• Swansea University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Durham University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
King’s College London Featured Masters Courses
National Film & Television School Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Bath Spa University Featured Masters Courses
"arctic"×
0 miles

Masters Degrees (Arctic)

We have 22 Masters Degrees (Arctic)

  • "arctic" ×
  • clear all
Showing 1 to 15 of 22
Order by 
The aims of the course are to provide an understanding of key contemporary research problems in a range of disciplines in either the humanities and social sciences or physical sciences relating to the Arctic and Antarctica, and for students to undertake original research on a topic selected in consultation with members of staff. Read more
The aims of the course are to provide an understanding of key contemporary research problems in a range of disciplines in either the humanities and social sciences or physical sciences relating to the Arctic and Antarctica, and for students to undertake original research on a topic selected in consultation with members of staff.

Taught material is presented in the Michaelmas Term, usually in the form of seminars. The material is organized in two strands, suitable for students interested in the humanities and social sciences or in the natural sciences. It is examined through the submission of three essays, which can take the form of research papers. In the Lent and Easter terms students carry out research towards their dissertations. Dissertation topics are agreed with supervisors and are closely integrated with the ongoing research activities of the Scott Polar Research Institute (SPRI). Students are expected to participate in internal and external research seminars, and a research forum.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/eaggmpmps

Course detail

The outcomes of the course are achieved both through focused study of specialised aspects of research on the Arctic and Antarctic, either in terms of Arts and Humanities or the Sciences, and through the development of research skills and methods. The following outcomes of student learning are sought:

Knowledge of ideas: Students gain familiarity with an appropriate range of intellectual and methodological traditions relevant to the study of the Arctic and Antarctic. For the humanities and social science strand, students draw on material from Geography, Anthropology, Political Science and other social sciences, and understand the significance of different epistemological positions that provide the context for research. For the physical sciences strand, students will become familiar with theories and empirical work from, amongst other areas, the fields of glaciology, oceanography and atmospheric science. They will gain knowledge and understanding of the field-based, remote sensing and modelling techniques used in polar science research. The teaching is provided via lectures and seminars, research supervision via bi-weekly meetings between students and their supervisor and sessions concerning research skills. Students also attend the research seminars held in their research groups. This allows exchange of ideas and debate with more experienced academic researchers and their peers;

Critical skills: Students become skilled and critical readers of Arctic and/or Antarctic publications and data sets. This is achieved through structured reading associated with each module, as well as via supervision on the essays and dissertation;

Substantive knowledge of ideas: Students gain in-depth knowledge of substantive areas of Arctic and/or Antarctic research. This knowledge is gained in the modules on The Emerging Arctic, Northern Peoples, Polar Remote Sensing, Glacier and Ice Sheet Dynamics: Present and Past. Students gain an in-depth knowledge either of underlying patterns of development, conservation and cultural transformation in the Arctic and/or Antarctic regions, or of the physical processes at work in these regions, how these have changed in the past and are changing currently, and the methods and techniques for investigating them;

Research design skills: Students develop their capacity to frame research questions, to derive appropriate research designs, and develop awareness of different epistemological approaches. This is achieved through the ‘Research Training’ sections of course;

Practical research skills: Students gain a competence and confidence in using a range of qualitative and/or quantitative methods for gathering, analysing and interpreting data. This is achieved through the ‘Research Training’ sections of course and the dissertation;

Presentation skills: Students gain skills in the presentation of research-based evidence and argument. Students are expected to take an active role in the research seminars of the research groups to which they belong and to contribute actively to seminar discussions. They are also expected to present their dissertation aims, methods, preliminary results, and plans for future work at a student forum held part way through their dissertation research period;

Management and other transferable skills: Students gain skills in managing a research project, and its execution (including, where appropriate, elements of data management, understanding ethics and codes of good practice in cross-cultural research, understanding uncertainty, disseminating research). Several of these elements are taught in the ‘Research Training’ sections of course, and then are extended and applied via the dissertation research, which has individual supervision from an experienced researcher.

Assessment

- 20,000 word dissertation that, at the discretion of the examiners, can include an oral examination on the thesis and the essays and on the general field of knowledge.
- Three essays or other exercises of up to 4,000 words each.

Continuing

70% overall in MPhil.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

AHRC for Arts and History topics approved by the AHRC DTP at University of Cambridge.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
You can choose between the Master's programme in Classical and Mediterranean Archaeology and the Master's programme in Prehistory and Protohistory of Northwest Europe. Read more
You can choose between the Master's programme in Classical and Mediterranean Archaeology and the Master's programme in Prehistory and Protohistory of Northwest Europe. Both Master programmes include different tracks: a track with the name og the programme, a specialized track in Bioarchaeology and Maritime Archeology, while a third track, Arctic Archaeology can be followed under the programme Prehistory and Protohistory of Northwestern Europe. All programmes and tracks will teach you to tackle archaeological problems in a scientific way.

In the first semester, you will be introduced to the archaeological practice and its multidisciplinary character. You will discuss the role of archaeology in contemporary society and explore the relation between archaeology and politics. You will strengthen your knowledge of archaeological theories that are used in collecting and interpreting data. In addition, you will carry out research in an excavation project. If you choose the programme Classical and Mediterranean Archaeology, you will work on a project in Greece, Italy, Turkey or Egypt. Does your preference go to Prehistory and Protohistory of Northwestern Europe, then you will carry out your research at a site in that region, or in the Arctic.

In the second semester, you have to do an internship. Finally, you will finish your degree with a thesis.

Job perspectives

Thanks to the Valetta Treaty on Archaeology, the job market in the Netherlands has been strong. These opportunities have now decreased, leading to a more diverse job market, within government and semi-government agencies, tourism, journalism and private enterprises. Archaeology is traditionally strong in obtaining grants for research projects, especially PhD projects.

Job examples

- Commercial archaeological firms
- Free-lance specialist
- Musea
- State archaeological service
- Research institutes
- Cultural institutes
- PhD research

The BA and MA programmes are strongly tied to the Groningen Institute of Archaeology (GIA), which comprises the archaeological research of the University of Groningen.

GIA research is focused on:
- Prehistoric, protohistoric and historical archaeology in the Netherlands, the Mediterranean and the Arctics.
- Bioarchaeology: archaeobotany and archaeozoology
- Material culture studies, including conservation
- Landscape archaeology, including GIS-based studies

Read less
Automotive industry design is undergoing a very swift and radical change and this course prepares automotive engineers to deal with this complex and fast development. Read more
Automotive industry design is undergoing a very swift and radical change and this course prepares automotive engineers to deal with this complex and fast development. Our applied approach to design, manufacture and testing of automotive products ensures that our graduates are ready for automotive industry, with excellent employability prospects. In addition, our location is in the heart of one of Europe's biggest concentrations of high-tech businesses and the UK motorsport valley. This offers unrivalled opportunities for students to collaborate with automotive industry and their supply chain. It keeps students abreast with the current developments in automotive technologies, production methods, processes and management techniques. Our teaching is centred around our state-of-the-art laboratories in a purpose-designed engineering building.

Why choose this course?

