• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
University of Reading Featured Masters Courses
Ulster University Featured Masters Courses
University of Bradford Featured Masters Courses
FindA University Ltd Featured Masters Courses
"assay" AND "development"…×
0 miles

Masters Degrees (Assay Development)

  • "assay" AND "development" ×
  • clear all
Showing 1 to 4 of 4
Order by 
This programme is offered by the UCL Division of Medicine and the Wolfson Institute for Biomedical Research and is designed for the more research-oriented student, complementing Drug Design MSc. Read more
This programme is offered by the UCL Division of Medicine and the Wolfson Institute for Biomedical Research and is designed for the more research-oriented student, complementing Drug Design MSc. Conducting cutting-edge research within the drug industries and UCL's academic group, it offers opportunities for networking and future career development.

Degree information

This programme teaches students the latest methodologies and approaches and covers all aspects of drug design: drug discovery, computational and structural biology, screening, assay development, medicinal chemistry, and most importantly the industrial practices involved in modern drug design technology.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (30 credits), three optional modules (45 credits) and a dissertation/report (105 credits).

Optional modules - students will select three from the following Drug Design MSc modules:
-Bioinformatics and Structural Biology as applied to Drug Design
-Biological Molecules as Therapeutics
-Biophysical Screening Methods, X-ray Crystallography, Protein NMR and Phenotypic Screening
-Cheminformatics and Modelling for Drug Design
-Fragment-based Drug Design
-Target Selection – Commercial and Intellectual Property Aspects
-Target Selection – Scientific Grounds

Core modules - plus two taught transferable skills modules delivered by CALT (UCL Centre for the Advancement of Learning and Teaching):
-Investigating Research
-Researcher Professional Development

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 15,000 to 20,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials and problem classes, critical journal clubs and a research project. Assessment is through coursework, practicals, laboratory work, examination, dissertation and oral presentation.

Careers

We expect students graduating from this programme to take leading roles in drug discovery and development worldwide or to undertake further PhD level research. The first cohort of students on the Drug Design MRes graduating in 2015 have found jobs in the pharmaceutical industry as well as PhD studentships in leading universities.

Employability
The advanced knowledge and skill set acquired by taking this programme will enable students to find employment in the pharmaceutical and biotech industries in a global market.

Why study this degree at UCL?

The division hosts research groups in the areas of medicine, pharmaceutical research, cell cycle, neurobiology, mitochondrial function, stem cells and cancer. Underpinning the translational aspects of the biomedical research, we have a medicinal chemistry group which conducts research where chemistry and biology intersect, using the latest techniques and developing new ones for the study of biological systems.

The division collaborates extensively within industry and academia to develop biological tools and therapeutic agents. There are plenty of opportunities to conduct translational research that has an impact on drug discovery.

Pharmaceutical and biotech companies, well established in the West, have been transferring their research and development to the East. Given these substantial developments, particularly in China and India, the programme will have a broad international appeal.

Read less
Overview. The MRes courses are designed to provide students with intensive laboratory-based training in research methods, supported by in-depth understanding. Read more
Overview
The MRes courses are designed to provide students with intensive laboratory-based training in research methods, supported by in-depth understanding. The aim is to prepare graduates to make contributions, as individuals and members of a team, to research-oriented activities in the biomedical industries and related service sectors, or academia. The courses are also well-suited to students wishing to upgrade a first degree, change field, or gain valuable laboratory experience before employment or a PhD. The Strathclyde Institute of Pharmacy and Biomedical Sciences represents the largest Pharmacy research group in the UK, with 55% of its staff rated as either world-leading or internationally excellent in terms of originality, significance and rigour (data: Research Assessment Exercise 2008). The University of Strathclyde has invested £30M in a world-class, pioneering centre for biomedical and pharmaceutical sciences teaching and research, opened Aug 2010. Students will find themselves in stimulating, unique environment on account of the strongly multidisciplinary nature of the Institute. Combining fundamental and applied research across the areas of bioscience and pharmacy, SIPBS builds on its record of success in drug and vaccine discovery and development. The Institute engages with industry and the health services, ensuring that its excellent fundamental research is translated into products that are of benefit to health and society. For more information on SIPBS go to http://www.strath.ac.uk/sipbs

Course outline

An MRes degree is focussed on research and students will spend 8 months undertaking a laboratory-based project.
To support their chosen research project, students choose advanced-level taught courses in a named specialisation, from the following areas:

Taught classes delivered through lectures, workshops and practical classes in four areas:
1. Transferable skills training in data mining, interpretation and presentation; experimental planning, personal effectiveness, ethics in research
2. Commercialisation and entrepreneurship
3. MRes-specific classes relevant to subject area

