• Northumbria University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
De Montfort University Featured Masters Courses
University of Leeds Featured Masters Courses
Cranfield University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Glasgow Featured Masters Courses
"applied" AND "biotechnol…×
0 miles

Masters Degrees (Applied Biotechnology)

We have 172 Masters Degrees (Applied Biotechnology)

  • "applied" AND "biotechnology" ×
  • clear all
Showing 1 to 15 of 172
Order by 
Goals. The Master in Applied Biotechnology aims to prepare students with scientific, technical and human skills to develop applied research and management activities in the field of Biotechnology. Read more

Goals

The Master in Applied Biotechnology aims to prepare students with scientific, technical and human skills to develop applied research and management activities in the field of Biotechnology.

This course intends to provide students with advanced training in the field of Biotechnology to apply in the development and implementation of projects in the areas of pharmaceutical biotechnology, food biotechnology and marine biotechnology.

During the second year of the course, the student will carry out a research on a specific topic, which will be compiled in an internship / project /dissertation. The successful defense of this internship / project /dissertation will lead to a Master´s degree.

International Student

All information related to the international student application should be consulted on our International Students webpage.



Read less
Our established programme in Biotechnology, which has been extensively updated, includes a wide range of modern molecular biology techniques and how biotechnology can be used by today's society. Read more

Our established programme in Biotechnology, which has been extensively updated, includes a wide range of modern molecular biology techniques and how biotechnology can be used by today's society. You will complement your theoretical studies with hands on experience of fully controlled fermenters that are up to pilot-plant scale, and are linked to modern monitoring and control systems.

You will study a range of subjects in considerable depth, including bioactive compounds, industrial bioprocesses, microbial physiology and fermentation technology, microbial production of novel metabolites, monitoring and control of fermentation, topics in biotechnology, and types of bioreactors.

Facilities

Our facilities include:

  • Fermentation Suite equipped with fully instrumented and controlled bioreactors of all sizes ranging from 0.5 L to 72 L and bench top downstream processing rigs including Armfield’s chromatography and tangential flow filtration units.
  • Tissue Culture laboratory
  • Analytical Instrumentation Suite equipped with Gas Chromatographs with FID, TCD and MS detectors, HPLC equipped with UV, PDA, MSQ, fluorescence, evaporative light scattering and electrochemical detectors, spectrophotometers (absorbance and luminescence), multi-detection microplate reader, bio-imaging system, gamma and scintillation counters, Typhoon gel Imager, Clinical chemistry and Haematology analysers, FTIR analyser, Potentiostat, DGGE analyser.
  • Flow cytometer, PCR machines, microscopes of all types including inverted microscopes, laser scanning confocal microscopes, fluorescence microscope etc.,
  • Other equipment normally found in any lab including shaken incubators, bench top centrifuges, pH meters, freezers and biosafety cabinets

Career path

Students normally find employment in the biotechnology industry e.g.

  • Upstream/Downstream processing
  •  Quality Assurance, Quality Control
  • Process Development / Technology Transfer
  • Research and Development, eg involving strain improvement
  • Regulatory Affairs
  • Sales e.g. Technical Sales Representatives / Account managers
  • Academia, eg teaching or further study to PhD degree

Industry links

We have links with Sekisui Diagnostics, an international company that manufactures enzymes for diagnostic purposes and students get the opportunity to visit their facilities and experience first-hand how an industrial scale bioprocess operates.



Read less
Biotechnology is defined as the industrial exploitation of living organisms or the exploitation of components derived from these organisms. Read more

Biotechnology is defined as the industrial exploitation of living organisms or the exploitation of components derived from these organisms. Its practical applications include age-old techniques such as brewing and fermentation, which are still important today. In recent decades, gene modification has revolutionized the biotechnology industry, spawning countless new products and improving established processes.

More and more types of fermentation are being used, and most new medicines are products of biotechnology. Modern biotechnology has become an applied area of science with a multidisciplinary approach embracing recombinant DNA technology, cellular biology, microbiology, biochemistry, as well as process design, engineering, modelling and control.

Programme summary

Biotechnology is a broad, multidisciplinary area of science. A Master of Science in Biotechnology is an expert in one (group of) discipline(s) and has to have sufficient knowledge and skills in other disciplines to cooperate with experts from the other disciplines. Therefore, students specialise during the Master programme and learn how to solve complex biotechnological problems in a multidisciplinary team.

On the programme of Biotechnology page you can find the general outline of the programme and more detailed information about courses, theses and internships.

