• Imperial College London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of York Featured Masters Courses
King’s College London Featured Masters Courses
University of Sussex Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of St Andrews Featured Masters Courses
Coventry University Featured Masters Courses
"astronomy" AND "astrophy…×
0 miles

Masters Degrees (Astronomy And Astrophysics)

  • "astronomy" AND "astrophysics" ×
  • clear all
Showing 1 to 15 of 37
Order by 
The Department of Astronomy and Astrophysics is actively engaged in a wide range of observational and theoretical researc​h on solar system dynamics, stars, stellar systems, the interstellar medium, the Galaxy, galaxies, quasars, clusters of galaxies, cosmology, and problems in general relativity. Read more
The Department of Astronomy and Astrophysics is actively engaged in a wide range of observational and theoretical researc​h on solar system dynamics, stars, stellar systems, the interstellar medium, the Galaxy, galaxies, quasars, clusters of galaxies, cosmology, and problems in general relativity. The department has close ties with the Canadian Institute for Theoretical Astrophysics (CITA), the Centre for Planetary Sciences (CPS), and the Dunlap Institute for Astronomy and Astrophysics (Dunlap), which further enhance the opportunities for our students to interact with leading researchers.

Faculty and students use the major optical, radio, and satellite observing facilities of the world. Of particular importance are the national facilities: the Canada France-Hawaii optical telescope, the James Clerk Maxwell radio telescope,​ and the Gemini telescopes located at the world's finest observing sites.

The Herschel Space Observatory and Planck were launched recently and will soon be followed by the James Webb Space Telescope, ALMA, and the Thirty Metre Telescope. We have an active experimental program using telescopes on long-duration stratospheric balloons and a complementary program designing and building instrumentation for large optical telescopes, and for cosmological and Galactic research.

There are approximately 100 faculty, postdoctoral fellows, graduate students, and staff in the Department of Astronomy and Astrophysics, CITA, CPS, and Dunlap. Students benefit from direct interactions with the broad range of external speakers invited to weekly seminar programs and colloquia.

Read less
The Postgraduate Certificate in Astronomy and Astrophysics programme at Queen Mary, University of London, provide a unique opportunity for graduates to pursue the subject in depth for 9 months, either for personal interest or as a first step towards a professional career in astronomy. Read more
The Postgraduate Certificate in Astronomy and Astrophysics programme at Queen Mary, University of London, provide a unique opportunity for graduates to pursue the subject in depth for 9 months, either for personal interest or as a first step towards a professional career in astronomy. The programme has been running since 1985 and around 80 certificates degrees have been awarded. Some students have gone on to complete the MSc, and even to do PhDs..

The programme at Queen Mary is unique in the UK in the scope of material covered. It gives students a detailed overview of the fundamentals of the subject as well as an up-to-date account of recent developments in research. The wide range of topics covered by the course reflects the breadth of research interests pursued by the members of staff in our large and friendly research group. Lectures cover such diverse topics as the origin of the universe, dark matter, dark energy, galaxies, radiation mechanisms in astrophysics, the life and death of stars, black holes, extrasolar planets, the solar system, space and solar plasma physics and research methods.

Students who do sufficiently well in the examinations may be allowed to change their registration to Part-time MSc Astrophysics and proceed to its 2nd year.

Read less
The Masters in Astrophysics gives you an understanding of the principles and methods of modern astrophysics at a level appropriate for a professional physicist. Read more
The Masters in Astrophysics gives you an understanding of the principles and methods of modern astrophysics at a level appropriate for a professional physicist.

Why this programme

-The School has a major role in the award winning NASA RHESSI X-ray mission studying solar flares and in several other forthcoming international space missions such as ESA’s Solar Orbiter.
-The School plays a world-leading role in the design and operation of the worldwide network of laser interferometers leading the search for gravitational waves.
-The University of Glasgow’s School of Physics and Astronomy is ranked 2nd in Scotland (Complete University Guide 2016).
With a 93% overall student satisfaction in the National Student Survey 2014, the School of Physics and Astronomy combines both teaching excellence and a supportive learning environment.
-You will gain the theoretical, observational and computational skills necessary to analyse and solve advanced astrophysics problems, providing you with an excellent foundation for a career of scientific leadership in academia or industry.
-You will develop transferable skills that will improve your career prospects, such as project management, team-working, advanced data analysis, problem-solving, critical evaluation of scientific literature, advanced laboratory and computing skills, and how to effectively communicate with different audiences.
-You will benefit from direct contact with our group of international experts who will teach you cutting-edge physics and supervise your projects.

