• University of Edinburgh Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • University of York Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
De Montfort University Featured Masters Courses
Cardiff University Featured Masters Courses
University of St Andrews Featured Masters Courses
University of Hertfordshire Featured Masters Courses
University of London International Programmes Featured Masters Courses
"applied" AND "chemistry"…×
0 miles

Masters Degrees (Applied Chemistry)

  • "applied" AND "chemistry" ×
  • clear all
Showing 1 to 15 of 260
Order by 
The Department of Chemical Engineering and Applied Chemistry offers graduate research in pure science, engineering fundamentals, and engineering applications. Read more
The Department of Chemical Engineering and Applied Chemistry offers graduate research in pure science, engineering fundamentals, and engineering applications. Graduate programs lead to the degrees of Master of Applied Science (MASc), Master of Engineering (MEng), and Doctor of Philosophy (PhD). The MEng program differs from the MASc and PhD programs in that it is oriented to learning through prescribed courses rather than through research.

The department attracts a dynamic professorial staff with outstanding international reputations. Many graduate students work closely with industrial partners during their studies. Research is funded by the government and industry, often by means of a consortium of companies. The experience of dealing with real-world problems prepares graduates for successful professional careers.

Research and teaching are the foundations of the department. Research is clustered into eight major categories:
-Biomolecular and Biomedical Engineering
-Bioprocess Engineering
-Chemical and Materials Process Engineering
-Engineering Informatics
-Environmental Science and Engineering
-Pulp and Paper
-Surface and Interface Engineering
-Sustainable Energy

Read less
Want to be at the forefront of scientific research into microbes and their role in developing new medicines, tackling diseases and improving the environment?. Read more
Want to be at the forefront of scientific research into microbes and their role in developing new medicines, tackling diseases and improving the environment?

Northumbria is the only UK university to offer Microbiology as an individual discipline, giving you the opportunity to develop specialist knowledge and break new ground as a scientist.

Gain hands-on, immersive experience, in high tech facilities, working alongside leading academics. Advance your expertise in clinical and environmental microbiology, studying how viral and bacterial diseases work and how you can use microbes to create new medicines.

You’ll cover microbial taxonomy, bioinformatics and molecular biology, using bacteria and viruses to develop new technologies and substances through data analysis and genome sequencing.

With opportunities to develop your theoretical knowledge, advance your own research, and increase your profile through articles and publications, this course equips you for further PhD study or for a career in microbiology.

This course is also available part time - for more information, please view the web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/microbiology-dtpmgy6/

Learn From The Best

Specialising in a wide range of research areas, from developing enzymes for pharmaceutical, chemical and food industries, to life in extreme environments, your academic team reflect the varied, multi-disciplinary nature of microbiological science.

Tutors are active researchers in their chosen specialisms and share their knowledge through teaching, scientific conferences and publications. Many have established relationships with professional microbiology organisations and lead policy and practice within the profession.

Combining industry experience and research expertise, you’ll benefit from their knowledge and real-life insights as you develop your skills and understanding.

Teaching And Assessment

You’ll enhance your knowledge of this broad subject matter through in-depth, research focused and real-life learning.

You’ll gain skills in applying tools, techniques and methods related to molecular biology, microbial culture and classification and in functional analysis of microbial and viral genomes.

With an emphasis on individual learning and problem solving using the latest research, as part of the course, you’ll undertake a research project based on a currently relevant question. This will allow you to develop your particular specialism or interest and focus your study on practical research.

You’ll be assessed on your ability to apply your subject knowledge to real-world challenges in the form of assessment tasks as well as being measured in key laboratory skills.

Module Overview
AP0700 - Graduate Science Research Methods (Core, 20 Credits)
AP0701 - Molecular Biology (Core, 20 Credits)
AP0702 - Bioinformatics (Core, 20 Credits)
AP0703 - Subject Exploration (Core, 20 Credits)
AP0706 - Microbes and Disease (Core, 20 Credits)
AP0707 - Microbial Diversity (Core, 20 Credits)
AP0708 - Applied Sciences Research Project (Core, 60 Credits)

Learning Environment

You’ll get hands-on experience in our large, modern well-equipped laboratories with audio-visual facilities that help you observe, learn and question techniques and ideas.

High-tech wet and dry labs which are fully equipped for molecular biology manipulations are available to help you work on your own research projects.

While some modules are conventionally taught, you’ll benefit from a mixture of learning experiences including lectures, small group seminars and laboratory sessions, adding a practical edge to your theoretical understanding.

Research-Rich Learning

The internationally recognised and well-established group, led by Professor Iain Sutcliffe, apply scientific approaches to aspects of healthcare and extend understanding of diseases.

Research areas include:
-Bacterial cell envelope architecture and biosynthesis
-Control of parasitic arthropods
-Microbial diagnostics (in collaboration with Applied Chemistry)
-Microbial enzymes as biocatalysts (through our Nzomics Innovation Unit, in collaboration with Applied Chemistry)
-Molecular ecology and microbial community analysis in human health (COPD, cystic fibrosis and necrotising enterocolitis)
-Molecular ecology and microbial community analysis in the environment (Lake Suigetsu, Japan; Polar environments) and in agricultural management
-Genomics and proteomics of prokaryotes
-Novel antimicrobials (in collaboration with Applied Chemistry)
-Systematics and taxonomy of bacteria
-Virulence determinants in pathogenic streptococci

Microbiological and virological based techniques to study; virus-host interactions and phage genomics (through our Nu-omics). Research is funded by companies, charities and research council grants.

Give Your Career An Edge

This course has been designed to help you develop specific knowledge and practical skills in Microbiology based on work-related learning. Teaching and assessment throughout the course is based on problem solving linked to a practical approach to current research.

You’ll have opportunities for work-based learning and to be an ambassador for STEM activities, gaining valuable professional experience and applying your knowledge in real-world situations.

Your research project provides a chance to showcase your interests and ability to define, formulate and test a hypothesis through careful experimental design, method development, data capture and analysis and communicating your findings.

You’ll be able to demonstrate transferable skills valued by employers including critical thinking, working as part of a group, data mining and record keeping, alongside problem solving, independent learning, and communication with both technical and non-technical audiences.

Your Future

The MSc Microbiology course will support and inspire you to high achievement in employment or further education and research in your chosen specialism.

Building on your theoretical knowledge with practical and laboratory skills you’ll show that you can tackle complex problems with confidence, skill and maturity as you develop key strengths in critical thinking and expressing opinions based on evidence.