Specialisations

Within the master's programme you can choose one of the following Specialisations to meet your personal interests.

Your future career

The first job after graduation, obtained by Msc biotechnologist, is often localised at a research institute or an university in- or outside The Netherlands. It usually concerns a research project or, more detailed, a PhD project: more than 50% of the graduated biotechnologist becomes PhD. Although most graduates choose for a career in science about 1/3 also starts in functions as engineer or technical expert. Read more about career perspectives and opportunities after finishing the programme.

Related programmes:

MSc Molecular Life Sciences 

MSc Food Technology

MSc Bioinformatics

MSc Plant Biotechnology

MSc Environmental Sciences



Read less
The Biotechnology MSc within the Institute of Biological, Environmental and Rural Sciences (IBERS) provides you with key skills, specialist knowledge and essential training for a career in industrial or academic bioscience. Read more

About the course

The Biotechnology MSc within the Institute of Biological, Environmental and Rural Sciences (IBERS) provides you with key skills, specialist knowledge and essential training for a career in industrial or academic bioscience. Increasingly, biotechnology companies are recruiting Master’s students with specialised skills to perform jobs previously the reserve of Doctorate level scientists.
At the end of the course you will be able to meet the challenges of biotechnology, demonstrate critical thinking and solve problems, exploit opportunities, and know how ideas can be turned into viable businesses or a successful grant application.

Why study Biotechnology at IBERS?

You want specialist experience and knowledge in biotechnology research and commercial application to give you a competitive edge in the job market and underpin your successful career. IBERS has the credentials to deliver these goals.

With 360 members of staff, 1350 undergraduate students and more than 150 postgraduate students IBERS is the largest Institute within Aberystwyth University. Our excellence in teaching was recognised by outstanding scores in the National Student Satisfaction Survey (2016), with three courses recording 100% student satisfaction and a further 10 scoring above the national average. The latest employability data shows that 92% of IBERS graduates were in work or further study six months after leaving Aberystwyth University. The most recent joint submission to the Research Excellence Framework (REF) displayed that 78% of our research as world-leading or internationally excellent, 97% of our research is internationally recognised, and 76% judged as world-leading in terms of research impact.

IBERS is internationally-recognised for research excellence and works to provide solutions to global challenges such as food security, sustainable bioenergy, and the impacts of climate change. IBERS hosts 2 National bioscience facilities: The National Plant Phenomics Centre –a state of the art automated plant growth facility that allows the high throughput evaluation of growth and morphology in defined environments, and the BEACON Centre of Excellence for Biorefining - a £20 million partnership between Aberystwyth, Bangor and Swansea Universities set up to help Welsh businesses develop new ways of converting biomass feedstocks and waste streams into products for the pharmaceutical, chemicals, fuel and cosmetic industries.

IBERS has a track record of working with academic and industrial partners to develop and translate innovative bioscience research into solutions that help mitigate the impacts of climate change, animal and plant disease, and deliver renewable energy and food and water security.

Course structure and content

In the first 2 semesters the course focuses on 2 key areas of biotechnology: industrial fermentation (manufacturing processes, feedstock pretreatment, fermentation, and the biorefining of low cost feedstocks to high value products) and plant biotechnology (synthetic biology, gene editing, precision genome modification, transformation technologies, up and down gene regulation and silencing, and gene stacking). In addition you will receive practical training in state of the art molecular and analytical bioscience techniques and technologies, and learn of marine, food and health biotechnology, and how the sustainable use of bio-resources and bioscience can help meet the needs of the growing human population. All course modules are delivered by academics and professional practitioners at the forefront of activity in the field.

In the final semester you will work on your own research project with your dissertation supervisor. This could be a project of your own design and will focus on an aspect of biotechnology that you found particularly interesting; it may even be something that you want to develop as a business idea in the future. During your dissertation project you will use the knowledge and the skills that you gained during the first 2 semesters. Your dissertation project will give you an opportunity to become an expert in your topic and to develop research skills that will prepare you for your future career in biotechnology. Your tutor will mentor you in hypothesis driven experimental design, train you in analytical techniques e.g. gas and liquid chromatography, mass spectrometry, vibrational spectroscopy, fermentation, product isolation, biomass processing, analysis of complex experimental data, and the formation of robust conclusions. You will also be guided in writing your dissertation.