Programme structure

Modes of delivery of the MSc in Astrophysics include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

The programme draws upon a wide range of advanced Masters-level courses. You will have the flexibility to tailor your choice of optional courses and project work to a variety of specific research topics and their applications in the area of astrophysics.

Core courses include
-Advanced data analysis
-General relativity and gravitation (alternate years, starting 2016–17)
-Plasma theory and diagnostics (alternate years, starting 2015–16)
-Pulsars and supernovae (alternate years, starting 2016–17)
-Research skills
-Statistical astronomy (alternate years, starting 2015–16)
-Extended project.

Optional courses include
-Advanced electromagnetic theory
-Applied optics
-Circumstellar matter (alternate years, starting 2015-16)
-Cosmology (alternate years, starting 2016–17)
-Dynamics, electrodynamics and relativity
-Exploring planetary systems (alternate years, starting 2016-17)
-Galaxies (alternate years, starting 2015-16)
-Gravitational wave detection
-Instruments for optical and radio astronomy (alternate years, starting 2016-17)
-Statistical mechanics
-Stellar astrophysics (alternate years, starting 2015–16)

Industry links and employability

-The School of Physics and Astronomy is highly active in research and knowledge transfer projects with industry. Our Masters students have regular opportunities to engage with our industrial collaborators through informal visits, guest lectures and workshops.
-You will also benefit from our membership of the Scottish Universities Physics Alliance. The alliance brings together internationally leading physics research across Scotland to form the largest physics grouping in the UK.
-Our staff and students come from all around the world providing a truly global experience. The School of Physics and Astronomy is committed to providing an equitable environment for study and work, in line with the principles of Project Juno of the Institute of Physics. This was recognised in 2011 by the award of Juno Champion status. We also have a strong programme of talks and seminars given by experts from the UK and abroad, which will give you the chance of broadening your knowledge in many other areas of physics and astronomy.
-This programme is accredited by the Institute of Physics. Accredited MSc programmes automatically meet the master's level education requirement for Chartered Physicist (CPhys) status. To fully meet the educational requirements for CPhys, graduates must also possess an IOP accredited undergraduate degree or equivalent.

Career prospects

Career opportunities include academic research, based in universities, research institutes, observatories and laboratory facilities; industrial research in a wide range of fields including energy and the environmental sector, IT and semiconductors, optics and lasers, materials science, telecommunications, engineering; banking and commerce; higher education.

Read less
A physics programme that covers the inner workings of the universe from the smallest to the largest scale. Although Particle Physics and Astrophysics act on a completely different scale, they both use the laws of physics to study the universe. Read more

Master's specialisation in Particle and Astrophysics

A physics programme that covers the inner workings of the universe from the smallest to the largest scale
Although Particle Physics and Astrophysics act on a completely different scale, they both use the laws of physics to study the universe. In this Master’s specialisation you’ll dive into these extreme worlds and unravel questions like: What did our universe look like in the earliest stages of its existence? What are the most elementary particles that the universe consists of? And how will it evolve?
If you are fascinated by the extreme densities, gravities, and magnetic fields that can be found only in space, or by the formation, evolution, and composition of astrophysical objects, you can focus on the Astrophysics branch within this specialisation. Would you rather study particle interactions and take part in the search for new particles – for example during an internship at CERN - then you can choose a programme full of High Energy Physics. And for students with a major interest in the theories and predictions underlying all experimental work, we offer an extensive programme in mathematical or theoretical physics.
Whatever direction you choose, you’ll learn to solve complex problems and think in an abstract way. This means that you’ll be highly appealing to employers in academia and business. Previous students have, for example, found jobs at Shell, ASML, Philips and space research institute SRON.

See the website http://www.ru.nl/masters/physicsandastronomy/particle

Why study Particle and Astrophysics at Radboud University?

- This Master’s specialisation provides you with a thorough background in High Energy Physics, Astrophysics, and Mathematical Physics and the interface between them.
- Apart from the mandatory programme, there’s plenty of room to adapt the programme to your specific interests.
- The programme offers the opportunity to perform theoretical or experimental research.
- During this specialisation it is possible to participate in large-scale research projects, like the Large Hadron Collider at CERN or the LOFAR telescope.