You will be taught in a purpose-designed engineering building, by staff with exceptional knowledge and expertise in their fields. Lecturers include world-leaders in research on sustainable vehicle engineering, and those with experience of designing and working with major automotive manufacturers such as TATA, MAN and BMW. Our visiting speakers from business and industry provide professional perspective, preparing you for an exciting career; for more information see our industrial lecture series schedule. We have close links with industry including the BMW MINI plant in Oxford, Porsche, Ford, MAN, MIRA and other national and international partners. Our research incorporates the latest developments within the sector with high profile visiting speakers contributing to our invited research lectures.

In REF 2014 57% of the department's research was judged to be of world leading quality or internationally excellent with 96% being internationally recognised. Regular visits to automotive industry and their supply chain provide students with opportunities to explore technical challenges and the latest technology - to get a flavour of the activities within our department see 2015 highlights. You will have the opportunity to join our acclaimed Formula Student team (OBR), mentored by our alumni and visiting lecturers from automotive and motorsport industry. You will put theory into practice by competing with the best universities from around the world. Find out more about Formula Student at Brookes by visiting the Oxford Brookes Racing website: https://obr.brookes.ac.uk/

Professional accreditation

Accredited by the Institution of Mechanical Engineers (IMechE) and The Institute of Engineering and Technology meeting the academic requirements for full Chartered Engineer status.

This course in detail

The course is structured around three periods: Semester 1 runs from September to December, Semester 2 from January to May, and the summer period completes the year until the beginning of September.

To qualify for a master's degree you must pass the compulsory modules, one of two alternative-compulsory modules and one optional module, along with the dissertation.

Compulsory modules
-Advanced Vehicle Dynamics
-Sustainable Engineering Technology.
-Advanced Engineering Management

Alternative-compulsory modules (you must pass at least one of these):
-Noise, Vibration and Harshness
-Vehicle Crash Engineering

Optional modules (you take one of these, unless you take both alternative-compulsory modules above):
-Advanced Vehicle Aerodynamics
-Engineering Reliability and Risk Management
-CAD/CAM
-Advanced Powertrain Engineering

The Dissertation (core, triple credit) is an individual project on a topic from automotive engineering, offering an opportunity to develop a high level of expertise in a particular area of automotive engineering, including use of industry-standard software and/or experimental work, the module will also provide you with research skills, planning techniques, project management. Whilst a wide range of industry-sponsored projects are available (e.g. MAN (Germany), VUHL (Mexico), McLaren (UK), AVL (Austria), Arctic Truck (Iceland) etc.), students are also able undertake their own projects in the UK and abroad, to work in close co-operation with a research, or commercial organisation.

Please note: As our courses are reviewed regularly as part of our quality assurance framework, the choice of modules available may differ from those described above.

Teaching and learning

Teaching staff are drawn primarily from the Department of Mechanical Engineering and Mathematical Sciences. Visiting speakers from business and industry provide further input.

Careers and professional development

Our graduates enjoy the very best employment opportunities, with hundreds of engineering students having gone onto successful careers in their chosen industry. Many of our students go on to work with leading automotive or motorsport companies in the UK and worldwide.

Read less
The Master of Environment and Management (MEM) program is a graduate degree of interdisciplinary study in either the Master of Arts (MA) or Master of Science (MSc) designed to enhance strategic decision making in the environmental field. Read more
The Master of Environment and Management (MEM) program is a graduate degree of interdisciplinary study in either the Master of Arts (MA) or Master of Science (MSc) designed to enhance strategic decision making in the environmental field. The program emphasizes teamwork and focuses on technical, policy, and system and sustainability issues to prepare students to become environmental professionals who are effective leaders and managers. This is a two year program made up of 3 three-week on-campus residencies (mandatory) combined with online learning.

The MA/MSc in Environment and Management program helps students to:
-Assess the environmental, social, cultural, political, legal, and economic elements of enhancing and sustaining environmental health and ecosystem well-being
-Develop and evaluate goals, objectives and strategies for leadership and management of environmental issues through a range of perspectives
-Identify and use appropriate research, assessment and reporting methods for the investigation and analysis of environmental issues, problems, and projects
-Present a systems perspective on the implications of scale for options, actions and decisions respecting environmental sustainability, facilitate the learning and decision-making ability of others, and develop and model personal and team visions
-Prepare, communicate and implement action plans for environmental change

Who It’s For

Those from all levels of government, business, industry, consulting and non-governmental organizations who want to gain skills and credentials as leaders and managers to advance their current career or launch a new one. Students will pursue either a Master of Arts or Master of Science based on individual academic history and work experience.

Participants in the Master of Arts/Master of Science in Environment and Management (MEM) program come from as far north as Iqaluit in the Canadian Arctic, as far south as Peru and as far east as Indonesia and China. Most participants are employed in the public, private and not-for-profit sectors, and represent a broad cross-section of the environmental sector.

Delivery Model

The Master of Arts/Master of Science in Environment and Management program consists of ten courses (seven on campus and three distance online through Internet technologies) and completion of a graduate thesis.

Distance courses are delivered through the innovative use of web-based technologies. Participants will draw upon web resources as well as more traditional print media, while using online discussion groups and drop boxes to work towards the electronic submission of assignments.

Normally, students will take one distance course at a time, for a period of 10 - 12 weeks. Each distance course will require an average time commitment of 10 - 20 hours per week.

Students should expect to work hard during the residency period. The typical classroom schedule is Monday to Friday, from 8 a.m. to 5 p.m. Homework, readings, and team meetings are done outside of these hours. There will be some activities in the evenings, as well as during the typical workday. In addition to the educational activities there are planned recreational events.

In general, the student will have secured the necessary approvals to enter the program from their employer. In most cases the employer will, therefore, be the sponsor and will provide the student with the support and mentorship necessary to complete the program. In some cases, the sponsor may not be the employer of a student, but may be an organization interested in supporting the direction and receiving the results of the thesis.

There are many variations of the sponsor-student relationship, and this can be discussed with the Program Academic Lead to find a mutually-supported solution. The sponsor should be prepared to take "ownership" of the graduate's thesis project as a credible and defensible work which will clearly reflect the student’s own values, concepts and creativity, and which will have been subject to peer review.

The thesis topic should be of specific interest to the sponsor and in general, to qualify as suitable thesis project material, the topic must fall clearly into categories such as: a scientific study of a particular environmental issue or procedure; a detailed and scientifically-based case study of the environmental issues central to a particular area or resource industry; or, an evaluation of the social, political, economic, or legal implications of particular environmental policies, regulations, and practices.

Flexible Admission

Applicants who do not meet the Standard Admission requirements will be considered for Flexible Admission and assessed as follows:
-Normally, six years of relevant work experience, or an equivalent combination of education and experience.
-All flexible admission applicants will normally be required to take "Academic Writing and Critical Thinking" and obtain a minimum final grade of B (73%).

Read less
This is the first masters level degree course that brings academic rigour and focus to this multi-disciplinary subject. The MSc in Flow Assurance for Oil and Gas Production is suitable for engineering and applied science graduates who wish to embark on successful careers in the oil and gas industry. Read more
This is the first masters level degree course that brings academic rigour and focus to this multi-disciplinary subject. The MSc in Flow Assurance for Oil and Gas Production is suitable for engineering and applied science graduates who wish to embark on successful careers in the oil and gas industry. Our strategic links with industry ensures that all the materials taught on the course are relevant, timely and meets the needs of organisations competing within the sector. This industry-led education makes our graduates some of the most desirable the world for energy companies to recruit.