Core modules:

- Bioconversion and Biorefining
- Frontiers in Biosciences
- Research Methods in the Biosciences
- Current Topics in Biotechnology
- Crop Biotechnology
- Biotechnology for Business
- Dissertation

Employability

There is great demand nationally and internationally for skilled graduates in Biotechnology, indeed the UK Biotechnology and Biological research Council (BBSRC) have made ‘Bioenergy and Biotechnology’ a strategic priority for science funding. The sector is expanding rapidly and provides excellent employment opportunities for biotechnology graduates. A recent report for the British research councils estimated that in the financial year 2013/14, British industrial biotechnology and bioenergy activities involved around 225 companies and generated £2.9billion of sales. The biotechnology industry makes a significant contribution to the United Kingdom’s net exports, equivalent to £1.5 billion and offsetting 4% of the country’s total trade deficit. In this year alone, biotechnology attracted £922 million in investment (4.6% of investment in the UK by the private sector). In the same year the biotechnology industry employed approximately 8,800 jobs in the UK in jobs ranging from scientists, technicians and analytical staff, and an extimated 11,000 additional jobs in UK suppliers and support industries - see http://www.bbsrc.ac.uk/documents/capital-economics-biotech-britain-july-2015/. These figures are typical of international trends and students graduating from the Biotechnology MSc at IBERS will be very well placed to follow a career in the Biotechnology sector.

Read less
The MSc in Applied Biosciences and Biotechnology aims to. To equip graduates to pursue careers in bioscience and biotechnology either in industry or academic research. Read more
The MSc in Applied Biosciences and Biotechnology aims to:

• To equip graduates to pursue careers in bioscience and biotechnology either in industry or academic research.
• Produce graduates with an in-depth understanding of the core principles and methodologies underlying current biotechnological research.
• To enable students to develop the transferable qualities and skills required for employment or research in the biosciences sector.
• Produce bioscience graduates with training in relevant business and entrepreneurial skills.
• Provide a training in laboratory and research skills.
• Meet the global need for graduates who can successfully contribute to the rapidly developing industrial biotechnology sector.

The biotechnology sector has grown rapidly in recent years and there are increasing career opportunities worldwide for experienced graduates who have been trained in advanced molecular bioscience, systems biology and ‘omics’ technologies, together with exposure to entrepreneurship and innovation. Demand for these skills is predicted to increase sharply over the next decade due to investment in the “green economy”, notably in the areas of bioenergy and industrial biotechnology. Moreover glycoprotein biopharmaceuticals comprise an increasing proportion of new drugs and their development, manufacture and quality control demands interdisciplinary skills in applied biosciences and biotechnology which can only be gained via advanced training at postgraduate level.

Degree structure
The course is comprised of three parts: a taught component, a tutored dissertation, which includes a mini-conference, and a research component. The taught component in weeks 1-30 will include lectures, seminars, computer practicals and tutorials. Computer based practicals will be held throughout weeks 1-14. The dissertation will be carried out in weeks 31-35. A full time laboratory based research project will be carried out from week 36 to 52.

Weeks 1-15: Induction week followed by courses in Biochemistry, Molecular Cell Biology, Bioinformatics, Systems Biology and Statistics which introduce students to the fundamental concepts of modern biology, including cell biology, genomics, proteomics, experimental techniques and data handling. Assessment will be through a written examination in week 15.
Weeks 16-30: All students attend two modules comprising advanced lectures in applied bioscience and biotechnology encompassing: industrial biotechnology, glycol-technology, structural biology, cellular damage, repair and ageing, genes and genomics, infection and immunity, stem cells and regenerative medicine, neurobiology in health and disease, integrative systems biology and synthetic biology. Additional seminars and workshops will introduce students to innovation and entrepreneurship. All students will attend weekly seminars from invited external speakers from industry and the public sector. Assessment will be through two written examinations in week 30.
Weeks 31-35: Students will undertake a full-time tutored dissertation followed by a mini-conference.
Weeks 36-52: Students will undertake full-time individual projects in the research laboratories of the Department of Life Sciences.

Please see course webpage on the Imperial website for further information: http://www.imperial.ac.uk/life-sciences/postgraduate/masters-courses/msc-in-applied-biosciences-and-biotechnology/

Read less
Biotechnology is a rapidly expanding global industry. Read more

Why take this course?

Biotechnology is a rapidly expanding global industry. It's driven by the development of new tools for molecular biological research, the expansion of the ‘green economy’ seeking biotechnical solutions to energy and industrial needs, and remarkable advances in the application of biotechnology to medical diagnosis, therapeutics and to biomedical research.

