not only must further research be done, but industry and business also need environmental specialists with a strong background in natural sciences. As new regulations and European Union directives are adopted in practice, people with knowledge of recent scientific research are required.

Upon graduating from the Programme you will have competence in:
-Applying experimental, computational and statistical methods to obtain and analyse atmospheric and environmental data.
-Knowledge applicable to solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication.
-Making systematic and innovative use of investigation or experimentation to discover new knowledge.
-Reporting results in a clear and logical manner.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The six study lines are as follows:
Aerosol Physics
Aerosol particles are tiny liquid or solid particles floating in the air. Aerosol physics is essential for our understanding of air quality, climate change and production of nanomaterials. Aerosol scientists investigate a large variety of phenomena associated with atmospheric aerosol particles and related gas-to-particle conversion using constantly improving experimental, theoretical, model-based and data analysis methods. As a graduate of this line you will be an expert in the most recent theoretical concepts, measurement techniques and computational methods applied in aerosol research.

Geophysics of the Hydrosphere
Hydrospheric geophysics studies water in all of its forms using physical methods. It includes hydrology, cryology, and physical oceanography. Hydrology includes the study of surface waters such as lakes and rivers, global and local hydrological cycles as well as water resources and geohydrology, the study of groundwater. Cryology focuses on snow and ice phenomena including glacier mass balance and dynamics, sea ice physics, snow cover effects and ground frost. Physical oceanography covers saline water bodies, focusing on describing their dynamics, both large scale circulation and water masses, and local phenomena such as surface waves, upwelling, tides, and ocean acoustics. Scientists study the hydrosphere through field measurements, large and small scale modelling, and formulating mathematical descriptions of the processes.

Meteorology
Meteorology is the physics of the atmosphere. Its best-known application is weather forecasting, but meteorological knowledge is also essential for understanding, predicting and mitigating climate change. Meteorologists study atmospheric phenomena across a wide range of space and time scales using theory, model simulations and observations. The field of meteorology is a forerunner in computing: the development of chaos theory, for example, was triggered by the unexpected behaviour of a meteorological computer model. Meteorology in ATM-MP is further divided into dynamic meteorology and biometeorology. Dynamic meteorology is about large-scale atmospheric dynamics, modelling and observation techniques, whereas biometeorology focuses on interactions between the atmosphere and the underlying surface by combining observations and modelling to study the flows of greenhouse gases and energy with links to biogeochemical cycles, for example. As a graduate of the meteorology line, you will be an expert in atmospheric phenomena who can produce valuable new information and share your knowledge.

Biogeochemical Cycles
Biogeochemistry studies the processes involved in cycling of elements in terrestrial and aquatic ecosystems by integrating physics, meteorology, geophysics, chemistry, geology and biology. Besides natural ecosystems, it also studies systems altered by human activity such as forests under different management regimes, drained peatlands, lakes loaded by excess nutrients and urban environments. The most important elements and substances studied are carbon, nitrogen, sulphur, water and phosphorus, which are vital for ecosystem functioning and processes such as photosynthesis. Biogeochemistry often focuses on the interphases of scientific disciplines and by doing so, it also combines different research methods. It treats ecosystems as open entities which are closely connected to the atmosphere and lithosphere. You will thus get versatile training in environmental issues and research techniques. As a graduate of this line you will be an expert in the functioning of ecosystems and the interactions between ecosystems and the atmosphere/hydrosphere/lithosphere in the context of global change. You will have knowledge applicable for solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication.

Remote Sensing
Remote sensing allows the collection of information about the atmosphere, oceans and land surfaces. Various techniques are applied for monitoring the state and dynamics of the Earth system from the ground, aircraft or satellites. While Lidar and radar scan from the surface or mounted on aircraft, instruments on polar orbiting or geostationary satellites permit measurements worldwide. In atmospheric sciences remote sensing has found numerous applications such as observations of greenhouse and other trace gases, aerosols, water vapour, clouds and precipitation, as well as surface observations, for example of vegetation, fire activity, snow cover, sea ice and oceanic parameters such as phytoplankton. Synergistic satellite data analysis enables the study of important processes and feedback in the climate system. Remote sensing advances climate research, weather forecasting, air quality studies, aviation safety and the renewable energy industry. As a graduate of the remote sensing line you will have broad expertise in the operational principles of remote sensing instruments as well as methods of data collection, analysis and interpretation.