Career prospects

This Master’s specialisation is an excellent preparation for a career in research, either at a university, at an institute (think of ESA and CERN) or at a company. However, many of our students end up in other business or government positions as well. Whatever job you aspire, you can certainly make use of the fact that you have learned:
- Thinking in an abstract way
- Solving complex problems
- Using statistics
- Computer programming
- Giving presentations

Some of our alumni now work as:
- National project manager at EU Universe Awareness
- Actuarial trainee at Talent & Pro
- Associate Private Equity at HAL Investments
- Consultant at Accenture
- ECO Operations Manager at Ofgem
- Scientist at SRON Netherlands Institute for Space Research
- Technology strategy Manager at Accenture

Working at a company

Other previous students have found jobs at for example:
- Shell
- KNMI
- Liander
- NXP
- ASML
- Philips
- McKinsey
- DSM
- Solvay
- Unilever
- AkzoNobel

Researchers in the field of Particle and Astrophysics develop advanced detector techniques that are often also useful for other applications. This resulted in numerous spin-off companies in for example medical equipment and detectors for industrial processes:
- Medipix
- Amsterdam Scientific Instruments
- Omics2Image
- InnoSeis

PhD positions

At Radboud University, there are typically a few PhD positions per year available in the field of Particle and Astrophysics. Many of our students attained a PhD position, not just at Radboud University, but at universities all over the world.

Our approach to this field

In the Particle and Astrophysics specialisation, you’ll discover both the largest and the smallest scales in the universe. Apart from Astrophysics and High Energy Physics, this specialisation is also aimed at the interface between them: experiments and theory related to the Big Bang, general relativity, dark matter, etc. As all relevant research departments are present at Radboud University – and closely work together – you’re free to choose any focus within this specialisation. For example:

- High energy physics
You’ll dive into particle physics and answer questions about the most fundamental building blocks of matter: leptons and quarks. The goal is to understand particle interactions and look for signs of physics beyond the standard model by confronting theoretical predictions with experimental observations.

- Astrophysics
The Astrophysics department concentrates on the physics of compact objects, such as neutron stars and black holes, and the environments in which they occur. This includes understanding the formation and evolution of galaxies. While galaxies may contain of up to a hundred billion stars, most of their mass actually appears to be in the form of unseen ‘dark matter’, whose nature remains one of the greatest mysteries of modern physics.

- Mathematical physics
Research often starts with predictions, based on mathematical models. That’s why we’ll provide you with a theoretical background, including topics such as the properties of our space-time, quantum gravity and noncommutative geometry.

- Observations and theory
The Universe is an excellent laboratory: it tells us how the physical laws work under conditions of ultra-high temperature, pressure, magnetic fields, and gravity. In this specialisation you’ll learn how to decode that information, making use of advanced telescopes and observatories. Moreover, we’ll provide you with a thorough theoretical background in particle and astrophysics. After you’ve got acquainted with both methods, you can choose to focus more on theoretical physics or experimental physics.

- Personal approach
If you’re not yet sure what focus within this specialisation would best fit your interests, you can always ask one of the teachers to help you during your Master’s. Based on the courses that you like and your research ambitions, they can provide you with advice about electives and the internship(s).

See the website http://www.ru.nl/masters/physicsandastronomy/particle

Read less
This MSc provides students with the skills, knowledge and research ability for a career in astrophysics. The programme is designed to satisfy the need, both nationally and internationally, for well-qualified postgraduates who will be able to respond to the challenges that arise from future developments in this field. Read more
This MSc provides students with the skills, knowledge and research ability for a career in astrophysics. The programme is designed to satisfy the need, both nationally and internationally, for well-qualified postgraduates who will be able to respond to the challenges that arise from future developments in this field.

Degree information

Students develop insights into the techniques used in current astrophysics projects, and gain in-depth experience of a particular specialised research area, through project work, as a member of a research team. The programme provides the professional skills necessary to play a meaningful role in industrial or academic life.

Students undertake modules to the value of 180 credits.

The programme consists of a choice of six optional modules (90 credits), a research essay (30 credits) and a research dissertation (60 credits).

A Postgraduate Diploma (120 credits, full-time nine months, part-time two years) is offered.

Optional modules 1 (15 credits each)
Students choose four of the following:
-Planetary Atmospheres
-Solar Physics
-High-energy Astrophysics
-Stellar Atmospheres and Stellar Winds
-Galaxy and Cluster Dynamics
-Cosmology
-Mathematics for General Relativity
-Space Plasma and Magnetospheric Physics

Optional modules 2 (15 credits each)
Students choose two of the following:
-Physics MSc core modules
-Space and Climate Science MSc core modules
-Medical Physics MSc core modules
-Intercollegiate fourth year modules
-Physics and Astrophysics MSc fourth-year modules
-Plastic and Molecular (Opto)electronics

Dissertation/report
Students submit a critical research essay of approximately 8,000 words and undertake an in-depth research project which culminates in a formal report and oral presentation.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials and practical, laboratory and computer-based classes. Student performance is assessed through coursework and written examination. The research project is assessed by literature survey, oral presentation and the dissertation.