The practices and procedures of Microbiology and Virology, together with logical thinking, attention to detail and a questioning mind will equip you with skills suitable for a range of careers in human health and disease, environmental studies and industrial or biotechnical industries.

Read less
This course gives you the practical skills and knowledge to design and synthesise molecules that have therapeutic actions within the body. Read more

Why this course?

This course gives you the practical skills and knowledge to design and synthesise molecules that have therapeutic actions within the body.

The ultimate aim is to invent more selective and safer drugs to fight and cure disease. We also want to fully exploit the opportunities from identification of genes associated with a range of cancers, inherited disorders and agents of disease.

Specialist classes focus on:
- disease targets
- design of selectively-acting prototype drugs
- synthetic and mimetic strategies in producing drug prototypes
- the refinement of activity when a promising compound is identified

Case studies of well-known drugs are used to illustrate the principles.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/medicinalchemistry/

You’ll study

The course consists of three theory and three practical modules running between October and April. These are followed by exams. If you pass all exams and want to proceed to MSc you’ll undertake a 10-week research project and submit a thesis at the end of August.

Facilities

The Department of Pure & Applied Chemistry carries out world-leading research with modern state-of-the-art facilities. You’ll have access to the full range of analytical instrumentation used in the pharmaceutical industry:
- Nuclear Magnetic Resonance (NMR)
- Ultra-Violet (UV)
- Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR_FTIR)
- High Pressure Liquid Chromatography (HPLC)
- Gas Chromatography (GC)
- Liquid Chromatograph/Gas Chromatography Mass Spectrometry (LC/GC-MS)
- X-ray crystallography

Teaching staff

Course material is taught by experts based in the Department of Pure & Applied Chemistry and the Strathclyde Institute for Pharmacy & Biomedical Sciences.

There’s additional specialised lectures from visiting professors and world-renowned scientists who are working in the pharmaceutical industry.

English language requirements

English language minimum IELTS 6.5.
We offer a range of English Language course for students who wish to improve their English. Module 3 is free of charge to all applicants and we strongly recommend all international students to take advantage of this free course. This is an excellent way to not only improve your English but to get to know Glasgow and the University and make new friends.
We also offer comprehensive English Language pre-sessional and Foundation courses for students whose IELTS scores are below 6.5.
For students with IELTS of 6.0, an offer can be made conditional on completing Modules 2 and 3 of Pre-sessional English.
For students with IELTS of 5.5, an offer can be made conditional on completing Modules 1, 2 and 3 of Pre-sessional English.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Teaching of theory and applications is through lectures and tutorials. The material is further reinforced with practical sessions, which provide hands-on experience with a wide range of modern instrumental techniques.

Assessment

Assessment is through both written and practical exams and submission of a thesis (MSc students only).

Careers

Graduates from this course will be ideal for positions in the pharmaceutical and chemical industries or may continue their studies into PhD research.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/

Read less
This course is specifically designed for applicants from a pharmacy or pharmaceutical sciences background and those without an in-depth coverage of organic chemistry and organic spectroscopy as part of their previous degree courses. Read more
This course is specifically designed for applicants from a pharmacy or pharmaceutical sciences background and those without an in-depth coverage of organic chemistry and organic spectroscopy as part of their previous degree courses.

It gives you the practical skills and knowledge to design and synthesise molecules that have therapeutic actions within the body.

The ultimate aim is to invent more selective and safer drugs to fight and cure disease. We also want to fully exploit the opportunities from identification of genes associated with a range of cancers, inherited disorders and agents of disease.

Specialist classes focus on:
-Disease targets
-Design of selectively-acting prototype drugs
-Synthetic and mimetic strategies in producing drug prototypes
-The refinement of activity when a promising compound is identified
Case studies of well-known drugs are used to illustrate the principles

You’ll study

The course consists of three theory and three practical modules running between October and April. These are followed by exams. If you pass all exams and want to proceed to MSc you’ll undertake a 10-week research project and submit a thesis at the end of August.

There is a six-week preliminary conversion course starting 1 August that covers basic and underpinning organic chemistry and organic spectroscopy. Successful completion and examination results in the conversion course will allow you to transfer to the MSc in Medicinal Chemistry.

Facilities

The Department of Pure & Applied Chemistry carries out world-leading research with modern state-of-the-art facilities. You’ll have access to the full range of analytical instrumentation used in the pharmaceutical industry:
-Nuclear Magnetic Resonance (NMR)
-Ultra-Violet (UV)
-Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR_FTIR)
-High Pressure Liquid Chromatography (HPLC)
-Gas Chromatography (GC)
-Liquid Chromatograph/Gas Chromatography Mass Spectrometry (LC/GC-MS)
-X-ray crystallography

Teaching staff

Course material is taught by experts based in the Department of Pure & Applied Chemistry and the Strathclyde Institute for Pharmacy & Biomedical Sciences.

There’s additional specialised lectures from visiting professors and world-renowned scientists who are working in the pharmaceutical industry.

Course content

-Conversion Course
-Advanced Organic Chemistry
-Chemical Biology
-Principles of Modern Medicinal Chemistry
-Advanced Biochemical Methods
-Project & Dissertation

Learning & teaching

Teaching of theory and applications is through lectures and tutorials. The material is further reinforced with practical sessions, which provide hands-on experience with a wide range of modern instrumental techniques.

Assessment

Assessment is through both written and practical exams and submission of a thesis.

Careers

Graduates from this course will be ideal for positions in the pharmaceutical and chemical industries or may continue their studies into PhD research.

Read less
Penn’s Master of Chemical Sciences is designed for your success. Chemistry professionals are at the forefront of the human quest to solve ever-evolving challenges in agriculture, healthcare and the environment. Read more
Penn’s Master of Chemical Sciences is designed for your success
Chemistry professionals are at the forefront of the human quest to solve ever-evolving challenges in agriculture, healthcare and the environment. As new discoveries are made, so are new industries — and new opportunities. Whether you’re currently a chemistry professional or seeking to enter the field, Penn’s rigorous Master of Chemical Sciences (MCS) builds on your level of expertise to prepare you to take advantage of the myriad career possibilities available in the chemical sciences. With a faculty of leading academic researchers and experienced industry consultants, we provide the academic and professional opportunities you need to achieve your unique goals.

The Penn Master of Chemical Sciences connects you with the resources of an Ivy League institution and provides you with theoretical and technical expertise in biological chemistry, inorganic chemistry, organic chemistry, physical chemistry, environmental chemistry and materials. In our various seminar series, you will also regularly hear from chemistry professionals who work in a variety of research and applied settings, allowing you to consider new paths and how best to take advantage of the program itself to prepare for your ideal career.