Atmospheric Chemistry and Analysis
Atmospheric chemistry studies the composition and reactions of the molecules that make up the atmosphere, including atmospheric trace constituents and their role in chemical, geological and biological processes, including human influence. The low concentrations and high reactivity of these trace molecules place stringent requirements on the measurement and modelling methods used to study them. Analytical chemistry is the science of obtaining, processing, and communicating information about the composition and structure of matter and plays an essential role in the development of science. Environmental analysis consists of the most recent procedures for sampling, sample preparation and sample analysis and learning how to choose the best analytical methods for different environmental samples. Physical atmospheric chemistry studies focus on the reaction types and reaction mechanisms occurring in the atmosphere, with emphasis on reaction kinetics, thermodynamics and modelling methods. As a graduate of this line you will have understanding of the chemical processes of the atmosphere and the latest environmental analytical methods, so you will have vital skills for environmental research.

Programme Structure

The basic degree in the Programme is the Master of Science (MSc). The scope of the degree is 120 credits (ECTS). As a prerequisite you will need to have a relevant Bachelor’s degree. The possible major subjects are Physics, Meteorology, Geophysics, Chemistry, and Forest Ecology. The programme is designed to be completed in two years. Studies in ATM-MP consist of various courses and project work: lecture courses, seminars, laboratory work and intensive courses.

Your first year of studies will consist mainly of lecture courses. During the second year, you must also participate in the seminar course and give a presentation yourself. There is also a project course, which may contain laboratory work, data analysis, or theoretical or model studies. You will have to prepare a short, written report of the project. There are also several summer and winter schools as well as field courses for students in the Programme. Many of the courses take place at the Hyytiälä Forestry Field Station in Southern Finland. The intensive courses typically last 5–12 days and include a concise daily programme with lectures, exercises and group work.

Career Prospects

There is a global need for experts with multidisciplinary education in atmospheric and environmental issues. Governmental environmental agencies need people who are able to interpret new scientific results as a basis for future legislation. Industry, transportation and businesses need to be able to adapt to new regulations.

As a Master of Science graduating from the Programme you will have a strong background of working with environmental issues. You will have the ability to find innovative solutions to complex problems in the field of environmental sciences, climate change and weather forecasting. Graduates of the Programme have found employment in Meteorological Institutes and Environmental Administration in Finland and other countries, companies manufacturing instrumentation for atmospheric and environmental measurements and analysis, and consultancy companies. The Master's degree in ATM-MP also gives you a good background if you intend to proceed to doctoral level studies.

Internationalization

The Programme offers an international study environment with more than 30% of the students and teaching staff coming from abroad.

The ATM-MP is part of a Nordic Nordplus network in Atmosphere-Biosphere Studies, which gives you good opportunities to take courses currently in fourteen Nordic and Baltic universities. There are also several Erasmus agreements with European universities. The PanEurasian Experiment (PEEX) project provides you with opportunities to carry out part of your studies especially in China and Russia.

Research Focus

All the units teaching in the Programme belong to the National Centre of Excellence (FCoE) in Atmospheric Science – From Molecular and Biological processes to the Global Climate (ATM), which is a multidisciplinary team of the Departments of Physics, Forest Sciences and Chemistry at the University of Helsinki, the Department of Applied Physics at the University of Eastern Finland (Kuopio) and the Finnish Meteorological Institute.

The main objective of FCoE ATM is to quantify the feedbacks between the atmosphere and biosphere in a changing climate. The main focus of the research is on investigating the following topics:
1. Understanding the climatic feedbacks and forcing mechanisms related to aerosols, clouds, precipitation and biogeochemical cycles.
2. Developing, refining and utilising the newest measurement and modelling techniques, from quantum chemistry to observations and models of global earth systems.
3. Creating a comprehensive understanding of the role of atmospheric clusters and aerosol particles in regional and global biogeochemical cycles of water, carbon, sulphur, nitrogen and their linkages to atmospheric chemistry.
4. Integrating the results in the context of understanding regional and global Earth systems.