In the foreseeable future, hydrocarbon (oil and gas) will still be the major energy source irrespective of the developments in renewable and nuclear energy. The term ‘flow assurance’ was coined by Petrobras in the early 1990s meaning literally “guarantee of flow.” It covers all methods to ensure the safe and efficient delivery of hydrocarbons from the well to the collection facilities. It is a multi-disciplinary activity involving a number of engineering disciplines including mechanical, chemical, process, control, instrumentation and software engineering.

Previously uneconomical fields are now being exploited - oil and gas are produced in hostile environments from deep water to the Arctic. As conventional oil reserves decline, companies are developing unconventional oil fields with complex fluid properties. All of these factors mean that flow assurance plays an increasingly important role in the oil and gas industry.

Course overview

The MSc in Flow Assurance for Oil and Gas Production is made up of nine compulsory taught modules (eight compulsory and one optional from a selection of three), a group project and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:

- Develop a professional ability to undertake a critical appraisal of technical and/or commercial literature.
- Demonstrate an ability to manage research studies, and plan and execute projects in the area of oil and gas production technology and flow assurance.
- Use of the techniques appropriate for the management of a oil and gas production and transport systems.
- Gain an in-depth understanding of the technical, economic and environmental issues involved in the design and operation of oil and gas production and transport systems.

Group project

The group project runs between February and April and is designed to give students invaluable experience of delivering a project within an industry structured team. The project is sponsored by industrial partners who provide particular problems linked to their plant operations. Projects generally require the group to provide a solution to the operational problem. This group project is shared across the Process Systems Engineering MSc, Flow Assurance MSc and Carbon Capture and Transport MSc, giving the added benefit of gaining new insights, ways of thinking, experience and skills from students with other backgrounds.

During the project you will develop a range of skills including learning how to establish team member roles and responsibilities, project management, and delivering technical presentations. All groups submit a written report and deliver a presentation to the industry partner. Part-time students will take an additional elective module instead of the group project.

It is clear that the modern design engineer cannot be divorced from the commercial world. In order to provide practice in this matter, a poster presentation will be required from all students. This presentation provides the opportunity to develop presentation skills and effectively handle questions about complex issues in a professional manner.

Recent Group Projects include:

- Waste water treatment process design
- A new operation mode design for a gas processing plant.

Individual Project

The individual research project allows students to delve deeper into a specific area of interest. Our industrial partners often put forward practical problems or areas of development as potential research topics. For part-time students, their research project is usually undertaken in collaboration with their place of work. The individual project takes place from April/May to August.

Recent Individual Research Projects include:

- Separation – from Subsea to Topside
- Evaluation of Multiphase Flow Metering
- Multiphase Jet Pumps
- Sand Transport in Undulating Terrains.

Modules

The taught programme for the Flow Assurance masters is generally delivered from October to March and is comprised of eight compulsory modules, and one optional module to select from a choice of four. The modules are delivered over one to two weeks of intensive delivery with the later part of the module being free from structured teaching to allow time for more independent learning and reflection. Students on the part-time programme will complete all of the compulsory modules based on a flexible schedule that will be agreed with the course director.

Assessment

Taught modules: 40%; Group project: 20% (dissertation for part-time students); Individual Research Project: 40%.
The taught modules are assessed by an examination and/or assignment. The Group Project is assessed by a written technical report and oral presentations. The Individual Research Project is assessed by a written thesis and oral presentation.

Funding

Bursaries are available; please contact the Course Director for more information.

Cranfield Postgraduate Loan Scheme (CPLS) - https://www.cranfield.ac.uk/Study/Postgraduate-degrees/Fees-and-funding/Funding-opportunities/cpls/Cranfield-Postgraduate-Loan-Scheme

The Cranfield Postgraduate Loan Scheme (CPLS) is a funding programme providing affordable tuition fee and maintenance loans for full-time UK/EU students studying technology-based MSc courses.

Career opportunities

There is considerable global demand in the oil and gas industry for flow assurance specialists with in-depth technical knowledge and practical skills. The industry led education makes our graduates some of the most desirable for recruitment in this sector. The depth and breadth of the course equips graduates with knowledge and skills to tackle one of the most demanding challenges to secure our energy resource. Graduates of the course can also be recruited in other upstream and downstream positions. Their knowledge can additionally be applied to the petrochemical, process and power industries.

Further Information

For further information on this course, please visit our course webpage - http://www.cranfield.ac.uk/courses/masters/flow-assurance-for-oil-and-gas-production.html

Read less
IN BRIEF. Work towards a fulfilling career in an exciting field with the potential for travel. Learn from respected filmmakers via a series of masterclasses. Read more

IN BRIEF:

  • Work towards a fulfilling career in an exciting field with the potential for travel
  • Learn from respected filmmakers via a series of masterclasses
  • Develop the creative and technical skills you will need to produce striking and informative wildlife documentaries
  • Skillset-accredited course
  • Based at MediaCityUK
  • Work/industrial placement opportunity
  • International students can apply

COURSE SUMMARY

On this course you will learn the research, scriptwriting and production skills that you will need to produce polished, professional wildlife documentaries.

As well as lectures and seminars, you will attend masterclasses given by expert practitioners with links to the television industry. Plus you will take field trips to a range of animal habitats, where you will work on individual and group projects.

During your time with us, you will learn specialist wildlife-production techniques, including long-lens and time-lapse photography and close-up sound recording. There is a strong emphasis on professional practice, and your projects will be expected to measure up to scientific scrutiny, as well as exhibition and broadcast standards.

Graduates’ final films have won many awards at national and international festivals.

TEACHING

The course will employ a range of teaching and learning strategies in order to meet learning outcomes. These will include:

  • Lectures
  • Seminars
  • Camera, sound and editing skills practice and assessment
  • Analysis of case studies
  • Student-led independent research
  • Student-led project work and field trips.

This strategy will be integrated with an assessment strategy based on outcomes, students' reflective self-assessments and learning plans. Assessment methods will include production exercises and portfolios, projects, critical essays and a dissertation project.

ASSESSMENT

Each module within the course uses and combines a number of different assessment criteria. The following styles are used within the course modules:

  • Reports
  • Presentations
  • Essay
  • Practical project
  • Research Portfolio

EMPLOYABILITY

The course is ideal for those wishing to pursue careers in all aspects of wildlife documentary production, including directing, producing, script-writing, photography, sound recording and editing. A number of graduates are now working within the TV industry both in the UK and abroad, including several independent companies and ITV, all within wildlife documentary.

The majority of past students have found jobs in the television industry. Examples include:

  • Graduates who are now producer/directors and making long-form documentaries for broadcast
  • Ex-students are working for the BBC Natural History Unit as researchers and assistant producers and editors
  • Ex-students are working for independent Wildlife Documentary Production Companies as cameramen and assistant producers
  • Ex-students are working for ITV, producing short films from their wildlife images catalogue
  • A student is working as an assistant cameraman for a leading wildlife independent company
  • One student is working as a producer for Portuguese TV
  • Other graduates have jobs as field assistants (currently working in the arctic on a major wildlife film), runners and film librarians
  • A student is making web-based programmes for Cornwall TV
  • All are connected with wildlife and nature film-making

LINKS WITH INDUSTRY

This course has a number of links with media companies throughout the UK including the BBC Natural History Unit in Bristol. The current external examiner for the course is the head of the BBC Natural History Unit, Andrew Jackson. Students have undertaken work experience both at the BBC, Warehouse51 Wildlife Production Company and [email protected], the post production company that works on a range of wildlife programmes for the BBC and Disney Nature. Both the course leader and the visiting fellow keep close links with companies within the TV sector, including Panasonic, Sony, Canon and Arriflex to ensure students are aware of latest technologies.