Careers

Astrophysics-based careers embrace a broad range of areas, for example information technology, engineering, finance, research and development, medicine, nanotechnology and photonics. Employers regard a physics degree as flexible and highly desirable university training.

Top career destinations for this degree:
-PhD in Astrophysics, Kiel University, Germany
-Research Assistant, University College London
-Research Assistant, Max-Planck-Institut für Kernphysik (Nuclear Physics)
-PhD in Astrophysics, University of Crete

Employability
Astrophysics opens up many avenues to employment through the skills acquired: problem-solving; the training of a logical and numerate mind; computation skills; modelling and material analysis; and the ability to think laterally. In addition, work vision and enthusiasm make physics graduates highly desirable members of all dynamic companies.

Why study this degree at UCL?

UCL Physics & Astronomy is among the top departments in the UK for graduate study.

The department's participation in many international collaborations means we provide exceptional opportunities to work as part of an international team. Examples include the Dark Energy Survey - investigating the origin of the accelerating universe and the nature of dark matter, the Hubble Telescope and the Cassini project.

In some cases, opportunities exist for students to broaden their experience by spending part of their time overseas.

Read less
The MSc in Astrophysics is a 12 month taught MSc that includes a 3 and a half month research project. Read more
The MSc in Astrophysics is a 12 month taught MSc that includes a 3 and a half month research project. Covering both theoretical and observational astrophysics, the course modules include one compulsory module, “Research skills in Astrophysics”, with a variety of different optional modules that range from “Stars and Nebula I” to “Gravitational Dynamics and Accretion Physics”.
The course is ideal for students who would like to build on their previous background in Physics or Mathematics and would like to gain a fuller understanding of astrophysics, while acquiring the skills to carry out research in astrophysics. Throughout the programme students will not only gain a full working knowledge of the fundamental aspects of Astrophysics but will also develop their transferable skills such as programming, data analysis, problem solving, scientific writing, presentation and science outreach skills, enhancing employability in and out of academia.
The course is broken down into 3 different semesters which includes 2 different research projects, a shorter introductory project as part as the compulsory module in semester 1 and a longer, full research project in semester 3. These 2 different research projects help students to acquire research skills and experience, allowing them to assess if they would like to continue to pursue a career in scientific research. The University Observatory and the 0.94 metre James Gregory Telescope, the largest working optical telescope in the UK, enable students to receive a hands on experience to develop their Observational expertise, which can then be followed into their research projects with the option to use either our local facilities or remote observing facilities around the world.
The course uses a combination of lecture-based, tutorial-based and project-based material and includes both exam and continuous assessment methods, where appropriate.

Read less
From the Higgs boson to the cosmos, Physics & Astronomy encompasses the fundamentals of modern physics. We provide an open environment where students team up with faculty members to gain knowledge of the known universe and explore the unknown. Read more
From the Higgs boson to the cosmos, Physics & Astronomy encompasses the fundamentals of modern physics. We provide an open environment where students team up with faculty members to gain knowledge of the known universe and explore the unknown. Chalmers hosts the Onsala Space Observatory and has research connections to many other universities and laboratories. Our research in basic science makes use of the newest technology and may lead to new technical developments.

Programme description

Understanding the basic laws of physics has posed a challenge since the birth of modern science. The area is of great intrinsic interest, and forms the basis for other branches of science. Trying to probe the smallest structures of matter and the largest structures of the Universe also drives the development of new technologies. At Chalmers we are actively engaged in many areas of modern physics and astrophysics:

In theoretical particle physics we look beyond the Standard Model and at the possibility for the Higgs boson to be a harbinger of new physics.

In experimental nuclear physics we work with international accelerator laboratories like CERN or GSI/FAIR on experiments of key importance for understanding both the microscopic world and astrophysical phenomena.

In theoretical nuclear physics we focus on modelling and simulation of stable and unstable isotopes with small numbers of nucleons.
In mathematical physics we investigate the cross-fertilization between mathematics and string theory, where abstract mathematical theorems find new applications in physics, and where physical insight has in turn sparked new developments in mathematics. We also investigate the recent applications of string theory to condensed matter.

In astrophysics we explore distant stars and galaxies by radio astronomical methods and model galaxy formation by numerical simulations.

In geophysics we study the solid earth and its atmosphere.

This programme gives you the opportunity to be part of an intimate environment among active researchers in these fascinating areas of science. As a student you will gain knowledge of fundamental physics and acquire specialised skills in a chosen sub-field of physics or astronomy. You will be able to construct mathematical models or design or conduct experiments in physics and astronomy. In addition, you will gain experience in scientific communication from working in projects.