Preparation for professional success
If you’ve recently graduated from college and have a strong background in chemistry, the Master of Chemical Sciences offers you a exceptional preparation to enter a chemistry profession. In our program, you will gain the skills and confidence to become a competitive candidate for potential employers as you discover and pursue your individual interests within the field of chemistry. Our faculty members bring a wealth of research expertise and industry knowledge to help you define your career direction.

For working professionals in the chemical or pharmaceutical industries, the Master of Chemical Sciences accelerates your career by expanding and refreshing your expertise and enhancing your research experiences. We provide full- and part-time options so you can pursue your education without interrupting your career. You can complete the 10-course program in one and a half to four years, depending on course load.

The culminating element of our curriculum, the capstone project, both tests and defines your program mastery. During the capstone exercise, you will propose and defend a complex project of your choice, that allows you to stake out a new professional niche and demonstrate your abilities to current or prospective employers.

Graduates will pursue fulfilling careers in a variety of cutting-edge jobs across government, education and corporate sectors. As part of the Penn Alumni network, you’ll join a group of professionals that spans the globe and expands your professional horizons.

Courses and Curriculum

The Master of Chemical Sciences degree is designed to give you a well-rounded, mechanistic foundation in a blend of chemistry topics. To that end, the curriculum is structured with a combination of core concentration courses and electives, which allow you to focus on topics best suited to your interests and goals.

As a new student in the Master of Chemical Sciences program, you will meet with your academic advisor to review your previous experiences and your future goals. Based on this discussion, you will create an individualized academic schedule.

The Master of Chemical Sciences requires the minimum completion of 10 course units (c.u.)* as follows:

Pro-Seminar (1 c.u.)
Core concentration courses (4-6 c.u., depending on concentration and advisor recommendations)
Elective courses in Chemistry, such as computational chemistry, environmental chemistry, medicinal chemistry, catalysis and energy (2-4 c.u., depending on concentration and advisor recommendations)
Optional Independent Studies (1 c.u.)
Capstone project (1 c.u.)
Pro-Seminar course (CHEM 599: 1 c.u.)
The Pro-Seminar will review fundamental concepts regarding research design, the scientific method and professional scientific communication. The course will also familiarize students with techniques for searching scientific databases and with the basis of ethical conduct in science.

Concentration courses
The concentration courses allow you to develop specific expertise and also signify your mastery of a field to potential employers.

The number of elective courses you take will depend upon the requirements for your area of concentration, and upon the curriculum that you plan with your academic advisor. These concentration courses allow you to acquire the skills and the critical perspective necessary to master a chemical sciences subdiscipline, and will help prepare you to pursue the final capstone project (below).

You may choose from the following six chemical sciences concentrations:

Biological Chemistry
Inorganic Chemistry
Organic Chemistry
Physical Chemistry
Environmental Chemistry
Materials
Independent Studies
The optional Independent Studies course will be offered each fall and spring semester, giving you an opportunity to participate in one of the research projects being conducted in one of our chemistry laboratories. During the study, you will also learn analytical skills relevant to your capstone research project and career goals. You can participate in the Independent Studies course during your first year in the program as a one-course unit elective course option. (CHEM 910: 1 c.u. maximum)

Capstone project (1 c.u.)

The capstone project is a distinguishing feature of the Master of Chemical Sciences program, blending academic and professional experiences and serving as the culmination of your work in the program. You will develop a project drawing from your learning in and outside of the classroom to demonstrate mastery of an area in the chemical sciences.

The subject of this project is related to your professional concentration and may be selected to complement or further develop a work-related interest. It's an opportunity to showcase your specialization and your unique perspective within the field.

Your capstone component may be a Penn laboratory research project, an off-campus laboratory research project or a literature-based review project. All components will require a completed scientific report. It is expected that the capstone project will take an average of six months to complete. Most students are expected to start at the end of the first academic year in the summer and conclude at the end of fall semester of the second year. Depending on the capstone option selected, students may begin to work on the capstone as early as the spring semester of their first year in the program.

All capstone project proposals must be pre-approved by your concentration advisor, Master of Chemical Sciences Program Director and if applicable, your off-campus project supervisor. If necessary, nondisclosure agreements will be signed by students securing projects with private companies. Additionally, students from private industry may be able to complete a defined capstone project at their current place of employment. All capstone projects culminate in a final written report, to be graded by the student's concentration advisor who is a member of the standing faculty or staff instructor in the Chemistry Department.

*Academic credit is defined by the University of Pennsylvania as a course unit (c.u.). Generally, a 1 c.u. course at Penn is equivalent to a three or four semester hour course elsewhere. In general, the average course offered at Penn is listed as being worth 1 c.u.; courses that include a lecture and a lab are often worth 1.5 c.u.

Read less
Analytical chemistry underpins many important commercial enterprises from jet engine development to food production, and is also applied to many other academic disciplines such as Earth sciences, medicine, archaeology, pharmacy and forensics. Read more
Analytical chemistry underpins many important commercial enterprises from jet engine development to food production, and is also applied to many other academic disciplines such as Earth sciences, medicine, archaeology, pharmacy and forensics. This MSc seeks to train the next generation of analytical scientists in state-of-the-art methods and skills to tackle the challenges of this broad range of applications.

Degree information

This programme is designed to provide comprehensive training in analytical chemistry and its implementation. A thorough understanding of error analysis, data processing and data presentation will be at the foundation of this programme.

The programme will contain minimum formal instruction, but emphasise self-learning and originality of thought. Students will develop and demonstrate self-direction and originality, and the independence required for continuing professional development.

Students undertake modules to the value of 180 credits. The programme consists of four core modules (90 credits), two optional modules (30 credits) and a report (60 credits).

Core modules - students take the following core modules (90 credits) and submit a research dissertation (60 credits):
-Analytical Strategies*
-Data analysis for Analytical Chemistry*
-Practical aspects of Analytical Chemistry*
-Literature Project

*Students take these core modules in term one and only proceed to term two and select the research project if they have achieved 50% or greater in all three taught core modules.

Optional modules - students choose two of the following options:
-Mastering Entrepreneurship
-Mastering Entrepreneurship: Theory and Practice
-Numerical Methods in Chemistry
-Project Management

Dissertation/report
All students undertake a substantial research project selected from a range (60 credits).

Teaching and learning
This degree emphasises self-learning and is delivered through individual and team-based tasks. The programme will focus on developing students’ knowledge of analytical methodology, philosophy and design.