The MSc in Medical Biotechnology will give you sought-after advanced skills in molecular biotechnology in the context of diagnostics, therapeutics and in biomedical research. You will also gain a vital understanding of how these are applied in molecular medicine.

What will I experience?

On this course you can:

Develop practical and theoretical understanding of the molecular techniques used in the biotechnology sector
Learn how these are applied in diagnostics, therapeutics and molecular medicine
Develop your practical skills on high tech research equipment
Conduct your own medical biotechnology research

What opportunities might it lead to?

This Master's degree in Medical Biotechnology will prepare you for a role within either research or industry in the biotechnology sector and, more generally, in the bioscience and pharmaceutics areas.

Here are some routes our graduates can pursue:

product development
research scientist
diagnostics and pathology lab work
PhD

Module Details

The Medical Biotechnology course is made up of core and optional units so that you can tailor your learning. The core units give you both practical and research skills as well as the knowledge that would be expected of an advanced course in molecular biotechnology. The optional units allow specialisation towards pathology, drug development, business or bioinformatics. Further options are included through a wide choice of subjects for your research project.

Core units include:

Medical Biotechnology Diagnostics
Medical Biotechnology Therapeutics
Molecular Medicine
Medical Biotechnology Research Skills and Project
Options to choose from include:

Clinical Pathology
Business Skills for Biotechnology
Drug Design and Clinical Trials
Bioinformatics and Omics

Programme Assessment

The course is delivered to develop your practical and theoretical skills in Medical Biotechnology. Teaching is typically in small groups with a mixture of lectures, seminars, workshops and practical work that includes case and problem-based learning. The course is delivered by a team of expert scientists who publish regularly in international journals. In the research project that forms a third of the course you will work alongside other researchers in a laboratory setting.

Assessment will cover all aspects of what is required to be a professional scientist using a variety of methods:

written exams
practical work
problem solving
presentations
essay
project work

Student Destinations

This Master's degree in Medical Biotechnology will equip you to meet the needs of small and medium-sized enterprises and global business in the area of Biotechnology, as well as public and private health service providers. The course covers the practical as well as theoretical skills for your new career.

Roles our graduates might take include:

product development
research scientist
diagnostics and pathology lab work
PhD student
sales
teaching

Read less
This programme offers an expansion of our already successful MSc Biotechnology into industrial biotechnology and business management. Read more

This programme offers an expansion of our already successful MSc Biotechnology into industrial biotechnology and business management. It is jointly run with Adam Smith Business School.

Why this programme

  • Ranked world top 100 for biological sciences.
  • If you wish to improve your knowledge of modern molecular, biochemical, cell biological and genetic techniques for biotechnological applications, this programme is designed for you.
  • You will gain a sound understanding of the nature of business based on bioscience knowledge and research, opportunities for innovation and regulatory requirement constraints, intellectual property and ethical issues.
  • You will learn how to assess the current literature, be encouraged to form opinions based on scientific merit, and implement these ideas in future research planning.
  • You will be taught by experts in the field of biotechnology who run active, internationally recognised, research groups here at Glasgow.
  • The course involves extensive interaction with industry, through site visits, guest lectures and an 'Industrial Networking Symposium' where representatives from the European biotechnology and pharmaceutical industry will discuss their companies and answer your questions on working in the industrial sector.
  • This course has a strong laboratory component, with courses that run throughout the year, giving you hands on experience of diverse biotechnological research skills.
  • The flexible independent research project provides valuable training for students wishing to proceed to a PhD or into an industrial career; this may also be completed as a business based project.
  • Additional programme components include industrial networking sessions and a dedicated career workshop on progression planning.
  • This Masters in biotechnology & management provides an advanced practical knowledge of how research and industry are being applied to solve real world problems.

Programme structure

There are two semesters of taught material and a summer session working on a project or dissertation. September entry students start with management courses and January entry students with biotechnology courses.

Semester 1

You will be based in the Adam Smith Business School, developing knowledge and skills in management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.

Core courses

  • Contemporary Issues in Human Resource Management 
  • Managing Creativity and Innovation 
  • Managing Innovative Change 
  • Marketing Management 
  • Operations Management 
  • Project Management

Semester 2

You will study biotechnology courses, which aim to enhance your understanding of using biological processes, organisms, or systems to manufacture products intended to improve the quality of human life. These courses will provide training in state-of-the-art biotechnology applications what have resulted in ground-breaking developments in the areas of medicine, pharmaceuticals, agriculture and food production, environmental clean-up and protection and industrial processes.