Educational methods

All of the faculty are engaged in research and we have a high teacher-to-student ratio.
After completing a few core courses, students choose elective courses that prepare them to specialise in theoretical, observational or experimental aspects of astronomy, in mathematical physics, particle physics, subatomic physics or string theory. Students finish the program with a research project that forms the basis for a MSc thesis.

Read less
The Department of Physics and Astronomy is one of the oldest departments at the University of Calgary, and since its establishment it has excelled in both research and teaching. Read more
The Department of Physics and Astronomy is one of the oldest departments at the University of Calgary, and since its establishment it has excelled in both research and teaching.

Master's (MSc) Thesis-based

This degree must be completed on a full-time basis.

Program Requirements
1. The student must choose one of five broad areas of specialization: Astrophysics, Physics, Radiation Oncology Physics, Space Physics, and Medical Imaging (interdisciplinary).

2. All students must have a supervisor. When admitted to our graduate program, you are assigned an interim supervisor to assist you with your course selection, registration, etc., however this may not be your final supervisory. You have a maximum of four months from the time your program begins (either September or January) to finalize your supervisor. Your supervisor is then responsible for directing the research component of your degree, as well as for some fraction of your financial support package.

3. Course requirements:
-For students specializing in Astrophysics, Physics, or Space Physics, four half-course equivalents, including at least two of PHYS 609, PHYS 611, PHYS 613, and PHYS 615, plus two elective courses at the 500- or 600-level, as approved by the Graduate Chair.
-For students specializing in Radiation Oncology Physics, eight half-course equivalents. Six of which are MDPH 623, MDPH 625, MDPH 633, MDPH 637, MDPH 639, MDSC 689.01, then two Physics graduate core courses such as PHYS 609, PHYS 611, PHYS 613 or PHYS 615.
-In addition, all students are required to take a minimum of three terms of the Graduate Seminar, although the normal load is four terms, and additional terms may be required of students on an as need basis.

4. Thesis submission and defense

Master's (MSc) Course-based

This program may be done part time or full time, and in fact we encourage professionals in the field to consider doing this program as a part-time, professional development student.

Suitable for students not necessarily oriented towards research activity.

Program Requirements
1. The student must choose one of three broad areas of specialization: Astrophysics, Physics, or Space Physics. The Radiation Oncology Physics specialization is not available as a course-based degree.

2. All graduate students must have a supervisor. For a course-based MSc program, this is quite straightforward, as the graduate chair acts as supervisor for all course-based MSc students.

3. The student must complete ten half-course equivalents, made up of:
All six of the core experimental and theoretical physics courses: PHYS 603, PHYS 605, PHYS 609, PHYS 611, PHYS 613, PHYS 615. Plus four half course equivalents determined by the specialization area:
-Astrophysics - ASPH 699 plus three half-course equivalents labeled ASPH (two of these may be at the 500-level). PHYS 629 and SPPH 679 may be taken instead of ASPH courses
-Physics - PHYS 699, one half-course equivalent labeled PHYS, at the 600-level or above, and two half-course equivalents labeled ASPH, PHYS, or SPPH (these may be at the 500 level)
-Space Physics - SPPH 699, plus three half-course equivalents labeled SPPH at the 600-level or above. PHYS 509 may replace a SPPH course

4. A comprehensive examination with a written and oral component.

Read less
Applying the laws of physics in real-life situations, ranging from measuring brain activity to designing new materials and investigating space objects. Read more
Applying the laws of physics in real-life situations, ranging from measuring brain activity to designing new materials and investigating space objects .

Would you rather specialise in pure physics or discover the interface between physics and astronomy, mathematics, chemistry or biology? The choice is yours. At Radboud University, you can choose from six specialisations and within each specialisation you’ll have plenty of room to customise your programme. We guarantee the highest quality for all specialisation programmes, resulting in number one rates by the Dutch ‘Keuzegids Masters’ for three years running.

In your internship(s), you can dive into theoretical physics or perform your own experiments: discover new material properties in Europe’s highest magnetic fields or with unique free electron lasers, study space objects with the telescopes on top of the Huygens Building or unravel brain activity with MRIs. It’s all possible on the Radboud campus. That’s why many international physicists come here to perform their experiments. Take Andre Geim and Konstantin Novoselov, who revealed the amazing properties of graphene in our High Field Magnet Laboratory. In 2010, they received the Nobel Prize in Physics for those discoveries.