Assessment is by presentations, vivas, and problem-solving coursework. Only optional modules are presented more formally with lectures and written examinations.

Careers

Graduates will be equipped for varied employment in industry and the public sector: analytical science techniques have a very broad range of applications in many sectors, ranging from forensics to global climate change and medicine to the automotive industry.

Employability
The programme includes a module on project management offered by the UCL School of Management which will prepare students for careers in research or in analytical sciences. There are also modules on mastering entrepreneurship, and new technology ventures which will help students transform ideas into commercial entities.

[[Why study this degree at UCL?
Using a non-traditional approach this programme will prioritise independent learning and research. Students also participate in peer-review assessment of posters and talks. Peer assessment is an important transferable skill that is used widely in industrial and academic environments.

Emphasis will be on designing appropriate analytical methodologies and the relevant underpinning data handling, analysis and interpretation. The physics and chemistry behind state-of-the-art measurement technologies, their methods and application limitations will also be prioritised.

Read less
Pursuing a research degree at the School of Chemistry could be one of the best experiences of your life. Read more

Research profile

Pursuing a research degree at the School of Chemistry could be one of the best experiences of your life.

In addition to gaining research skills, making friends, meeting eminent researchers and being part of the research community, a research degree will help you to develop invaluable transferable skills which you can apply to academic life or a variety of professions outside of academia.

The Chemistry/Biology Interface

This is a broad area, with particular strengths in the areas of protein structure and function, mechanistic enzymology, proteomics, peptide and protein synthesis, protein folding, recombinant and synthetic DNA methodology, biologically targeted synthesis and the application of high throughput and combinatorial approaches. We also focus on biophysical chemistry, the development and application of physicochemical techniques to biological systems. This includes mass spectrometry, advanced spectroscopy and microscopy, as applied to proteins, enzymes, DNA, membranes and biosensors.

Experimental & Theoretical Chemical Physics

This is the fundamental study of molecular properties and processes. Areas of expertise include probing molecular structure in the gas phase, clusters and nanoparticles, the development and application of physicochemical techniques such as mass spectoscropy to molecular systems and the EaStCHEM surface science group, who study complex molecules on surfaces, probing the structure property-relationships employed in heterogeneous catalysis. A major feature is in Silico Scotland, a world-class research computing facility.

Synthesis

This research area encompasses the synthesis and characterisation of organic and inorganic compounds, including those with application in homogeneous catalysis, nanotechnology, coordination chemistry, ligand design and supramolecular chemistry, asymmetric catalysis, heterocyclic chemistry and the development of synthetic methods and strategies leading to the synthesis of biologically important molecules (including drug discovery). The development of innovative synthetic and characterisation methodologies (particularly in structural chemistry) is a key feature, and we specialise in structural chemistry at extremely high pressures.

Materials Chemistry

The EaStCHEM Materials group is one of the largest in the UK. Areas of strength include the design, synthesis and characterisation of functional (for example magnetic, superconducting and electronic) materials; strongly correlated electronic materials, battery and fuel cell materials and devices, porous solids, fundamental and applied electrochemistry polymer microarray technologies and technique development for materials and nanomaterials analysis.

Training and support

Students attend regular research talks, visiting speaker symposia, an annual residential meeting in the Scottish Highlands, and lecture courses on specialised techniques and safety. Students are encouraged to participate in transferable skills and computing courses, public awareness of science activities, undergraduate teaching and to represent the School at national and international conferences.

Facilities

Our facilities are among the best in the world, offering an outstanding range of capabilities. You’ll be working in recently refurbished laboratories that meet the highest possible standards, packed with state-of-the-art equipment for both analysis and synthesis.

For NMR in the solution and solid state, we have 10 spectrometers at field strengths from 200-800 MHz; mass spectrometry utilises EI, ESI, APCI, MALDI and FAB instrumentation, including LC and GC interfaces. New combinatorial chemistry laboratories, equipped with a modern fermentation unit, are available. We have excellent facilities for the synthesis and characterisation of bio-molecules, including advanced mass spectrometry and NMR stopped-flow spectrometers, EPR, HPLC, FPLC, AA.

World-class facilities are available for small molecule and macromolecular X-ray diffraction, utilising both single crystal and powder methods. Application of diffraction methods at high pressures is a particular strength, and we enjoy strong links to central facilities for neutron, muon and synchrotron science in the UK and further afield. We are one of the world's leading centres for gas-phase electron diffraction.

Also available are instruments for magnetic and electronic characterisation of materials (SQUID), electron microscopy (SEM, TEM), force-probe microscopy, high-resolution FTRaman and FT-IR, XPS and thermal analysis. We have also recently installed a new 1,000- tonne pressure chamber, to be used for the synthesis of materials at high pressures and temperatures. Fluorescence spectroscopy and microscopy instruments are available within the COSMIC Centre. Dedicated computational infrastructure is available, and we benefit from close links with the Edinburgh Parallel Computing Centre.

Read less
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. Read more
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. They are designed to provide advanced knowledge and hands-on training in modern analytical instrumental techniques. Separation science, sensors, and spectroscopic techniques are key elements alongside chemometrics, instrumentation and advanced research project completion. You will have the flexibility to specialise in a chosen field and further advancement to PhD research is available to highly motivated and talented postgraduates.

Visit the website: http://www.ucc.ie/en/ckr03/

Course Details

On completion of this course, you will be able to:

- identify, formulate, analyse and solve problems in the analysis of chemical compounds
- outline fundamental and applied aspects of chemical analysis
- design and carry out a method of pharmaceutical and chemical analysis, including instrumental analysis
- prepare written laboratory reports that provide a description of the experiment, explain the experiment and reasoning clearly, and provide an appropriate conclusion
- communicate effectively with the chemistry, environmental and pharmaceutical communities
- carry out research and method development in chemical, pharmaceutical and environmental analysis
- prepare a written research report in the form of a dissertation

Format

The courses consist of a 12 month full-time intensive programme of lectures, laboratory work on set experiments and a dissertation based on individual research and development in the selected field of modern analytical science, under the supervision of an expert staff member. Part-time students may complete the course over 24 months subject to flexible day release from industry.