In addition to the research focus of FCoE, current research in hydrospheric geophysics at Helsinki University has an emphasis on cryology, with a focus on the effect of aerosols on Indian glaciers, the impact of climate change on the Arctic environment, the dynamics of the Austfonna ice cap in Svalbard, and the winter season in the coastal zone of the Baltic Sea.

Read less
This Masters will prepare you in the physical sciences and mathematics for a research career in climate, atmospheric or environmental sciences. Read more

Overview

This Masters will prepare you in the physical sciences and mathematics for a research career in climate, atmospheric or environmental sciences. It ideally bridges the gap between undergraduate studies in physical/natural sciences and engineering, and study for a PhD. Alternatively, if you decide to leave academia, the highly transferable skills gained from this course could lead to a research role in industry or government.

Gain a broad overview of physical problems in climate and atmospheric science, together with a sound physical understanding of natural processes. Alongside this, develop highly transferable skills to conduct research in these subjects with a strong emphasis on quantitative data analysis and physical and numerical modelling.

Course highlights:

• Interact with academics who are at the forefront of major global issues. Leeds is a leading centre of excellence across both the physical science of the climate and atmosphere science, and the resultant socio-economic impacts and processes...
- Institute for Climate and Atmospheric Science (ICAS) is the UK’s most diverse academic institute for atmospheric research.
- National Centre for Atmospheric Science (NCAS), one of six research centres funded by the Natural Environment Research Council (NERC), providing its core atmospheric research.
- Priestley International Centre for Climate Change (PICC) a world-leading centre for policy-relevant, solution-driven climate research
- Centre for Polar Observation and Modelling (CPOM) is a research centre that studies processes in the Earth's polar latitudes that may affect the Earth's albedo, polar atmosphere and ocean circulation, and global sea level.
• Continue on to a PhD, or move into a research role in industry or government. Highly numerate graduates with training in independent research are widely sought after.
• Develop your research skills – you will be regarded as a researcher in the School and expected to work closely with ICAS staff as well as presenting at the annual ICAS Science Conference along with academics and doctoral researchers.

Read less
On this course you will investigate solutions for conserving our coastal zones, seas and oceans through the development of a coordinated strategy to distribute environmental, socio-cultural and institutional resources. Read more

Why take this course?

On this course you will investigate solutions for conserving our coastal zones, seas and oceans through the development of a coordinated strategy to distribute environmental, socio-cultural and institutional resources. It is a dynamic process and you will possess a genuine desire to ensure the long-term sustainability of the world’s coast lines.

What will I experience?

On this course you can:

Benefit from a wealth of coastal and marine environments on your doorstep – internationally important wildlife, urban development, maritime heritage and the busiest waterway in Britain
Complement your studies with case study analysis, lectures from guest speakers and fieldtrip opportunities
Learn alongside students from diverse international backgrounds and politico-economic cultures

What opportunities might it lead to?

This course is accredited by the Royal Institution of Chartered Surveyors (RICS). On graduating from this course, you can expect to find roles within government agencies, environmental consultancies and observational or research institutions that oversee the investigation and application of resource management issues.

Module Details

You can opt to take this course in full-time or part-time mode.

You will be introduced to technical and analytical frameworks and concepts, which will enable you to study these three major themes:

The physical environment
The institutional frameworks that have been developed for coastal and ocean areas
The value of coastal and marine resources

The course is divided into three parts. The first two comprise the taught units of the course covering the key conceptual, institutional and applied bases of the subject. The third focuses on your dissertation.

Here are the units you will study:

Coastal and Marine Resource Management: You will examine the theory, concepts and frameworks of coastal and marine management, and use topical issues as examples of practical application.

Coastal Physical Processes and Shoreline Management: You will study the biophysical behaviour of contemporary coastal systems. You will then investigate how and why coastal risk management is practiced and examine the effects of management upon ‘natural’ systems.

Law of the Sea and Marine Spatial Planning: You will examine the nature of coastal and marine policy and the forces instrumental in creating such a policy. You will also learn about the law affecting the utilisation of marine space and resources and consider the stages, key stakeholders and approaches to marine planning in the UK, Europe and internationally.