See the website http://www.ru.nl/masters/physicsandastronomy

Specialisations of Physics and Astronomy

- Particle and Astrophysics
In this Master’s specialisation you’ll unravel questions like: What are the most elementary particles that the universe consists of? What did our universe look like in the earliest stages of its existence? And how will it evolve? One of the topics is the Higgs particle, which is partially a Nijmegen discovery.

- Physics of Molecules and Materials
This specialisation focuses on the structure and properties of materials. You’ll work at the ‘terra incognita’ between quantum and classical physics, which is of great importance for designing next-generation materials and devices.

- Neuroscience
In this specialisation you’ll use your physics background to understand the communication between neurons in the brain. This fundamental knowledge can be applied in all kinds of devices, including hearing aids or Google glasses.

- Science in Society
This specialisation will equip you with the tools and skills to become a professional intermediary between science and society. You’ll learn to analyse (governmental) science communication and connect scientific knowledge with divergent perspectives and interests of various stakeholders.

- Science, Management and Innovation
This specialisation will teach you what is happening in the world of business and public administration, how innovation is managed in company strategies, how government designs policy and how that interacts with societal challenges.

- Science and Education (in Dutch)
Do you want to become a secondary school teacher in the Netherlands? In this Dutch-taught specialisation you’ll get the necessary didactic background and extensive experience in the classroom.

Why study Physics and Astronomy at Radboud University?

- It’s the best Master’s programme of its kind in the Netherlands, according to the Keuzegids Masters.
- Teaching takes place in a stimulating, collegial setting with small groups. This ensures that at Radboud University you’ll get plenty of one-on-one time with your internship supervisor.
- We have a multidisciplinary approach: you not only can specialise in Physics, but also in astrophysics, biophysics, mathematical physics, chemical physics or materials science.
- You’ll spend one year on research, and thus get an extensive experience in scientific methods.
- Radboud University hosts multiple state-of-the-art research facilities, such as the High Field Magnet Laboratory , FELIX laser laboratory, Nanolab and neuroimaging facilities (MRI, MEG, EEG, TMS). We also participate in the LHC particle accelerator in Geneva, the Pierre Auger Observatory in Argentina and various other large-scale research projects.
- On average, our graduates find a job within 2 months after graduating. A majority of these jobs are PhD positions at universities in the Netherlands and abroad.

Quality label

For the third time in a row, this programme was rated number one in the Netherlands in the Keuzegids Masters 2015 (Guide to Master's programmes).

Career prospects

All specialisations of this Master’s programme are an excellent preparation for a career in research, either at a university, at an institute or at a company. However, many of our students end up in other business or government positions as well. Whatever job you aspire, you can certainly make use of the fact that you have learned to:
- Think in an abstract way
- Solve complex problems
- Make accurate approximations
- Combine theory and experiments

PhD positions

If you would like to have a career in science, it’s possible to apply for a PhD position at Radboud University. Of course, you can also apply at any other university anywhere in the world.

Positions in business or governmental organisations

To get an idea the various career opportunities, a sample of jobs performed by our alumni:
- Actuarial trainee at Talent & Pro
- Consultant at Accenture
- ECO Operations Manager at Ofgem
- Scientist at SRON Netherlands Institute for Space Research
- Technology strategy Manager at Accenture
- Consultant Billing at KPN
- Communications advisor at the Foundation for Fundamental Research on Matter (FOM)
- Systems analysis engineer at Thales
- Technical consultant at UL Transaction Security
- Business analyst at Capgemini

See the website http://www.ru.nl/masters/physicsandastronomy

Read less
The IoA offers an exciting opportunity for suitably qualified students who have completed a Bachelors degree (or equivalent) in astronomy/physics/mathematics to study for a one year Masters level qualification in astro- physics working alongside 4th-year (Part III) students taking the final year of the integrated Masters undergraduate MSci Astrophysics Tripos. Read more
The IoA offers an exciting opportunity for suitably qualified students who have completed a Bachelors degree (or equivalent) in astronomy/physics/mathematics to study for a one year Masters level qualification in astro- physics working alongside 4th-year (Part III) students taking the final year of the integrated Masters undergraduate MSci Astrophysics Tripos.

The course consists of an extended project (either observational or theoretical, worth about a third of the total credit) and a choice of a range of high level specialist courses, most of which are examined in June. The course aims to provide an intellectually stimulating environment in which students have the opportunity to develop their skills and enthusiasms to the best of their potential. Owing to the demanding level of the course and the competition for a limited number of places, applicants should have achieved (or expect to achieve) a very good performance in their undergraduate degree. Although some bursary funding may be available, applicants should expect to arrange their own funding.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/pcasasast

Learning Outcomes

Students completing the year should have:

1. had experience of a number of areas of astrophysics from a choice of options taken to an advanced level, at which current research can be appreciated in some depth;

2. carried out a substantial research project amounting to about 1/3 of the work in the course;

3. enhanced their communications skills;

4. become well prepared for a career in academic research or one where independent research skills are required.