Biomedical Sciences

Example research projects:
1. Antileishmanial activity of extracts and compounds from Monodora myristica
2. Imaging and modelling of cancer development
3. Endothelial progenitor cell expression and differentiation
4. Targeted radiotherapy for cancer
5. The involvement of pulmonary veins in atrial fibrillation: electrical properties
6. Reducing bacterial resistance to antibiotics
7. Development of neural stem cells with increased levels of the autophagy cell survival pathway
8. Investigating the role of Sigma 54 in Pseudomonas aeruginosa virulence
9. Transcriptional network analysis of the Escherichia coli core stress response.
10. Identification of novel anti-microbial compounds targeted at biofilm formation

Drug Delivery systems

Example research projects
1. Nanoparticulate formulations of insulin and their analysis
2. Mesoporous silicas for oral delivery of cyclosporine
3. Bioprocessing of biopharmaceuticals
4. Modified and time-delayed oral solid-dose release formulations
5. Nasal formulations of poorly soluble compounds
6. Reducing bacterial resistance to antibiotics: establishing, optimising and implementing a high throughput assay to discover natural product derived inhibitors of metallo beta-lactamase.
7. Imaging of dermal formulations using Raman microscopy techniques
8. Antileishmanial activity of extracts and compounds from Monodora myristica
9. Anti-trypanosomal active triterpenoids from some African Propolis
10. Investigation into the potential therapeutic properties of marine organisms
11. Photo-triggered adhesion of mammalian cells

Drug Discovery

Projects in the areas of :
1. Drug Delivery
2. Molecular Biology
3. Pharmacology
4. Pharmaceutical Materials and Formulation
5. Toxicology

Neuroscience

Projects in the areas of:
1. Electrophysiology
2. Stem cell biology for regenerative purposes
3. Cell biology
4. Inflammation
5. In vitro culture systems
6. Functional genetics

How to Apply
Applicants should apply through the University of Strathclyde on-line application form: http://pgr.strath.ac.uk indicating "Masters by Research", and named specialisation as appropriate. Applicants are not required to submit a detailed research proposal at this stage.

Read less
Our MSc course in Investigative Ophthalmology and Vision Sciences brings together the research expertise in vision from The University of Manchester and Manchester Royal Eye Hospital. Read more
Our MSc course in Investigative Ophthalmology and Vision Sciences brings together the research expertise in vision from The University of Manchester and Manchester Royal Eye Hospital.

This course will provide you with a firm grounding in the knowledge needed to pursue a higher degree and to conduct high quality research in ophthalmology, optometry or vision sciences. It also gives an opportunity for vision-related professionals to advance their knowledge of the scientific foundations of ophthalmology and vision sciences.

The course is aimed at optometrists, ophthalmologists, orthoptists and nurses from the UK and overseas. It is suitable for:
-Individuals who are considering undertaking a research degree in the vision sciences
-Those interested in professional development
-Those interested in conducting research as part of their clinical training
-Ophthalmologists wishing to expand and extend their training into specialist areas
-Optometrists considering a career in the hospital eye service

Teaching and learning

The course has two different pathways:
1. Six taught units (15 credits each) and a project dissertation (90) credits.
2. Four taught units (15 credits each), a literature review (30 credits) and a dissertation (90 credits).

The six units are Research Methods, Cornea, Contact Lens, Vascular Disease, Macular Degeneration and Glaucoma.

In each of the units, learning will be based on a series of formal lectures on topics relating to ocular disease and treatments, and a series of more informal tutorials on current research. You will receive copies of presentations and direction to relevant literature for personal study.

Many projects have led to peer reviewed publications in the ophthalmic literature. Recent titles include the following:
-Optical coherence tomography measures of the retinal nerve fibre layer
-Development of a model cell assay to investigate the cellular processing of ARB mutant bestrophin-1
-Risk factors for late presentation of patients with primary open angle glaucoma
-Molecular analysis of autosomal recessive retinal dystrophies
-In vivo analysis of the wettability of silicon hydrogel contact lenses
-Can corneal densitometry be used to assess the treatment outcome after corneal transplantation
-A contact lens based technique delivering cultured stem cells onto the human corneal surface
-The use of corneal imaging to assessing treatment outcomes of LASIK and LASEK
-Addressing the physiological cues needed for trans-differentiation of dental pulp stem cells into limbal stem cells

Coursework and assessment

Assessment is via:
-Written examinations in January and May
-Coursework set during the taught units
-A research project dissertation

Career opportunities

This course is aimed at optometrists, ophthalmologists, orthoptists and nurses from the UK and overseas.

It is considered suitable for:
-Individuals interested in vision sciences
-Those interested in conducting research as part of their clinical training
-Optometrists considering a career in the hospital eye service
-Those interested in an academic career in ophthalmology/optometry/vision sciences
-Optometrists interested in professional development

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X