Core course

  • Biotechnology Applications

Optional courses

  • Omic Technologies for the Biomedical Sciences
  • Synthetic Biology: Concepts and Applications
  • Bioimaging
  • Biosensors and Diagnostics
  • Plant Genetic Engineering
  • Crop Biotechnology

Project or dissertation

If you are studying for an MSc you will undertake individual project in the summer period (May–August). This will give you an opportunity to apply and consolidate the course material and enhance your ability to do independent work, as well as present results in the most appropriate format. Project options are closely linked to staff research interests.

The aims of the courses are to

  • enable students to study state-of-the-art biotechnology topics in depth.
  • allow students to benefit from leading-edge research-led teaching.
  • provide a critical appreciation of relevant theoretical, methodological and technical literature from the central business disciplines.
  • develop students’ ability to critically appraise published research related to biotechnology.
  • cultivate analytical and interpretive abilities and enable students to integrate these with essential managerial and business skills.
  • develop students laboratory skills relevant to biotechnology.
  • enhance students’ conceptual, analytical and presentation skills and to apply them to biotechnology problems.
  • prepare students for management positions in the biotechnology industry or entry into PhD programmes.

Career prospects

This programme will prepare you for a career in the pharmaceutical or biotechnology industrial sectors or for entry into PhD programmes.



Read less
The programme aims to provide students with training and learning opportunities in the skills and specialised knowledge needed to equip them for a career in biotechnology, molecular biotechnology or molecular biology, in particular in industry. Read more

The programme aims to provide students with training and learning opportunities in the skills and specialised knowledge needed to equip them for a career in biotechnology, molecular biotechnology or molecular biology, in particular in industry.

Practical skills will include sessions on fermentation, molecular biology, immunology, cell biology and protein chemistry, and you will go on to complete a major, supervised laboratory or computer-based research project.

Course details

The programme aims to provide students with training and learning opportunities in the skills and specialised knowledge needed to equip them for a career in biotechnology, molecular biotechnology or molecular biology, in particular in industry.

Programme content

Modules (all core) are as follows:

  • Introduction to Molecular Biotechnology (10 credits)
  • Research Techniques in Molecular Biotechnology (20 credits)
  • Practical Applications of Molecular Biotechnology (20 credits)
  • Functional Genomics and Reverse Genetics (20 credits)
  • Gene Expression Analysis (20 credits)
  • Funding Science (10 credits)
  • Pharmaceuticals & Therapeutic Biologicals from Bench to Market (10 credits)
  • Research project (60 credits)

Module descriptions can be found here

Learning and teaching is via lectures, workshops, independent study, laboratory practicals, research and a lab-based project.

Skills gained

Transferable skills gained via this programme will include written and oral presentation skills, statistics, and the ability to plan and write a grant application or a business plan. Subject-specific skills will include key techniques used in molecular biotechnology, specialist knowledge in theoretical and practical aspects of the subject, including: process engineering, molecular biology, functional genomics, 'omics' technologies, protein expression systems and antibody engineering. Practical skills will include fermentation, molecular biology, immunology, cell biology and protein chemistry.

Careers

While many graduates will go on to employment in biotechnology companies, you will also be employable in other life sciences industries or able to go on to further study and research.

Related links

School of Biosciences website: http://www.birmingham.ac.uk/biosciences

Learning and teaching

The MSc Molecular Biotechnology will provide you with the skills and specialised knowledge required for a career in biotechnology, molecular biotechnology or molecular biology, in particular within an industry setting.

Overall our aim is to equip you with a theoretical and practical background needed to apply your knowledge to biotechnology problems. We focus on key techniques used in molecular biotechnology, including aspects of process engineering, molecular biology, functional genomics, 'omics' technologies, protein expression systems and antibody engineering.

Practical skills will include sessions on fermentation, molecular biology, immunology, cell biology and protein chemistry, and you will go on to complete a major, supervised laboratory or computer-based research project. The course provides the opportunity to develop your writing and presenting skills and you will also study relevant numerical methods, and learn how to plan and write a grant application or a business plan.

Employability

What can I do with an MSc in Molecular Biotechnology?

Graduates from this programme will be well-placed for future careers in the biotechnology, pharmaceutical, biomedical and other science-based industries, many of which are undergoing a period of rapid international growth. 