Format

Students experience a number of areas of astrophysics from a choice of options taken to an advanced level, at which current research can be appreciated in some depth. Two thirds of the student's assessment is via examinations and one-third is via the research project.

For the lecture courses there are large-group example classes organised by the course lecturers. The projects are specific to each student. i.e. every student is doing something different from the other students. Project supervisors meet their students individually. Supervisions for the project are one-on-one with at least 8 hours contact time.

Students can attend any of the numerous seminars given in the IoA, DAMTP and Physics. However these are not formally part of the course work.

Assessment

- Supervised research project with thesis of not more than 8000 words.

- Candidates normally offer papers for 12 units or 4 lecture courses of 24 lectures each.

- Examined oral presentation for the project.

- One journal club per week

- A literature review is a component of every project.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
This programme involves taught course units in Astronomy and Astrophysics together with a substantial research project associated with a research subgroup in the Jodrell Bank Centre for Astrophysics. Read more
This programme involves taught course units in Astronomy and Astrophysics together with a substantial research project associated with a research subgroup in the Jodrell Bank Centre for Astrophysics.
As one of the largest astrophysics group in the UK we can provide a wide range of specialisations including technical development of radio telescopes and observational and theoretical investigations of the cosmic microwave background, astrophysics of galaxy evolution, pulsars, stellar birth and death, black holes, jets (both stellar and galactic), MASERS, QUASARS, gravitational lenses, dust evolution, astrochemistry and solar physics.
The aim of the programme is to enable you to gain a wide understanding of modern astrophysics and to be prepared for doctoral-level research.

Typical course units studied include: radio astronomy; techniques of data processing in astronomy; stellar physics and cosmology.

The taught courses are assessed by examination and the student must submit an MSc thesis on their research project which is assessed by two independent examiners.

Read less
Explore astronomy and astrophysics at an advanced level, with an emphasis on theoretical astronomy. This course is for you if you have graduated from an applied mathematics- or physics-based degree and wish to learn how to apply your knowledge to astronomy. Read more
Explore astronomy and astrophysics at an advanced level, with an emphasis on theoretical astronomy. This course is for you if you have graduated from an applied mathematics- or physics-based degree and wish to learn how to apply your knowledge to astronomy. It’s one of only three full-time, broad-based astronomy MSc courses in the UK.

How will I study?
Teaching is by:
-Lectures
-Exercise classes
-Seminars
-Personal supervision

You’ll contribute to our weekly informal seminars, and are encouraged to attend research seminars.

Assessment for the taught modules is by coursework and unseen examination. Assessment for the project is by oral presentation and a dissertation of up to 20,000 words. A distinction is awarded on the basis of excellence in both the lecture modules and the project.

You can choose to study this course full time or part time.

Your time is split between taught modules and a research project. The project can take the form of a placement in industry, but usually our faculty supervises them. Supervisors and topics are allocated, in consultation with you, at the start of the autumn term. You work on the project throughout the year. Often the projects form the basis of research papers that are later published in journals. Most projects are theoretical but there is an opportunity for you to become involved in the reduction and analysis of data acquired by faculty members.

In the autumn and spring terms, you take core modules and choose options. You start work on your project and give an assessed talk on this towards the end of the spring term. In the summer term, you focus on examinations and project work.

In the part-time structure, you take the core modules in the autumn and spring terms of your first year. After the examinations in the summer term, you begin work on your project. Project work continues during the second year when you also take options. Distribution of modules between the two years is relatively flexible and agreed between you, your supervisor and the module conveners. Most of your project work naturally falls into the second year.

Scholarships
Our aim is to ensure that every student who wants to study with us is able to despite financial barriers, so that we continue to attract talented and unique individuals.

Chancellor's International Scholarship (2017)
-25 scholarships of a 50% tuition fee waiver
-Application deadline: 1 May 2017

HESPAL Scholarship (Higher Education Scholarships Scheme for the Palestinian Territories) (2017)
-Two full fee waivers in conjuction with maintenance support from the British Council
-Application deadline: 1 January 2017

USA Friends Scholarships (2017)
-A scholarship of an amount equivalent to $10,000 for nationals or residents of the USA on a one year taught Masters degree course.
-Application deadline: 3 April 2017

Faculty
Our research focuses on extragalactic astrophysics and cosmology.