Read less
Oceanographers investigate both fundamental and applied problems relating to the physics, mathematics, biology, chemistry, and geology of the sea, often working across traditional academic disciplines. Read more

Program Overview

Oceanographers investigate both fundamental and applied problems relating to the physics, mathematics, biology, chemistry, and geology of the sea, often working across traditional academic disciplines. Research carried out both independently and in collaboration with federal government laboratories occurs in many different oceanographic regimes, including coastal BC fjords, the inland sea of the Strait of Georgia, open ocean regions of the Subarctic Pacific, and many other locations, including the Arctic and Antarctic Oceans. The types of problems that can be studied include fundamental questions about the flow of stratified fluids at scales ranging from tens of meters to thousands of kilometers, applied research in estuaries, coastal, and deep-ocean processes, general ocean circulation and climate change issues, marine chemistry, geochemistry, and biogeochemistry, natural product chemistry, marine viruses, fisheries oceanography, plankton ecology and physiology, and primary production of the sea. The Department is well equipped to carry out research in the field (using either its own boat or larger vessels in the oceanographic fleet), at the laboratory bench, and in the numerical heart of a computer. Most problems involve aspects of all three.

Students in Oceanography may select courses, depending on their interest, from the following areas of specialization:
- biological oceanography
- marine chemistry and geochemistry
- physical oceanography and atmospheric sciences

Students are encouraged to broaden their knowledge by taking courses outside their area of specialization. Courses related to Oceanography are also offered in the Departments of Botany, Chemistry, Civil Engineering, Geography, Physics and Astronomy, and Zoology.

Oceanography students normally begin their studies in September but may sometimes arrange to start their thesis/dissertation work in the summer before their first Winter Session. A student wishing to do graduate work in Oceanography should first discuss the proposed program with appropriate faculty in the Department of Earth, Ocean and Atmospheric Sciences.

Quick Facts

- Degree: Master of Science
- Specialization: Oceanography
- Subject: Science
- Mode of delivery: On campus
- Program components: Coursework + Options
- Faculty: Faculty of Science

Read less
Students in this programme are trained to research these type of questions. This programme is part of the Master programme of Archaeology and builds on the knowledge and skills obtained in a BA programme of Archaeology. Read more
Students in this programme are trained to research these type of questions.

This programme is part of the Master programme of Archaeology and builds on the knowledge and skills obtained in a BA programme of Archaeology.

Within the programme four different tracks are available. These tracks have their specific core modules, but also share courses with the other tracks within our MA programme.

The track are:
- Prehistory and Protohistory in northwest Europe, with core modules Prehistoric Cultural Landscapes and Terp-mound Archaeology
- Bioarchaeology, with a core module of the same name
- Maritime Archaeology with a core module of the same name
- Arctic Archaeology, with the core module Sustainability at the Polar Regions

The first semester comprises one compulsory module, Archaeology Today, and two of the other modules named here. In the second semester there is the opportunity to do an internship or an advances GIS course. The final stage of the MA programme is a thesis.

Why in Groningen?

- flexible structure
- unique archaeobotanical and archaeozoological reference collections
- GIS and Material Culture laboratories
- all courses are taught in English
- close connections with Centre for Isotopes Research and Biology
- very low tuition fees
- a student friendly city

Job perspectives

Thanks to the Valetta Treaty on Archaeology, the job market in the Netherlands has been strong. These opportunities have now decreased, leading to a more diverse job market, within government and semi-government agencies, tourism, journalism and private enterprises. Archaeology is traditionally strong in obtaining grants for research projects, especially PhD projects.

The BA and MA programmes are strongly tied to the Groningen Institute of Archaeology (GIA), which comprises the archaeological research of the University of Groningen.

GIA research is focused on:
- Prehistoric, protohistoric and historical archaeology in the Netherlands, the Mediterranean and the Arctics.
- Bioarchaeology: archaeobotany and archaeozoology
- Material culture studies, including conservation
- Landscape archaeology, including GIS-based studies

Read less
Summary. The Erasmus Mundus MSc Coastal and Marine Engineering and Management (CoMEM) is a two-year, English-taught international masters programme offered by a consortium of five European universities. Read more

Summary

The Erasmus Mundus MSc Coastal and Marine Engineering and Management (CoMEM) is a two-year, English-taught international masters programme offered by a consortium of five European universities: Norwegian University of Science and Technology, Trondheim, Norway; Polytechnic University of Catalunya, Barcelona, Spain; Technical University of Delft, Netherlands; City University London, UK; and University of Southampton, UK. Students study in two or three different countries depending on their individual track of study. The programme covers how to prepare coastal areas in the event of sea-level rise and the study of how marine tides can contribute to renewable energy..

Modules

There are five specialist tracks:

1) Arctic Marine Coastal Engineering;

2) Marine Operations and Management;

3) Environment and Management;

4) Coastal Engineering;

5) Engineering and Environment.

Students on tracks 3, 4 and 5 attend the University of Southampton

Visit our website for further information.



Read less
This new and exciting programme is aimed at training graduates from a range of scientific disciplines who wish to pursue a research career in cold-regions science, notably within the disciplines of glaciology, glacial geomorphology, polar climatology / oceanography, environmental science, polar biogeochemical processes, or their intersections. Read more

About the course

This new and exciting programme is aimed at training graduates from a range of scientific disciplines who wish to pursue a research career in cold-regions science, notably within the disciplines of glaciology, glacial geomorphology, polar climatology / oceanography, environmental science, polar biogeochemical processes, or their intersections.

The programme’s underlying theme is contemporary, as its key interest is to explore the expressions, mechanisms and impacts of rapid ongoing changes in our planet’s cold regions.

Your career

You’ll develop the skills to work in private or public sector research, or join the civil service. Recent graduates have started careers in consulting or with organisations like CAFOD, the Environment Agency and the British Library. Many of our graduates stay on to do research. We have a high success rate in securing funding for those who wish to study for a PhD with us after finishing a masters.

Study with the best

This is a vibrant postgraduate community, with strong international links. Our research partners are global, from UK universities to institutions in southern Africa, Denmark, Iceland, Australia and the USA. Our teaching is invigorated by work from several interdisciplinary research groups, like the Sheffield Centre for International Drylands Research, the Urban and Regional Policy Research Institute and the Sheffield Institute for International Development.

How we teach

Our staff are active researchers at the cutting-edge of their fields. That research informs our masters courses. As well as the usual lectures and seminars, there are practicals, lab classes, field trips and research projects.

Facilities and equipment

A new £1m Sediment-Solute Systems lab enables geochemical analysis of aqueous and solid phases, especially in the context of biogeochemistry. We have equipment for chromatography, UV spectrometry and flow injection/auto analysis.