Core modules

CM6012 Modern Analytical Techniques, Chemical Data Analysis and GLP (10 credits)
CM6013 Separation Science, Sensors and Process Analytical Technology (10 credits)
CM6014 Materials, Pharmaceutical and Bio-analysis (10 credits)
CM6015 Practice of Analytical Chemistry (10 credits)
CM6026 Industry Led Workshops (5 credits)
CM6027 Taught Postgraduate Transferable Skills Development (5 credits)

Elective modules

EV4002 Environmental Monitoring (10 credits)
PF6301 Biopharmaceuticals: Formulation Design, Secondary Processing and Regulatory Compliance (10 credits)

Research Project Module (30 credits)

CM6020 Research Project and Dissertation in Analytical Chemistry (30 credits)

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page05.html#analysis

Research Project and Industry Placement

You will be required to complete a six-month research project based on your individual research and development in a selected field of modern science. You carry out your research in UCC’s laboratories or at an approved academic or industrial partner.

When you complete your research dissertation in an industrial setting, it provides the company with an opportunity to assess your skills and abilities and to screen potential future full-time employees. Students also have the opportunity to travel aboard to do their research project. This highlights the international recognition of the course and the close links established between the course and the relevant institutes.

Students who secure employment upon graduation fit into the organisation and contribute productively much sooner that other graduates. For students with an interest in future careers as PhD researchers, research projects are offered across a broad range of topics.

Careers

The MSc courses aim to provide you with the necessary skill set to develop methods and solve problems as demanded by many industries today (including pharmaceutical, environmental and forensic analytical laboratories). You are also introduced to research and innovation in analytical science.

Many analytical chemists, pharmaceutical chemical analysts and environmental chemical analysts go on to pursue careers in industry, government and forensic laboratories and opportunities for further research often result.

The course sets out to bridge the gap between the current undergraduate degree knowledge and what is relevant and expected by industry. There is a strong emphasis on developing transferable skills and ensuring that the career path for the student is either industry or academically focused. A large percentage of students gain employment in industry after completion of the course, however a number of graduates also decide to progress to international PhD opportunities.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. Read more
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. They are designed to provide advanced knowledge and hands-on training in modern analytical instrumental techniques. Separation science, sensors, and spectroscopic techniques are key elements alongside chemometrics, instrumentation and advanced research project completion. You will have the flexibility to specialise in a chosen field and further advancement to PhD research is available to highly motivated and talented postgraduates.

Visit the website: http://www.ucc.ie/en/ckr04/

Course Details

On completion of this course, you will be able to:

- identify, formulate, analyse and solve problems in the analysis of chemical compounds
- outline fundamental and applied aspects of chemical analysis
- design and carry out a method of pharmaceutical and chemical analysis, including instrumental analysis
- prepare written laboratory reports that provide a description of the experiment, explain the experiment and reasoning clearly, and provide an appropriate conclusion
- communicate effectively with the chemistry, environmental and pharmaceutical communities
- carry out research and method development in chemical, pharmaceutical and environmental analysis
- prepare a written research report in the form of a dissertation

Format

The courses consist of a 12 month full-time intensive programme of lectures, laboratory work on set experiments and a dissertation based on individual research and development in the selected field of modern analytical science, under the supervision of an expert staff member. Part-time students may complete the course over 24 months subject to flexible day release from industry.

Core modules

CM6012 Modern Analytical Techniques, Chemical Data Analysis and GLP (10 credits)
CM6013 Separation Science, Sensors and Process Analytical Technology (10 credits)
CM6014 Materials, Pharmaceutical and Bio-analysis (10 credits)
CM6015 Practice of Analytical Chemistry (10 credits)
CM6027 Industry Led Workshops (5 credits)
CM6027 Taught Postgraduate Transferable Skills Development (5 credits)
EV4002 Environmental Monitoring (10 credits)

Research Project Module (30 credits)

CM6021 Research Project and Dissertation in Environmental Analytical Chemistry (30 credits)

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page05.html#analysis

Research Project and Industry Placement

You will be required to complete a six-month research project based on your individual research and development in a selected field of modern science. You carry out your research in UCC’s laboratories or at an approved academic or industrial partner.

When you complete your research dissertation in an industrial setting, it provides the company with an opportunity to assess your skills and abilities and to screen potential future full-time employees. Students also have the opportunity to travel aboard to do their research project. This highlights the international recognition of the course and the close links established between the course and the relevant institutes.

Students who secure employment upon graduation fit into the organisation and contribute productively much sooner that other graduates. For students with an interest in future careers as PhD researchers, research projects are offered across a broad range of topics.

Careers

The MSc courses aim to provide you with the necessary skill set to develop methods and solve problems as demanded by many industries today (including pharmaceutical, environmental and forensic analytical laboratories). You are also introduced to research and innovation in analytical science.

Many analytical chemists, pharmaceutical chemical analysts and environmental chemical analysts go on to pursue careers in industry, government and forensic laboratories and opportunities for further research often result.

The course sets out to bridge the gap between the current undergraduate degree knowledge and what is relevant and expected by industry. There is a strong emphasis on developing transferable skills and ensuring that the career path for the student is either industry or academically focused. A large percentage of students gain employment in industry after completion of the course, however a number of graduates also decide to progress to international PhD opportunities.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
How can I make a flexible and cheap solar cell out of organic molecules? Can I build a car engine on a molecular level? How do I make a colour television that can be folded up?. Read more
How can I make a flexible and cheap solar cell out of organic molecules? Can I build a car engine on a molecular level? How do I make a colour television that can be folded up?

You will encounter such questions in the Master's degree programme in Chemistry at the University of Groningen.

The programme is embedded in an internationally respected research environment; it is related to the Zernike Institute of Advanced Materials and to the Stratingh Institute. Both are officially recognized as national centres of leading research in materials science.

With a cross-disciplinary approach, this programme will study the following fields of chemistry:

- Molecular Science
This area develops the understanding of molecular aspects and applies it to the fields of nanotechnology, supramolecular chemistry, synthetic chemistry, catalysis and the chemistry of life sciences.

- Chemical Physics
This field studies the physical and chemical properties of atoms, molecules and condensed matter through experimental techniques and theoretical methods. You can choose between theoretical chemistry and solid state chemistry.

- Polymer Science
This domain helps you to gain a deeper understanding of the physical and chemical structure and properties of polymer. It focuses on the development of thin films, surfaces and biomaterials.

Why in Groningen?

- Research programme of chemistry is embedded in leading research institute in Materials Science
- Chemistry field in Groningen has CHE Excellence Label
- Cross-disciplinary approach

Job perspectives

This degree programme in Chemistry is primarily meant for students who want to become researchers. Some graduates will, after obtaining their Master's degree, continue with a PhD project, either in Groningen or elsewhere. Some find jobs all over Europe in major companies, including DSM, Akzo Nobel, Corus or Philips.