Careers
The course has an excellent reputation, both nationally and internationally, and graduates from this MSc work and study all over the world.

Many of our graduates go on to take a research degree and often find a permanent job in astronomy. Others have become science journalists and writers.

Read less
Do you want to contribute to an area of cutting-edge research in an awe-inspiring subject? Do you want to delve deeper into advanced topics in physics or… Read more
Do you want to contribute to an area of cutting-edge research in an awe-inspiring subject? Do you want to delve deeper into advanced topics in physics or astronomy? Develop valuable new knowledge and skills? Prepare for a research career, or embark on a completely new path? Whatever your motivation, a postgraduate degree from the School of Physics and Astronomy can help you achieve your ambitions.

The MSc Physics is available in three different pathways: Particle Physic, Theoretical Physics and Condensed Matter Physics. The School of Physics and Astronomy also offers an MSc in Astrophysics and a PGCert in Astronomy and Astrophysics.

Programme outcomes

The aim of the programme is to deepen your understanding of contemporary theoretical physics, covering advanced concepts and techniques, leaving you well prepared for further doctoral level study and research. The programme will also enable you to develop skills transferable to a wide range of other careers.

This programme will:

Teach you the fundamental laws and physical principles, along with their applications, in your chosen area of physics.
Introduce you to research methodology, and how to manage your own research, making use of journal articles and other primary sources.
Allow you to communicate complex scientific ideas, concisely, accurately and informatively.
Instruct you how to use mathematical analysis to model physical behaviour and interpret the mathematical descriptions of physical phenomena.

Read less
The knowledge generated through the study of Physics is also the driving force behind most new technologies – from radars to lasers, from transistors to quantum computers, and from electron microscopes to advanced medical imaging scanners. Read more

Introduction

The knowledge generated through the study of Physics is also the driving force behind most new technologies – from radars to lasers, from transistors to quantum computers, and from electron microscopes to advanced medical imaging scanners.

Course description, features and facilities

The Master of Physics consists of an equal combination of advanced coursework and a research project and dissertation. The research project is undertaken as part of an internationally recognised research group. Students develop a combination of high-level research, analytical and problem-solving skills which are highly valued by industry and government employers.

For students wishing to continue to a PhD, the Master of Physics provides an outstanding preparation.

Students must nominate a specialisation on application, the Master of Physics has specialisations in;

Astronomy and Astrophysics
Computational Physics
Experimental Physics
Medical Physics
Theoretical Physics
The Faculty of Science offers Master's by Coursework bursaries for domestic students and Postgraduate Merit scholarships for international students. Please visit the Faculty of Science website for details.

Domestic students may be eligible for a Commonwealth supported place within this course.

Structure

The Master of Physics is offered by coursework and dissertation.

While the standard timeframe for completion of this degree is two years (full time), if you have previously completed an undergraduate degree in a cognate (related) area it may be possible to complete within 1.5 years.

The course offers a focused, advanced learning experience that will enhance career choices. You must complete all core units and specialisation core units.

Course structures for the master's degrees with the new 1.5 to 2 year structure (72 to 96 points) are now available via the UWA Handbook.

Professional recognition

Member of the Australian Institute of Physics (MAIP)

Career opportunities

In addition to a career as a research scientist or educator, previous graduates from the School of Physics have had highly successful careers in finance, management, geophysics and the IT sector.

Read less
The Department of Physics and Astronomy is a broad-based department with a wide range of research interests covering many key topics in contemporary physics, astronomy, and applied physics. Read more

Program Overview

The Department of Physics and Astronomy is a broad-based department with a wide range of research interests covering many key topics in contemporary physics, astronomy, and applied physics. See elsewhere in the Calendar for graduate program descriptions of Astronomy and Engineering Physics. In addition, an accredited Master of Science program is offered with a sub-specialization in Medical Physics. Departmental research activities are supported by several computing and experimental facilities, and excellent electronics and machine shops. Much of the Department's research is enhanced by local facilities such as the TRIUMF National Laboratory, the Advanced Materials and Process Engineering Laboratory (AMPEL), and the BC Cancer Agency, UBC, and associated teaching hospitals, in addition to many specialized research laboratories housed within the Department. There is a great deal of collaboration and overlap of interests among the various groups, and incoming graduate students are currently attracted to research opportunities in many subfields of physics:
- Applied Physics
- Medical Physics
- Biophysics
- Nuclear and Particle Physics
- Astronomy and Astrophysics
- Atomic, Molecular, and Optical Physics
- Condensed Matter Physics
- Theoretical Physics

Quick Facts

- Degree: Master of Science
- Specialization: Physics
- Subject: Science
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Science

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X