Our sample preparation facilities enable digestion, pre-concentration by evaporation under vacuum, and tangential flow filtration. There are alpha and gamma counters, a laser particle sizer and a luminescence dating lab. Field equipment includes automatic water samplers, weather stations, data loggers and environmental process characterisation sensors.

We have high-quality petrological microscopes for examining geological samples. We have labs for spectrometry and for palaeontological preparation, and you’ll also have access to specialist facilities in other departments at the University.

Laptops, camcorders, tape recorders and transcribers are available for your fieldwork. Our postgraduate computer labs have networked workstations for GIS research and climate modelling, ARC/INFO, ERDAS software and specialist software for remote sensing. GIS facilities are also provided by the £5m Informatics Collaboratory for the Social Sciences.

Our new postgraduate media GIS suite has facilities for Skype, video conferencing, web design, video editing and creative media.

Fieldwork

Most of our courses involve fieldwork. The MPH, MSc and MA International Development take students on a 10-day field trip where they put their research skills into practice. Recent classes visited the West Pokot region of Kenya, urban and rural areas of Nepal, the suburbs of Cairo and India.

Core modules

Research Design in Analysis of Environmental Systems; Current Issues in Polar and Alpine Science; Arctic/Alpine Field Course; Polar and Alpine Change Research Project.

Teaching and assessment

Modules are delivered through a mixture of lectures, seminars, workshops and independent study.

The Research Project is assessed by oral presentation of mid-project findings, submission of a project report in the summer and by a poster presentation of project findings.

Read less
Our masters programme will empower you to confidently meet the challenges of working in complex and unpredictable situations; overseas, on expedition, in low resource settings or within your UK practice. Read more
Our masters programme will empower you to confidently meet the challenges of working in complex and unpredictable situations; overseas, on expedition, in low resource settings or within your UK practice. Following comprehensive preparatory modules we provide you with the unique opportunity to undertake a placement in a global or remote environment as part of your immersive learning experience. Discover, discuss and debate with our expert faculty.

Explore the interactions between global, environmental and human factors that influence health and welfare. Learning in the field will demonstrate the multi-factorial aspects associated with remote and global medicine. Gain the advanced knowledge, skills and leadership qualities to deliver quality medical care, use evolving medical technologies and interact with health care professionals in multicultural settings, ensuring the best possible health outcomes for your unique patient population.

Key features

-Rise to the challenge on this part-time, one year masters programme – become a health professional ready to meet the unique challenges of providing care in complex and challenging global and/ or remote environments
-Experience teaching from faculty staff and visiting experts that have an active role in shaping healthcare systems locally and globally; working in global health partnerships, and leading expeditions to arctic, jungle, desert and mountainous terrains.
-Equip yourself with the advanced skills necessary to critically analyse and combine a range of information to make safe and effective decisions in unpredictable situations, demonstrate leadership qualities and contribute to improvement science in your placement setting.
-Benefit from a blended learning environment with delivery ranging between practical scenario-based training in the field, lectures and seminars, and supported distance learning.
-Take advantage of a collaborative educational partnership between local NHS services, higher education, clinical services and experts including the military.
-Enhance your learning with our established links to the British Antarctic Survey Medical Unit, Diving Diseases Research Centre, THET Health Links Partnerships, and the South West Global Health Collaborative.

Course details

During this programme you’ll have the opportunity to develop a comprehensive understanding of remote medicine and of the distinct environmental, physical and psychological factors associated with working as a remote clinical practitioner. You will plan, research and complete the dissertation associated with the masters programme. The dissertation is designed to enable you produce a project under supervision, and to demonstrate project design, development, evaluation and synthesis skills.

Core modules
-DIS731 Dissertation
-REM713 Global Health
-REM711 Remote Practitioner
-REM714 Remote & Global Placement Medicine

Optional modules
-PDD721DL Project Design, Development and Knowledge Transfer
-PDD721 Project Design, Development and Knowledge Transfer

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Climate change and issues of air quality and extreme weather are matters of global concern, but which are inadequately understood from the scientific point of view. Read more
Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Climate change and issues of air quality and extreme weather are matters of global concern, but which are inadequately understood from the scientific point of view. Not only must further research be done, but industry and business also need environmental specialists with a strong background in natural sciences. As new regulations and European Union directives are adopted in practice, people with knowledge of recent scientific research are required.

Upon graduating from the Programme you will have competence in:
-Applying experimental, computational and statistical methods to obtain and analyse atmospheric and environmental data.
-Knowledge applicable to solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication.
-Making systematic and innovative use of investigation or experimentation to discover new knowledge.
-Reporting results in a clear and logical manner.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The six study lines are as follows:
Aerosol Physics
Aerosol particles are tiny liquid or solid particles floating in the air. Aerosol physics is essential for our understanding of air quality, climate change and production of nanomaterials. Aerosol scientists investigate a large variety of phenomena associated with atmospheric aerosol particles and related gas-to-particle conversion using constantly improving experimental, theoretical, model-based and data analysis methods. As a graduate of this line you will be an expert in the most recent theoretical concepts, measurement techniques and computational methods applied in aerosol research.

Geophysics of the Hydrosphere
Hydrospheric geophysics studies water in all of its forms using physical methods. It includes hydrology, cryology, and physical oceanography. Hydrology includes the study of surface waters such as lakes and rivers, global and local hydrological cycles as well as water resources and geohydrology, the study of groundwater. Cryology focuses on snow and ice phenomena including glacier mass balance and dynamics, sea ice physics, snow cover effects and ground frost. Physical oceanography covers saline water bodies, focusing on describing their dynamics, both large scale circulation and water masses, and local phenomena such as surface waves, upwelling, tides, and ocean acoustics. Scientists study the hydrosphere through field measurements, large and small scale modelling, and formulating mathematical descriptions of the processes.

Meteorology
Meteorology is the physics of the atmosphere. Its best-known application is weather forecasting, but meteorological knowledge is also essential for understanding, predicting and mitigating climate change. Meteorologists study atmospheric phenomena across a wide range of space and time scales using theory, model simulations and observations. The field of meteorology is a forerunner in computing: the development of chaos theory, for example, was triggered by the unexpected behaviour of a meteorological computer model. Meteorology in ATM-MP is further divided into dynamic meteorology and biometeorology. Dynamic meteorology is about large-scale atmospheric dynamics, modelling and observation techniques, whereas biometeorology focuses on interactions between the atmosphere and the underlying surface by combining observations and modelling to study the flows of greenhouse gases and energy with links to biogeochemical cycles, for example. As a graduate of the meteorology line, you will be an expert in atmospheric phenomena who can produce valuable new information and share your knowledge.

Biogeochemical Cycles
Biogeochemistry studies the processes involved in cycling of elements in terrestrial and aquatic ecosystems by integrating physics, meteorology, geophysics, chemistry, geology and biology. Besides natural ecosystems, it also studies systems altered by human activity such as forests under different management regimes, drained peatlands, lakes loaded by excess nutrients and urban environments. The most important elements and substances studied are carbon, nitrogen, sulphur, water and phosphorus, which are vital for ecosystem functioning and processes such as photosynthesis. Biogeochemistry often focuses on the interphases of scientific disciplines and by doing so, it also combines different research methods. It treats ecosystems as open entities which are closely connected to the atmosphere and lithosphere. You will thus get versatile training in environmental issues and research techniques. As a graduate of this line you will be an expert in the functioning of ecosystems and the interactions between ecosystems and the atmosphere/hydrosphere/lithosphere in the context of global change. You will have knowledge applicable for solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication.