Nevertheless, many chemists who are trained as researchers find jobs that are less research-oriented. This is because the programme also pays attention to communication skills, teamwork, presentation techniques and IT skills. During their training as researchers in chemistry, students develop general competences that make them highly versatile and widely employable. In practice chemistry graduates can be found in consulting agencies, commercial functions, product research and development, product management or teaching.

Job examples

- PhD research project
- Work for a major multinational such as Akzo Nobel or Philps
- Consulting agencies
- Product management or commercial positions

Read less
Penn’s Master of Science in Applied Geosciences is engineered for your success. Read more
Penn’s Master of Science in Applied Geosciences is engineered for your success
Whether you’re an experienced geoscientist or are preparing to enter the field, Penn’s rigorous Master of Science in Applied Geosciences (MSAG) is a highly practical program that helps you build on your experience and prepare for your next professional move ahead. With a faculty of leading academic researchers and experienced government and industry experts, we know what you need to move forward in your career, and we’ve designed the program for your success.

The Penn Master of Science in Applied Geosciences connects you with the world-class resources of an Ivy League institution and provides you with theoretical and technical expertise in geochemistry, geophysics, hydrogeology and engineering geology. You will also hone essential project management skills necessary for leadership in environmental remediation and pollution prevention. While you’re completing your studies, the program also facilitates your preparation for professional licensure and certification processes.

An advanced degree in applied geosciences prepares you to take on a range of pressing environmental problems in a field where you can make a real, practical difference. You’ll master approaches to mitigating soil and water contamination, solving waste disposal challenges and responding to human-induced natural disasters such as landslides and floods, and learn cutting-edge methods for clean energy extraction.

Designed for your ongoing advancement
We provide you with a rigorous, elite educational experience that you can access without interrupting your career. With day and evening classes available, you can complete the 12-course program, either full or part time, in just two to four years. Depending on your work or internship status, you can change your enrollment status from full time to part time and back, from one semester to the next as needed.

Amplify your expertise
For working professionals in the environmental or geoscience fields, the Master of Science in Applied Geosciences offers the opportunity to accelerate your career by expanding and refreshing your expertise, enhancing your leadership skills and training for Professional Geologist licensure. All courses are available in the evening, so you can enroll in classes while you continue to advance in your current job.

The Master of Science in Applied Geosciences program offers significant benefits even to highly experienced professionals. We’ve partnered with the prestigious Organizational Dynamics program faculty at Penn to provide a comprehensive project management course, designed to teach you innovative best practices for leading your workplace at a higher level. This project management course is a core element of our program at Penn, and prepares you to lead with confidence in your increasing project and people management responsibilities.

Finally, the culminating element of our curriculum, Project Design, both tests and defines your program mastery. During the Project Design exercise, you will propose and defend a complex project of your choice, which allows you to stake out a new professional niche and demonstrate your abilities to current or prospective employers.

Your gateway to a career in the geosciences
If you’ve recently graduated from college and have a strong background in the sciences, the Master of Science in Applied Geosciences offers you exceptional preparation to enter professional geology. In the program, you will apply your undergraduate degree knowledge in physical sciences, math or engineering, providing you with the tools and confidence to become a competitive candidate for potential employers.

The Master of Science in Applied Geosciences program also helps you discover and pursue your individual interests within the applied geosciences. Our faculty members bring an incredible wealth of industry experience and expertise to help you define your career direction. In addition, many of our students are experienced professionals themselves, and program alumni say that the connections they made with their classmates have been invaluable for their professional prospects.

Ivy League preparation for certifications and licensure
Our rigorous coursework also provides the academic depth needed for licensure as a Professional Geologist (PG) in the commonwealth of Pennsylvania. When you complete the degree, your “professional geological work” requirement is shortened from five years to four.

We also subsidize and streamline certification programs like OSHA’s Hazardous Waste Operations and Emergency Response Standard (HAZWOPER), bringing the test to campus for you.

New possibilities with the MSAG

Our alumni are pursuing fulfilling careers in a variety of cutting-edge jobs — including green infrastructure, storm water management, environmental remediation and large-scale construction siting — across government, education and corporate sectors. As part of the Penn alumni network, you’ll join a group of professionals that spans the globe and expands your professional horizons.

We welcome you to contact a member of our program team to learn more about the possibilities that await you through experiences in the Master of Science in Applied Geosciences program at Penn.

Courses and Curriculum

The Master of Science in Applied Geosciences (MSAG) degree is structured to give you a well-rounded grounding in applied scientific knowledge, as well as to train you in the project management and leadership skills necessary to effectively put that knowledge into action in the field. To that end, the curriculum is structured with a combination of foundation courses and concentration electives, which allow you to focus on topics best suited to your interests and goals.

The MSAG requires the completion of 12 course units (c.u.)* as follows:

Seven foundation courses
Three electives in a professional concentration
Project Management
Project Design thesis

Read less
Advance your knowledge of analytical chemistry, your practical skills and professional and organisation skills on this course. You learn the fundamentals of analytical chemistry and how it is applied to pharmaceutical, environmental and materials analyses. Read more
Advance your knowledge of analytical chemistry, your practical skills and professional and organisation skills on this course. You learn the fundamentals of analytical chemistry and how it is applied to pharmaceutical, environmental and materials analyses. The course is taught by researchers with an international reputation in advanced analytical techniques, such as the application of mass spectrometry to the analysis of biological matrices. Tutors also have expertise in production and detection of nanoparticles and detection of pollutants, particularly in soil.

This course is suitable if you wish to increase your knowledge and skills and increase your competitiveness in the job market or pursue a PhD. It will also suit you if you work in a chemistry-related profession and are seeking to further your career prospects.
You gain experience and understanding of:
-Key techniques in separation sciences, including liquid and gas chromatography.
-Atomic and molecular spectroscopy, such as atomic absorption and emission, NMR and IR.
-Analytical technologies applied in process control and solving complex biological problems.

This is a multi-disciplinary course where you learn about various topics including statistics, laboratory quality assurance and control, environmental analysis and fundamentals of analytical instrumentation.

You also gain the transferable skills needed to continue developing your knowledge in science, such as data interpretation and analysis, experimental design and communication and presentation skills.

You complete a research project to develop your research skills and their application to real world situations. You are supported by a tutor who is an expert in analytical chemistry.

Your laboratory work is carried out in our teaching laboratories which are extensively equipped with the latest models of analytical instruments such as HPLCs and GCs. This is supplemented by access to our research facilities where you have access to more sophisticated equipment, such as NMR and a suite of various types of mass spectrometers.