Fieldwork and Research Methods: Firstly, you will examine the role and importance of fieldwork in coastal and marine resource management studies and practice. The concepts, issues and practices covered will mean you can undertake a field-based project on the compulsory residential trip. Secondly, you will have an introduction to research design and methods so you can conduct field research in two contexts: 1) the residential field trip and 2) for your dissertation/independent study.

Dissertation: This provides you with an opportunity to independently study a topic of your choice related to coastal and marine resource management.

Programme Assessment

The course provides a balanced structure of lectures, tutorials and laboratory work. You will generally be taught in small classes, providing an informal, friendly and supportive atmosphere for your studies.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Preparation of web pages
Poster and oral presentations
Project reports
Literature reviews
Book chapters
Essays

Student Destinations

If you work or hope to work in an organisation involved in marine resource policy or in the use or development of maritime resources, or would like to contribute to the conservation of natural resources of coasts and oceans, this could be the course for you.

It will prepare you to work in industry, for central or local government, with community groups, for landowners or in a consultancy role. Alternatively, you might wish to pursue a career in research or education.

We aim to provide you with as much support as possible in finding employment through close industrial contacts, careers events, recruitment fairs and individual advice.

Read less
There is a pressing national and international need to understand the nature and consequences of climatic change and to develop adaptation strategies. Read more
There is a pressing national and international need to understand the nature and consequences of climatic change and to develop adaptation strategies. The UCL Climate Change MSc provides rigorous scientific and vocational training for the next generation of climate change professionals.

Degree information

The programme provides you with a knowledge and understanding of the Earth system (incorporating the atmosphere, hydrosphere, biosphere, lithosphere) and the nature and causes of climate variability and change. It combines observationally based climate and environmental science with state-of-the-art modelling, specifically concerned with understanding the impacts of climate change. It seeks to place climate change within the context of broader anthropogenic environmental change and social policy dimensions.

Students undertake modules to the value of 180 credits.

The programme consist of four core modules (60 credits), four optional modules (60 credits) and a research dissertation (60 credits). A Postgraduate Diploma (120 credits, full-time nine months) is offered. A Postgraduate Certificate (60 credits, full-time 12 weeks, part-time one year) is offered.

Core modules
-Climate Dynamics
-Models in Environmental Science
-Past Climates
-Global Environmental Change

*modules running are dependent on staff sabbaticals

Optional modules
-Biological Indicators of Environmental Change
-Climate Modelling
-Coastal Change
-Cities and Climate Change
-Environmental GIS
-Impacts of Climate Change on Hydro-ecological systems
-Non-biological Indicators of Environmental Change
-Ocean Circulation and Climate Change
-Politics of Climate Change
-Terrestrial Carbon: Modelling and Monitoring
-Surface Water Modelling
-Other MSc modules offered across UCL may be taken at the discretion of the MSc convenor.

*availability of modules is dependent on staff sabbaticals.

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of approximately 12,000 words and an oral presentation.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials and laboratory and computer-based practical classes. Assessment is through independent project work, practical-based and written coursework, and the dissertation.

Careers

The programme provides an ideal foundation for PhD research, or for employment with a wide range of private industries, non-governmental organisations, government agencies and environmental consultancies. Graduates have gone on to careers in the commercial, non-profit and academic sectors. Examples include government policy implementation, sustainability consultancy, science communication and research. A significant proportion of students go onto further study such as a PhD.

Top career destinations for this degree
-Policy Manager, Department of Energy & Climate Change (DECC)
-Science Communicator, Science Museum / London Transport Museum
-MSc in Environmental Economics, University College London (UCL)
-PhD in Hydrology, University of Leeds

Employability
Climate change is big issue with many governmental, non-governmental and commercial cosequences. This programme will give graduates an edge when applying for jobs in the private sector relating to adaptation and mitigation - such as the insurance industry and carbon monitoring companies respectively. It also provides a great stepping-stone to a PhD.

Why study this degree at UCL?

As one of the world's top universities, UCL excels across the natural sciences, social sciences and humanities. The MSc is run by UCL Geography, which enjoys an outstanding international reputation for its research and teaching.