Remote Sensing
Remote sensing allows the collection of information about the atmosphere, oceans and land surfaces. Various techniques are applied for monitoring the state and dynamics of the Earth system from the ground, aircraft or satellites. While Lidar and radar scan from the surface or mounted on aircraft, instruments on polar orbiting or geostationary satellites permit measurements worldwide. In atmospheric sciences remote sensing has found numerous applications such as observations of greenhouse and other trace gases, aerosols, water vapour, clouds and precipitation, as well as surface observations, for example of vegetation, fire activity, snow cover, sea ice and oceanic parameters such as phytoplankton. Synergistic satellite data analysis enables the study of important processes and feedback in the climate system. Remote sensing advances climate research, weather forecasting, air quality studies, aviation safety and the renewable energy industry. As a graduate of the remote sensing line you will have broad expertise in the operational principles of remote sensing instruments as well as methods of data collection, analysis and interpretation.

Atmospheric Chemistry and Analysis
Atmospheric chemistry studies the composition and reactions of the molecules that make up the atmosphere, including atmospheric trace constituents and their role in chemical, geological and biological processes, including human influence. The low concentrations and high reactivity of these trace molecules place stringent requirements on the measurement and modelling methods used to study them. Analytical chemistry is the science of obtaining, processing, and communicating information about the composition and structure of matter and plays an essential role in the development of science. Environmental analysis consists of the most recent procedures for sampling, sample preparation and sample analysis and learning how to choose the best analytical methods for different environmental samples. Physical atmospheric chemistry studies focus on the reaction types and reaction mechanisms occurring in the atmosphere, with emphasis on reaction kinetics, thermodynamics and modelling methods. As a graduate of this line you will have understanding of the chemical processes of the atmosphere and the latest environmental analytical methods, so you will have vital skills for environmental research.

Programme Structure

The basic degree in the Programme is the Master of Science (MSc). The scope of the degree is 120 credits (ECTS). As a prerequisite you will need to have a relevant Bachelor’s degree. The possible major subjects are Physics, Meteorology, Geophysics, Chemistry, and Forest Ecology. The programme is designed to be completed in two years. Studies in ATM-MP consist of various courses and project work: lecture courses, seminars, laboratory work and intensive courses.

Your first year of studies will consist mainly of lecture courses. During the second year, you must also participate in the seminar course and give a presentation yourself. There is also a project course, which may contain laboratory work, data analysis, or theoretical or model studies. You will have to prepare a short, written report of the project. There are also several summer and winter schools as well as field courses for students in the Programme. Many of the courses take place at the Hyytiälä Forestry Field Station in Southern Finland. The intensive courses typically last 5–12 days and include a concise daily programme with lectures, exercises and group work.

Career Prospects

There is a global need for experts with multidisciplinary education in atmospheric and environmental issues. Governmental environmental agencies need people who are able to interpret new scientific results as a basis for future legislation. Industry, transportation and businesses need to be able to adapt to new regulations.

As a Master of Science graduating from the Programme you will have a strong background of working with environmental issues. You will have the ability to find innovative solutions to complex problems in the field of environmental sciences, climate change and weather forecasting. Graduates of the Programme have found employment in Meteorological Institutes and Environmental Administration in Finland and other countries, companies manufacturing instrumentation for atmospheric and environmental measurements and analysis, and consultancy companies. The Master's degree in ATM-MP also gives you a good background if you intend to proceed to doctoral level studies.

Internationalization

The Programme offers an international study environment with more than 30% of the students and teaching staff coming from abroad.

The ATM-MP is part of a Nordic Nordplus network in Atmosphere-Biosphere Studies, which gives you good opportunities to take courses currently in fourteen Nordic and Baltic universities. There are also several Erasmus agreements with European universities. The PanEurasian Experiment (PEEX) project provides you with opportunities to carry out part of your studies especially in China and Russia.

Research Focus

All the units teaching in the Programme belong to the National Centre of Excellence (FCoE) in Atmospheric Science – From Molecular and Biological processes to the Global Climate (ATM), which is a multidisciplinary team of the Departments of Physics, Forest Sciences and Chemistry at the University of Helsinki, the Department of Applied Physics at the University of Eastern Finland (Kuopio) and the Finnish Meteorological Institute.

The main objective of FCoE ATM is to quantify the feedbacks between the atmosphere and biosphere in a changing climate. The main focus of the research is on investigating the following topics:
1. Understanding the climatic feedbacks and forcing mechanisms related to aerosols, clouds, precipitation and biogeochemical cycles.
2. Developing, refining and utilising the newest measurement and modelling techniques, from quantum chemistry to observations and models of global earth systems.
3. Creating a comprehensive understanding of the role of atmospheric clusters and aerosol particles in regional and global biogeochemical cycles of water, carbon, sulphur, nitrogen and their linkages to atmospheric chemistry.
4. Integrating the results in the context of understanding regional and global Earth systems.

In addition to the research focus of FCoE, current research in hydrospheric geophysics at Helsinki University has an emphasis on cryology, with a focus on the effect of aerosols on Indian glaciers, the impact of climate change on the Arctic environment, the dynamics of the Austfonna ice cap in Svalbard, and the winter season in the coastal zone of the Baltic Sea.

Read less
Global socio-ecological problems call for multidisciplinary solutions that transcend the usual boundaries of science and decision-making. Read more
Global socio-ecological problems call for multidisciplinary solutions that transcend the usual boundaries of science and decision-making. The Environmental Change and Global Sustainability (ECGS) Master’s programme trains you in wide-ranging interdisciplinary thinking skills and provides you with the ability to:
-Study environmental and sustainability issues in your respective fields of expertise.
-Solve problems of socio-ecological sustainability in cooperation with various social actors.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

ECGS is a truly multidisciplinary Master’s programme. It covers an introductory Core Module common to all students, followed by two distinct study lines.

The introductory Core Module focuses on the methodologies of environmental and sustainability science as well as the interactions between science and society. The Core Module also offers a pool of optional methodological studies, providing you with the necessary research tools to tackle socio-ecological challenges.

If your orientation is in natural sciences, the Environmental Change study line can provide you with an understanding of the functioning of terrestrial and aquatic ecosystems and can give guidance toward their sustainable use.

If your interests are more in the social sciences and humanities, on the other hand, the Global Sustainability study line provides an understanding of the socio-cultural underpinnings of global sustainability challenges so that you can help to develop solutions that take social and environmental justice into consideration.

Selection of the Major

You can apply for one of the two study lines in the ECGS Master’s programme: the Environmental Change study line or the Global Sustainability study line. You can refine your expertise in your chosen study line by choosing from study modules related to your specialised field of science or from interdisciplinary phenomenon-based modules.

Environmental Change modules are offered in, for example, the following research fields: aquatic sciences, soil and earth sciences, environmental ecology, environmental biotechnology and agroecology. Global Sustainability modules include themes such as environmental and natural resource economy, environmental policy, development studies, public and social policy, consumer research, forest policy and economics, and development geography. ECGS also offers a variety of modules integrating both natural and social scientific perspectives including phenomenon-based modules on the Baltic Sea and the Arctic as well as a variety of interdisciplinary fields such as climate change, food and consumption systems, urban studies and socio-ecological systems studies.