Professional recognition

This course is accredited by the Royal Society of Chemistry (RSC). Applicants should normally have a degree (bachelors or equivalent) in chemistry that is accredited by the RSC. Applicants whose first degree is not accredited by the RSC, or with overseas degrees or degrees in which chemistry is a minor component will be considered on a case by case basis on submission of their first degree transcript.

Candidates who do not meet the RSC criteria for accreditation will be awarded a non-accredited masters qualification on successful completion of the programme.

Applicants will be informed in writing at the start of the programme whether or not they possess an acceptable qualification and, if successful on the masters programme, will receive an RSC accredited degree. If you do not meet the RSC criteria for accreditation, you will be awarded a non-accredited masters after successfully completing the programme.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/mscpgdippgcert-analytical-chemistry

Course structure

Full time – 14 months to Masters. Part time – typically 2 years to Masters. The diploma and certificate are shorter. Starts September.

Course structure
The Masters (MSc) award is achieved by successfully completing 180 credits.

Core modules
-Quality issues, laboratory accreditation and the analytical approach (15 credits)
-Separation, detection and online techniques (15 credits)
-Surface analysis and related techniques (15 credits)
-Drug detection and analysis (15 credits)
-Methods for analysis of molecular structure (15 credits)
-Process analytical technology (15 credits)
-Professional development (15 credits)
-Research methods and statistics (15 credits)
-Research project (60 credits)

The Postgraduate Certificate (PgCert) is achieved by successfully completing 60 credits.
The Postgraduate Diploma (PgDip) is achieved by successfully completing 120 credits.

Assessment
Assessment methods include written examinations and coursework including:
-Problem-solving exercises.
-Case studies.
-Reports from practical work.
-Research project assessment includes a written report and viva voce.

Read less
Our MSc Applied Bioscience course will develop your skills within several major areas of applied bioscience, including molecular cell biology, biomedical genetics and specialised topics in medical diagnostics. Read more
Our MSc Applied Bioscience course will develop your skills within several major areas of applied bioscience, including molecular cell biology, biomedical genetics and specialised topics in medical diagnostics. You'll focus on the rapidly evolving research into the applications of bioscience in healthcare, to diagnose and treat diseases. You'll also develop a comprehensive and critical understanding of the theory and practice of advanced analytical techniques as used and applied in bioscience.

Throughout our course you'll develop advanced knowledge and skills in the diverse areas of applied bioscience, emphasising on medical applications. Upon completion you'll be able to confidently design, execute and critically analyse both independent and group based scientific research in an appropriate area of applied bioscience.

You'll be immersed in an environment that mirrors a modern laboratory setting and benefit from the expertise of our Biomedical Science team and their intimate knowledge and collaborations within the field of bioscience. Using our purpose-built laboratory facilities, you'll be in the heart of our rapidly evolving scientific environment.

Our course is suitable for candidates who wish to specialise in the current medical applications of bioscience such as molecular and cell biology as a progression from a relevant first degree and for candidates with a strong background in ‘traditional’ analytical science (chemistry or biology).

Careers

Healthcare is a rapidly growing and constantly evolving sector. MSc Applied Bioscience course encourages the development of specialist cross-disciplinary laboratory skills, such as molecular genetics and bioinformatics, accompanied by an emphasis on professional practice. Graduates from the MSc Applied Bioscience course will have training to progress into a wide range of careers within the sciences, including industry and academic research, clinical trials, product development, production and quality assurance.

Cambridge is the home of the Wellcome Trust Sanger Institute, the Biomedical Campus at Addenbrooke's Hospital and the Babraham Research Institute. Throughout the course, you will have the opportunity to attend seminars or events with Cambridge’s many local biotechnology companies. Graduates from the course are also in the perfect position to continue an academic career and move up to our Biomedical Science PhD.

MSc Applied Bioscience is the right course for you if you:
•Want to develop a wide array of practical and conceptual scientific skills which are vital for a career in Biosciences
•Find the biosciences fascinating and want to deepen your understanding of the applications in healthcare
•Are interested in pursuing a career in research – either academic, clinical or industrial

Core modules

Molecular Genetics and Bioinformatics
Modern Medical Diagnostics
Research Methods and Preparation
Laboratory Techniques in Bioscience
Professional and Ethical Practice
Major Project

Assessment

We use a range of assessment methods to enable both you and the university to check your progress during your studies and then to ensure that you meet the required standards when you complete the course.

Although they vary, our assessment strategies are all carefully designed to challenge you so that you expand your critical and analytical thinking as well as your problem-solving skills. The assessments will enable you to demonstrate that you can synthesise existing knowledge and accumulate new knowledge, and will evidence the development of your professional practice. Some examples of assessment include poster and oral presentations, essays and portfolios of evidence. In addition, you will undertake practicals in many of the modules, developing your technical laboratory skills.

Please note that you will need to complete all of the above core modules. This course does not have any optional modules.

Your faculty

The Faculty of Science & Technology is one of the largest of five faculties at Anglia Ruskin University. Whether you choose to study with us full- or part-time, on campus or at a distance, there’s an option whatever your level – from a foundation degree, to a BSc, MSc, PhD or professional doctorate.

Whichever course you pick, you’ll gain the theory and practical skills needed to progress with confidence. Join us and you could find yourself learning in the very latest laboratories or on field trips or work placements with well-known and respected companies. You may even have the opportunity to study abroad.

Everything we do in the faculty has a singular purpose: to provide a world-class environment to create, share and advance knowledge in science and technology fields. This is key to all of our futures.

Read less
Chemistry as a discipline is growing and changing rapidly. The traditional divisions of Chemistry into analytical, inorganic, organic and physical chemistry no longer reflect the dynamic and multidisciplinary nature of the field. Read more
Chemistry as a discipline is growing and changing rapidly. The traditional divisions of Chemistry into analytical, inorganic, organic and physical chemistry no longer reflect the dynamic and multidisciplinary nature of the field. Chemistry is, in fact, the "central science", having relevance in areas such as molecular biology, molecular physics, materials science, molecular engineering, biotechnology, environmental science and drug design.

As a postgraduate student in the Department of Chemistry at the Hong Kong University of Science and Technology, you will have the chance to study in programs that reflect the current, central, position of Chemistry and you will learn from diverse, innovative faculty at the forefront of their fields of research.