The Climate Change MSc brings together the strong expertise of the department, offering a distinctive blend of fundamental climate science, environmental modelling, impacts and adaptations, delivered from both natural and social science perspectives.

By bringing together students and researchers we aim to create a vibrant and informal academic environment of mutual discovery and ongoing debate.

Read less
On this master’s degree you will learn to understand accounting and financial information, analyse problems and participate in management decision making. Read more
On this master’s degree you will learn to understand accounting and financial information, analyse problems and participate in management decision making. In this intensive programme we cover financial accounting, management accounting and corporate finance. A Research Project allows you to develop a deeper knowledge in an area of interest.

You will develop the all-round capabilities needed to be a successful accounting or finance professional. These include teamworking, problem solving and communication, research and analytical skills.

MSc Accounting and Finance is designed for those wishing to develop a career in the sector and applicants with prior accounting experience are eligible to apply.

See the website http://www.brookes.ac.uk/courses/postgraduate/accounting-and-finance/

Why choose this course?

- Employability: Graduates have gone on to work in prestigious organisations and whether you are seeking career in accounting, finance or a general business career, this programme will give you a deeper understanding of accounting and finance issues and more flexibility in your career choices. On the practical side our Careers Centre offers support in developing your CV and interview skills, and provides regularly updated job vacancy information.

- Professional accreditation and links: On completion of the programme, you will be eligible to apply for up to seven exemptions from the exams of the Association of Chartered Certified Accountants (ACCA), a professional qualification recognised worldwide. We have a strong strategic relationship with the Association of Chartered Certified Accountants (ACCA) and have links with other professional accounting bodies and accounting firms.

- Teaching and learning: You will be taught in supportive atmosphere with small interactive groups so you can learn from and bond with your classmates and lecturers. Teaching staff have extensive professional experience and are able to provide practical insight and commercial understanding. Furthermore, prestigious guest speakers such as Professor George Magnus, Senior Economic Advisor to UBS and Financial Times Columnist, come and speak to you about the industry. We have a track record of excellence in teaching, learning and research and our business school received the top award from the Higher Education Funding council for England to become a Centre of Excellence in Teaching and Learning.

- Student support: As a student you will be assigned to an Academic Adviser who will provide both academic and personal support. Student Support Co-ordinators provide guidance for your course and university-wide administrative issues. They organise a range of events to help you adjust to postgraduate study and are able to help you get advice about any issues you may have during your studies.

- Oxford Location: Oxford offers everything you could want as a student and more. As one of the world's great centres of learning, it is a bustling and stunning cosmopolitan city full of history and beautiful buildings. Located just over an hour from the hub of business life in London with easy access to international airports, you'll be at the heart of the UK's most successful economic region. Oxford will provide you with a host of learning and employment opportunities with a range of internships and graduate jobs available.

Teaching and learning

Much of the teaching takes place in interactive workshops. In addition, lectures, discussions, role-play exercises and seminars are linked with selected case studies and assessments to strengthen your practical analysis and decision-making skills. You will develop your teamworking skills through structured group assignments.

Teaching staff from the Business School have in-depth knowledge of accounting practices and issues through practical experience or academic research. Visiting speakers from business and research bodies provide further input.

This is an intensive programme and you will have two taught classes each week for each module.

Approach to assessment

Assessment will include a range of activities including examinations, case studies, reports, presentations and group projects.

Specialist facilities

Our Business School Postgraduate Centre at Wheatley Campus has a state-of-the-art lecture theatre, well equipped seminar rooms and a postgraduate lounge and private study area.

The Wheatley Campus library provides specialist business resources including 1,000 sets of UK and overseas companies' annual reports, statistics on all aspects of business and management, postgraduate theses in business and management and business examination papers.

Field trips

We also offer the International Business in Practice - Study Trip. The purpose of this Study Trip Module is to give postgraduate students a hands-on, intensive experience with the ideas and practices of global business. The programme will include presentations from local management executives and experts. Students will have direct interaction with management executives and practices through site visits to major corporations and agencies.

In the past students travelled to Boston, USA. This self-funded trip included visits to Harvard University, MIT, Reebok, Ocean Spray, Federal Reserve Bank, and State Street.