As an international applicant, you will be assessed and accepted for the Master’s program based on the scientific relevance of your bachelor’s degree and your success in previous studies.

Programme Structure

You will graduate with a Master’s degree in Science (M.Sc.) or Social Sciences (M.Soc.Sc.). Your Master’s degree (120 credits, ECTS) will consist of the following studies:
-Advanced studies, 60 credits, including your Master’s thesis (30 credits)
-Other studies, 60 credits, including 30 credits of Core Module studies and 30 credits of elective science specific studies from either ECGS modules or other relevant Master’s programs.

Career Prospects

The interdisciplinary ECGS Master’s program provides you with a unique education which is widely applicable for a future career path. Upon graduating from ECGS you will have sufficient expertise in environmental sciences, sustainability sciences and environmental policy to act as a specialist in the public, private and third sectors, and you will have gained essential skills to undertake a career in sustainable business and communication. The Master’s program prepares you to advance to doctoral level studies and thereafter positions in environment-related research. ECGS has a multidisciplinary learning community with faculty from a wide range of sciences, accommodating students in a multicultural network with excellent career prospects.

Internationalization

The ECGS Master’s program, taught in English, trains you to tackle environmental challenges which transcend national borders. The faculty encourage international interaction and the programme promotes a vibrant multicultural atmosphere. You can also include a student exchange in your Master’s level studies.

Read less
Students who graduate from the Master’s programme in geography have strong theoretical and practical skills. The education in geography offers a broad understanding in current social and environmental issues. Read more
Students who graduate from the Master’s programme in geography have strong theoretical and practical skills. The education in geography offers a broad understanding in current social and environmental issues. Our students can work as experts in their field, both independently and as members of multi-professional teams.

The teaching within the programme is connected with the work of the geography research groups. It is often possible to write the final thesis as part of work in a research group or a research institute in a related field.

The Master’s programme in geography is divided into three sub-programmes (described in section 4). Our students have been very successful in the job market after completing our programme.

The strengths of students who have completed our Master’s programme when it comes to research and expertise are:
-Their ability to apply theoretical knowledge.
-A broad understanding of multi-layered regional issues.
-Strong interaction skills within multi-disciplinary groups of specialists.
-Their ability to communicate in writing, orally, and graphically about geographical phenomena and research findings.
-Their ability to utilise and interpret various kinds of research data.
-Their versatile knowledge of methodology in geography.
-Their ability to apply the newest methods in geoinformatics and cartography.
-Their embracing of responsible and ethical scientifc practices.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The first year of the advanced module of the Master’s programme contains the method courses of your chosen sub-programme, elective courses, and advanced literature. During this year you will start planning your Master’s thesis.

In the autumn of the second year, you will join a Master’s seminar and take exams on literature related to the MSc thesis. In the spring, you should be ready to present your finished MSc thesis (Pro gradu). In addition, you can take optional courses in both years that support your sub-programme. If you are studying to be a teacher, you will take courses in pedagogy during your second year.

Studying takes many forms. A large part of the instruction is contact teaching. Method and specialisation courses are usually implemented in groups of 10-20 students, where it is easy to discuss professional issues and gain deeper insights. Independent study is supported through workshops supervised by older students, and reading circles. The Master’s programme also includes extensive exams on literature in the field.

Selection of the Major

The Master’s programme in geography is divided into sub-programmes. The sub-programmes offer students the opportunity to specialise in different areas of geography. The Master’s programme contains both general and sub-programme-specific courses. The teaching within the Master’s programme in geography is seamlessly connected with the Master’s programme in urban studies and planning, which is jointly implemented with Aalto University.

The sub-programmes in the Master’s programme for geography are:
-Physical Geography
-Human Geography and Spatial Planning
-Geoinformatics

Physical Geography
Physical geography is an area of geography that studies natural systems and the regional interaction between nature and humans. The main parts of physical geography are geomorphology, climatology, hydrogeography, biogeography, and research into global change.

The Master’s courses in physical geography work towards deeper regional syntheses, explain the physical surroundings and their changes as a part of the function of regional systems, and analyse and model the relationships between different sectors. Focus areas in the Master’s programme in physical geography are the effect of global change on natural systems, watershed research, and the regional modelling of geomorphological processes and local climates. A considerable part of the Master’s programme in physical geography consists of work in small groups or in the field, where you will learn to implement theories in practice.

Having completed the Master’s programme in physical geography, you will be able to analyse and model regional systems of nature, as well as the interaction between nature and humans. In addition, the programme teaches you to analyse sustainable use of natural resources, and evaluate environmental impact. You will learn to implement theoretical knowledge and regional methods in planning a scientific thesis, implementing it in practice, and presenting your results orally and in writing. Further, the courses will train you to take specimens independently, analyse them, and interpret them. The teaching at the Master’s stage is closely connected with research on physical geography: theses are done in collaboration with a research group or research institute.

Human Geography and Spatial Planning
Human geography and spatial planning is a sub-programme, where regional structures and related planning is studied. Urban structures, regional social structures, statewide regional structures, the regional development in the European Union, and globalisation are studied. At the core of the sub-programme is the spatial transformation of society. The Master’s programme studies such phenomena as the divergence of regional and urban structures, urban culture, as well as the political-geographical dynamics of regions. In addition, sustainability, multiculturalism, segregation, housing, and migration are at the core of the sub-programme. Relevant themes for the sub-programme are also regional and urban planning, the political ecology of use of natural resources and land, and gobal development issues. These geographical phenomena and themes are studied through both theoretical and empirical questions, which can be analysed with different qualitative and quantitative methods.

The programme goes into how theories on cities and regional systems can be transformed into empirical research questions. After completing their Master’s theses, students can independently gather empirical data on the main dimensions of regional and urban structures and regional development, they can analyse these data with both qualitative and quantitative methods, and they can evaluate the planning practices connected with regional and social structures. After graduating from the Master’s programme, students will be able to communicate about phenomena and research findings in regional and urban structures, both orally and in writing.

Geoinformatics
Geoinformatics is an effective approach to the study and understanding of complex regional issues. Geoinformatics studies and develops computational methods for gaining, processing, analysing, and presenting positioning data. As a part of geography, geoinformatics is a research method on the one hand, to be used in the study of complex regional issues from urban environments to natural ones, from studying local environments to issues of sustainability in developing countries. On the other hand, the methods are the object of research. In urban environments, the methods of geoinformatics can be used to study accessibility and mobility, for example, or to plan a good park network. In the context of developing countries, the research into climate change, land use, or interaction between humans and environment with the help of quantitative, qualitative, and involving methods rises into the front. Students in geography reach a basic understanding of geoinformatics methods in the study of geographical issues, the sources and use of different sets of data (remote sensing, global and national databases, geographical Big Data), analysis methods, and effective visualisation of results.

At the Master’s level, as a student specialising in geoinformatics you will advance your skills both theoretically and technically, developing your methodological expertise from data acquisition to data refinement and visualisation with the help of geoinformatics methods. The instruction is directly connected with the work of research groups and theses are often written as a part of research work. After graduating, you will be able to utilise versatile approaches in geoinformatics in research into geographical questions. You will be able to follow the rapid development of the subject independently, and participate on your own.