Our mission is to offer research and instructional opportunities in the emerging areas of Chemistry while maintaining a program rooted in the basics of the discipline. Postgraduate programs emphasize training in original research focusing on fundamental, interdisciplinary and applied areas. Complementing our formal degree programs is an active seminar program allowing students to meet prominent and international scientists who are pioneering the creation of new chemical knowledge.

The Department now has 19 full-time faculty members and about 90 postgraduate students, a favorable ratio allowing students to interact closely with academics. The research environment is an exciting one and we take pride in the high quality of our programs.

The MPhil program is a research-based degree consisting of approved coursework and an original research thesis. It is designed with flexibility in order that students may tailor course selections according to their needs and interests in the field of Chemistry.

Submission and successful defense of a thesis based on original research are required to obtain the degree.

Facilities

The Department is well equipped with modern laboratories and state-of-the-art instrumentation. Equipment includes two 400 MHz FT-NMR and two 300 MHz NMR spectrometers, one mass spectrometer equipped with a GC-TOF module and a MALDI Micro module, one triple-quadrupole MS/MS system, an ion-trap MSn system, X-ray diffractometers, a Bruker FT-IR / FT-Raman system, a UV-Vis fluorimeter, GC / MS, HPLC.

Relevant central University facilities include the Materials Characterization and Preparation Facility, the Nanoelectronics Fabrication Facility and Environmental Central Facility, all offering a wide range of advanced instruments.

Computer facilities for postgraduate students include molecular graphic / modeling, quantum mechanics and molecular dynamics computations.

Read less
Research degrees may be undertaken in the three main areas of research interest in the Laboratory. The growing number of academic staff are supported in their research by the technical staff and post-doctoral research fellows. Read more
Research degrees may be undertaken in the three main areas of research interest in the Laboratory. The growing number of academic staff are supported in their research by the technical staff and post-doctoral research fellows.

We make every attempt to allocate you to a supervisor directly in your field of interest, consistent with available funding and staff loading. When you apply, please give specific indications of your research interest – including, where appropriate, the member(s) of staff you wish to work with – and whether you are applying for a studentship or propose to be self-funded.

Visit the website https://www.kent.ac.uk/courses/postgraduate/18/chemistry

About The School of Physical Sciences

The School offers postgraduate students the opportunity to participate in groundbreaking science in the realms of physics, chemistry, forensics and astronomy. With strong international reputations, our staff provide plausible ideas, well-designed projects, research training and enthusiasm within a stimulating environment. Recent investment in modern laboratory equipment and computational facilities accelerates the research.

The School maintains a focus on progress to ensure each student is able to compete with their peers in their chosen field. We carefully nurture the skills, abilities and motivation of our students which are vital elements in our research activity. We offer higher degree programmes in chemistry and physics (including specialisations in forensics, astronomy and space science) by research. We also offer taught programmes in Forensic Science, studied over one year full-time, and a two-year European-style Master’s in Physics.

Our principal research covers a wide variety of topics within physics, astronomy and chemistry, ranging from specifically theoretical work on surfaces and interfaces, through mainstream experimental condensed matter physics, astrobiology, space science and astrophysics, to applied areas such as biomedical imaging, forensic imaging and space vehicle protection. We scored highly in the most recent Research Assessment Exercise, with 25% of our research ranked as “world-leading” and our Functional Materials Research Group ranked 2nd nationally in the Metallurgy and Materials discipline.

Research areas

- Applied Optics Group (AOG):

Optical sensors
This activity largely covers research into the fundamental properties of guided wave interferometers, and their application in fields ranging from monitoring bridge structures to diagnostic procedures in medicine.

Biomedical imaging/Optical coherence tomography (OCT)
OCT is a relatively new technique which can provide very high-resolution images of tissue, and which has a major application in imaging the human eye. We are investigating different time domain and spectral domain OCT configurations.

The Group is developing systems in collaboration with a variety of different national and international institutions to extend the OCT capabilities from systems dedicated to eye imaging to systems for endoscopy, imaging skin and tooth caries. Distinctively, the OCT systems developed at Kent can provide both transverse and longitudinal images from the tissue, along with a confocal image, useful in associating the easy to interpret en-face view with the more traditional OCT cross section views.

The Group also conducts research on coherence gated wavefront sensors and multiple path interferometry, that extend the hardware technology of OCT to imaging with reduced aberrations and to sensing applications of optical time domain reflectometry.

- Forensic Imaging Group (FIG):

The research of the forensic imaging team is primarily applied, focusing on mathematical and computational techniques and employing a wide variety of image processing and analysis methods for applications in modern forensic science. The Group has attracted approximately £850,000 of research funding in the last five years, from several academic, industrial and commercial organisations in the UK and the US. The Group also collaborates closely with the Forensic Psychology Group of the Open University.

Current active research projects include:

- the development of high-quality, fast facial composite systems based on evolutionary algorithms and statistical models of human facial appearance

- interactive, evolutionary search methods and evolutionary design

- statistically rigorous ageing of photo-quality images of the human face (for tracing and identifying missing persons)

- real and pseudo 3D models for modelling and analysis of the human face

- generating ‘mathematically fair’ virtual line-ups for suspect identification.

- Functional Materials Group (FMG):
The research in FMG is concerned with synthesis and characterisation of functional materials, as exemplified by materials with useful optical, catalytic, or electronic properties, and with an
emerging theme in biomaterials. The Group also uses computer modelling studies to augment
experimental work. The research covers the following main areas:

- Amorphous and nanostructured solids
- Soft functional material
- Theory and modelling of materials

- Centre for Astrophysics and Planetary Science (CAPS):
The group’s research focuses on observational and modelling programmes in star formation, planetary science and early solar system bodies, galactic astronomy and astrobiology. We gain data from the largest telescopes in the world and in space, such as ESO’s Very Large Telescope, the New Technology Telescope, the Spitzer Space Telescope and the Herschel Space Observatory. We also use our in-house facilities which include a two-stage light gas gun for impact studies.

Staff are involved in a wide range of international collaborative research projects. Areas of particular interest include: star formation, extragalactic astronomy, solar system science and instrumentation development.

Careers

All programmes in the School of Physical Sciences equip you with the tools you need to conduct research, solve problems, communicate effectively and transfer skills to the workplace, which means our graduates are always in high demand. Our links with industry not only provide you with the opportunity to gain work experience during your degree, but also equip you with the general and specialist skills and knowledge needed to succeed in the workplace.

Typical employment destinations for graduates from the physics programmes include power companies, aerospace, defence, optoelectronics and medical industries. Typical employment destinations for graduates from our forensic science and chemistry programmes include government agencies, consultancies, emergency services, laboratories, research or academia.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X