Attendance pattern

Classes are timetabled throughout the week and not every week will be the same.

How this course helps you develop

This course helps you develop both academically and professionally, and provides you with a route into the accounting or finance profession.

It offers an opportunity to create global business links with fellow students, teaching staff and professionals. You will develop vital skills such as digital literacy, communication, presentation and team working.

Careers

Our students are attractive to employers both in the UK and internationally and have gone to work in prestigious corporations such as Apple (on the Leadership Programme), Proctor & Gamble, IBM and Wolseley Group.

Others have joined accounting practices such as KPMG, PwC and Deloittes and some are working in financial institutions such as Citibank, HSBC and Accenture. We also have graduates working in the third sector organisations such as Cancer Research.

Free language courses for students - the Open Module

Free language courses are available to full-time undergraduate and postgraduate students on many of our courses, and can be taken as a credit on some courses.

Please note that the free language courses are not available if you are:
- studying at a Brookes partner college
- studying on any of our teacher education courses or postgraduate education courses.

Research highlights

The main focus of research within the department of Accounting, Finance and Economics within the Business School is on how accountability is achieved, explored from both theoretical and practical perspectives and encompassing a range of disciplinary and methodological approaches.

Research areas and clusters

Research in this department is grouped around four clusters, Accounting, Accountability and Responsibility, Applied microeconomics, Applied Macro, Public and Financial Economics, and Development and Environmental Economics.

Read less
We engage in fundamental research in atmospheric science, both independently and in cooperation with federal and provincial laboratories and other research groups around the world. Read more

General Information

We engage in fundamental research in atmospheric science, both independently and in cooperation with federal and provincial laboratories and other research groups around the world. The emphasis of the research is on studies of processes and developing physical understanding of the atmosphere. The research commonly involves field or laboratory measurement and observation; data analysis and interpretation; and numerical model construction, modification and validation.

Quick Facts

- Degree: Master of Science
- Specialization: Atmospheric Science
- Subject: Science
- Mode of delivery: On campus
- Program components: Coursework + Options
- Faculty: Faculty of Science

Program Description

Programs leading to the M.Sc. and Ph.D. degrees are offered under the joint sponsorship of the Department Earth, Ocean and Atmospheric Sciences and the Department of Geography. There are also several biometeorology professors from the Faculty of Land and Food Systems who can also supervise Atmospheric Science students.

Theoretical knowledge is an important part of this program and a wide range of courses are available. Courses can also be taken from outside of this list.

The M.Sc. thesis based program consists of twelve credits of thesis, 18 credits of course work and a thesis defence. Average time to completion is two years. However, this is very much dependent on the student so completion may take longer.

The Co-op M.Sc. consists of ATSC 597, ATSC 598, six credits of ATSC 548 and 24 credits of additional coursework. Co-op M.Sc. students must also have identified in advance an employer who will pay a salary during the Co-op work terms, and must satisfy eligibility requirements set by the UBC Co-op Program. Students normally complete this degree within two years.

Finally there is also a course-based M.Sc. option. This consists of three credits of a major essay and 27 credits of additional coursework. Most fulltime students will complete within one year.

Read less
What are the solutions to the environmental issues on a global scale, like climate change, sustainable development and the greenhouse effect? What alternative sources of energy do we need to explore?. Read more
What are the solutions to the environmental issues on a global scale, like climate change, sustainable development and the greenhouse effect? What alternative sources of energy do we need to explore?

The Master's degree programme in Energy and Environmental Sciences focuses on the large-scale issues and tries to contribute to possible solutions to the energy and environmental challenges.

The programme is connected to the Energy and Sustainability Research Institute Groningen (ESRIG). Several research groups are joining forces in ESRIG resulting in a variety of research subjects, such as:

* Polymer and organic solar cells

* Climate and atmosphere

* Geo-energy

* Combustion technology

* Bio-fuels technology, land and ocean-based

* Renewable energy

* Energy and land use scenario's and modeling


The Master's programme is accessible for several Bachelor degrees in Natural Sciences.

Why in Groningen?