Programme Structure

The Master’s programme in geography comprises 120 credits (ECTS) and you should graduate as a Master of Science in two academic years. The following courses are included in the degree:
-60 credits of shared advanced courses or according to sub-programme (including MSc thesis 30 credits).
-60 credits of other courses from your own or other programmes.
-60 credits of courses in pedagogy for teaching students.
-The other studies may include working-life or periods of international work or study.
-Working-life orientation and career planning.
-Personal study plan.

Career Prospects

The Master’s programme in geography provides you with excellent abilities to work in research or as specialists. Our graduates have found good employment in the public and private sectors, in Finland and abroad. Their postings include:
-Evaluation of environmental effects and environment consultation.
-Positioning and remote-sensing work.
-Regional and urban planning.
-Governmental community and regional administration.
-Governmental posts in ministries.
-Organisational posts.
-Development cooperation projects.
-Communication and publishing work.
-Teaching.

Internationalization

The Master’s programme in geography offers many opportunities for international work:
-Student exchange in one of the exchange locations of the faculty or university.
-Traineeship abroad.
-Participation in international projects and expeditions (e.g. to the Taita research station in Kenya).
-Participation in international research groups (writing your thesis).
-Participation in language courses at the University of Helsinki (a wide range of languages, including rare ones).

Research Focus

In physical geography:
-Research into global change, especially the environmental effects of climate change.
-Watershed research, the physical-chemical quality and ecological status of water systems.
-Natural systems, their function and change.
-Regional analytics and modelling in research into natural systems.
-Positioning and remote-sensing methods and their application when studying the status and changes in natural environments.
-‘Big data,’ analysis of regional and temporal data.
-The Arctic areas: status, change and vulnerability.

In human geography and spatial planning:
-Transformation and segregation in the social and physical urban environment.
-The changing rationalities and concepts of regional and urban planning.
-Regional policy and geopolitics.
-Urbanisation and changing relationships between state and cities.
-Internationalisation of cities and states.
-The spatial planning system of the European Union.
-Regional policy of data-intensive economics.
-The political ecology and management of natural resources and land use.
-Globalisation.

In geoinformatics:
-Spatial data analysis, new information sources.
-Development of remote-sensing methods for environmental study, especially hyper-spectral remote-sensing data and drone applications.
-Application of geoinformatics methods to environmental and urban research.

Read less
Life on Earth depends on solar energy captured by plants - they are the base of most food webs and underpin the functioning of all major ecosystems. Read more
Life on Earth depends on solar energy captured by plants - they are the base of most food webs and underpin the functioning of all major ecosystems. Plants release the oxygen we breath. They convert solar energy into chemical energy, providing us with food, fibres, renewable energy sources, and raw materials for many industries. Plants do not carry out these processes in isolation. They interact with other organisms and the physical and chemical environment, communicate and actively adjust to their circumstances. How do they do these things and how can we profit from understanding them? When you have graduated from the Master’s Program in Plant Biology you will have the answers to these big questions, and more, such as:
-How one plant cell develops into a complicated organism and how plant cells, tissues and organs communicate with each other
-How plants avoid, tolerate or defend themselves from external stress factors such as diseases, drought and excessive solar radiation
-How plants sense their environment and communicate with each other and with other organisms
-How plants, interacting with microbes, fungi and animals, maintain ecosystems and thus life
-How the genotypic, functional and morphological differences between plants allow them to thrive in vastly different habitats

You will also be able to:
-Understand how research in plant biology and biotechnology can contribute to plant breeding and production.
-Plan, coordinate and execute high-quality basic and applied scientific research.
-Have a good command of the scientific method and critically evaluate research across scientific disciplines.
-Use the basic skills needed to expand your knowledge into other related fields and communicate with experts in those fields.
-Act in working life as an expert and innovator in your field, supported by your language, communication and other transferable skills.
-Be eligible for scientific post-graduate (doctoral) studies.

After earning your degree, you can continue towards a PhD or move directly into a career. If you have a Bachelor’s degree in a field of biology from another Finnish university or from a foreign university anywhere in the world, you are welcome to apply for the Master’s programme in Plant Biology. Based on your previous studies we will evaluate the possible need for supplementary studies, which will be included in your degree.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees.

Programme Contents

The Master’s Programme in Plant Biology is a joint programme of the Faculty of Biological and Environmental Sciences and the Faculty of Agriculture and Forestry, which ensures an exceptionally comprehensive curriculum. You will be able to study the diversity of wild and cultivated plants from the Arctic to the Tropics, as well as plant functions from the molecular to the ecosystem level.

The teaching is diverse, consisting of modern laboratory and computer courses, field courses, seminars and excursions. The curriculum is intertwined with research. You will be introduced to the research groups from the beginning of your studies, so you will become familiar with research methods as your studies progress. Much of the study material is in various learning platforms (such as Moodle), which allow distance learning. You will have a personal tutor who will help you tailor an individual study plan according to your requirements.

Within the programme you can choose among several optional study modules and focus on, for example:
-Plant biotechnology and breeding
-Molecular biology and genetics
-Regulation of growth, reproduction and differentiation of tissues
-Biological basis of crop yield
-Plant ecology and evolutionary biology
-Evolutionary history and systematics of plants and fungi
-Species identification

All modules are worth at least 15 credits. They are interlinked to ensure a coherent and balanced degree that allows you to obtain a broad perspective. Alternatively, you can focus on your primary research interest while acquiring the skills needed to follow your career goals on completion of your degree.

A translational perspective is emphasised in courses in which it is relevant. That will allow you to apply the acquired basic knowledge in problem-based research, bridging the gap between basic and applied research.

Selection of the Major

By choosing study modules you find interesting you will be able to deepen your expertise in particular areas of plant biology. Your degree can thus be tailored depending on your aspirations, whether you want to be a university researcher, entrepreneur, or environmental/agricultural consultant. You will also be free to pick individual courses from any module, without having to take all courses in it. However, each module is a coherent entity so we recommend that you take all of the courses in it.

Programme Structure

The extent of the programme is 120 credits (ECTS), to be completed in two years of full-time studies. The degree consists of:
-60 credits of advanced studies (in plant biology), including Master’s thesis (30 credits).
-60 credits of other studies from this programme or other programmes.

The curriculum contains a personal study plan and it can contain career planning or transferable skill studies.

Career Prospects

With a Master’s degree in Plant Biology, you will have many potential career opportunities. You can work especially:
-As a researcher and/or part-time teacher at universities or other institutions of higher education.
-As a researcher in national and international institutions in the public and private sectors.
-As an expert, civil servant, authority or PR officer in public administration.
-In various positions in international organisations or enterprises engaged in bioeconomy.
-As an entrepreneur in the biological or environmental sectors of business.

Internationalization

International scope is a key benefit of the Plant Biology programme. You will be encouraged and helped to seek exchange possibilities in international student exchange programmes with cooperating universities. In this way you will get new ideas, perspectives and personal contacts that may prove useful later in your working life or doctoral studies.

All of our research groups include numerous members from Europe and farther afield. Thus you will be doing research in an international community and will be able to improve your skills in foreign languages, especially English, which is of primary importance in working life today.

You can also tutor international students or act in the student’s subject association or Student’s Union and get valuable experience of international and multicultural communities.

Read less

Show 10 15 30 per page



Cookie Policy    X