- Energy and Sustainability are main research focus areas
- Accessible for several Bachelor's degrees in Natural Sciences
- Excellent career prospects
- Offering interdisciplinary system and several experimental specialisations

Job perspectives

Energy and Environmental scientists from the University of Groningen are renown for their interdisciplinary systems-approach and/or specialised experimental skills. In general they easily obtain jobs in their field of study at or in:
- Research institutes or universities
- Industry
- Companies like major consultancy firms
- Governmental agencies

Read less
Geochemistry is at the heart of earth sciences, and provides the techniques and knowledge that allow scientists to answer such fundamental questions as. Read more

MSc in Geochemistry

Geochemistry is at the heart of earth sciences, and provides the techniques and knowledge that allow scientists to answer such fundamental questions as: how has the mantle evolved through time, was there ever life on Mars, what was the chemistry of Earth’s and Mars’ ancient atmospheres, and what are the rates and drivers of past and current climate change on Earth? Geochemistry has widespread applications to understanding and solving contemporary problems in Earth surface chemistry, such as pollution of soils and water or rates of ocean acidification. It is a forensic part of Earth science and is used to address questions that are both diverse and profound.

The St Andrews MSc in Geochemistry delivers postgraduate level knowledge and skills training in geochemistry and modern geochemical methods, involving extensive hands-on laboratory training and experience with state-of-the-art equipment. This comprehensive and rigorous course is relevant preparation for pursuing a PhD in geochemistry by incorporating a lab-based research dissertation, as well as employment in industry through incorporation of economic and environmental geochemistry
modules. Staff in the Department of Earth & Environmental Sciences and the School of Chemistry contribute to the core laboratory training and teaching within subject modules.

Features

The Department of Earth & Environmental Sciences has 20 full-time academics, 8 research fellows and 4 technical staff members, with a student population of about 170. We have a wide range of expertise in the field of geochemistry underpinned by new state-of-the-art laboratory facilities developed as a result of the recent appointment of early career academics over the past five years. Geochemistry research spans investigations into the origins of life, evolution of the Earth and other terrestrial planets, composition of
oceans, rivers and atmospheres, and the pulse of past and current climate change.

Postgraduate community

A dynamic and research-intensive atmosphere is encouraged and supportive of all students. The size of our Department engenders cohesive and friendly collaborations between staff, postdoctoral research fellows and postgraduate students, and co-authored papers are routinely published in the top journals for geochemistry, such as Nature, Nature Geoscience, Geochimica et Cosmochimica Acta and Science. We are part of the ‘IAPETUS’ NERC Doctoral Training programme, along with the universities of Durham, Glasgow, Newcastle and Stirling, and the British Geological Survey.

Facilities

The Department houses state-of-the-art stable and radiogenic isotope geochemistry and geobiology laboratories, including culturing facilities for corals and microbes. Our research equipment includes five high-precision isotope mass spectrometers (two MAT 253s, two Nu Plasma, and one Neptune Plus installed in 2015), two Class 100 clean labs, an XSeries quadropole ICP-MS, ICP-OES, and a Finnegan Delta Plus XP gas source mass spectrometer. All materials, and particularly gases, liquids, minerals, rocks, organisms, and soils, can be analysed for isotopes and major and trace elements within research projects that cover the breadth of earth and environmental science. We host an experimental petrology facility capable of simulating conditions from the mid-crust to upper mantle (pressures of between 0.5-4.5 GPa and 300- 2000°C). A range of spectroscopic, SEM, electron microprobe and X-ray diffraction and fluorescence techniques are also part of our analytical facilities.

Careers

The range of research areas and applications of geochemistry is so broad that career opportunities span the whole of earth and environmental sciences. Geochemists are employed in the energy sector (hydrocarbon industries, petrochemicals, nuclear and renewables), in mining and mineral exploration, extraction and processing, and in environmental industries and agencies focused on pollution monitoring and environmental remediation. Masters-level training in geochemistry would provide a suitable platform for a career in materials science outside of earth and environmental sciences specifically. MSc Geochemistry graduates are also in demand as specialised research technicians in academic institutes worldwide and as PhD students in geochemistry-focused research.

Read less

  • 1
Show 10 15 30 per page


Share this page:

Cookie Policy    X