The programme was designed in consultation with a senior scientist in a global pharmaceutical company, and includes relevant applied elements such as modules on product development and business plans, in addition to those covering the scientific aspects of the subject.



Read less
Biotechnology uses living cells and materials produced by cells to create products to benefit society. The science of biotechnology is also used to alter genetic information in animals, plants and microbes to improve them in some way that benefits people. Read more
Biotechnology uses living cells and materials produced by cells to create products to benefit society.

The science of biotechnology is also used to alter genetic information in animals, plants and microbes to improve them in some way that benefits people. Because biotechnology essentially uses the basic ingredients of life to make new products, it is both a cutting-edge technology and an applied science. Analysts have predicted that biotechnology will be one of the most important applied sciences of the 21st century.

This course is intended for life science graduates who wish to develop their knowledge and skills in biosciences with an emphasis on biotechnology.

The MSc Biotechnology with Professional Experience, is an extended full-time Masters programme with a substantive professional experience component. Within the professional experience modules, students have the option of undertaking an internship with a host organisation or, alternatively, campus-based professional experience. Internships are subject to a competitive application and selection process and the host organisation may include the University.

Internships may be paid or unpaid, and this will depend on what is being offered and agreed with the host organisation. Students who do not wish to undertake an internship or are not successful in securing an internship will undertake campus-based professional experience, which will deliver similar learning outcomes through supervised projects and activities designed to offer students the opportunity to integrate theory with an understanding of professional practice.

WHY CHOOSE THIS COURSE?

The aim of the course is to produce scientists who will be able to contribute to a range of careers including academic, commercial, industrial and healthcare applications of biotechnology. This course is also an excellent foundation for those wishing to pursue research in biotechnology at PhD level.

WHAT WILL I LEARN?

You will cover:
-Genomes and DNA technology
-Current topics in biotechnology and drug discovery
-Cell culture and antibody technology
-Biotechnology in disease diagnosis
-Pharmaceutical discoveries
-Research methods and project

Additionally, the understanding gained from these modules will be demonstrated and applied in either the University-based project (12 months full-time or 24 months part-time, on course HLST083), or the professional experience modules giving students the option of undertaking an internship with a host organisation or, alternatively, campus-based professional experience.

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

Within the life sciences, biotechnology is a rapidly growing sector and it is predicted that the global expansion in biotechnology will be a key driver in the world economy. The MSc Biotechnology is designed to provide the training and development necessary to meet the needs of the growing number of employers within the biotechnology sector. The course will also equip graduates to pursue careers in research institutes or to progress to a research degree.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
Whether you are a new graduate or already employed and seeking to further your career prospects, this course offers a solid career development path. Read more

Whether you are a new graduate or already employed and seeking to further your career prospects, this course offers a solid career development path. You can also choose this course if you wish to pursue research in biotechnology at PhD level.

Biotechnology is the application of biological processes and is underpinned by • cell biology • molecular biology • bioinformatics • structural biology. It encompasses a wide range of technologies for modifying living organisms or their products according to human needs.

Applications of biotechnology span medicine, technology and engineering.

Important biotechnological advances including

  • the production of therapeutic proteins using cloned DNA, for example insulin and clotting factors
  • the application of stem cells to treat human disease
  • the enhancement of crop yields and plants with increased nutritional value
  • herbicide and insect resistant plants
  • production of recombinant antibodies for the treatment of disease
  • edible vaccines, in the form of modified plants
  • development of biosensors for the detection of biological and inorganic analytes

You gain

  • up-to-date knowledge of the cellular and molecular basis of biological processes
  • an advanced understanding of DNA technology and molecular biotechnology
  • knowledge of developing and applying biotechnology to diagnosis and treatment of human diseases
  • practical skills applicable in a range of bioscience laboratories
  • the transferable and research skills to enable you to continue developing your knowledge and improving your employment potential

The course is led by academics who are actively involved in biotechnology research and its application to the manipulation of proteins, DNA, mammalian cells and plants. Staff also have expertise in the use of nanoparticles in drug delivery and the manipulation of microbes in industrial and environmental biotechnology.

You are supported throughout your studies by an academic advisor who will help you develop your study and personal skills.

What is biotechnology

Biotechnology is the basis for the production of current leading biopharmaceuticals and has already provided us with the 'clot-busting' drug, tissue plasminogen activator for the treatment of thrombosis and myocardial infarction. It also holds the promise of new treatments for neurodegeneration and cancer through recombinant antibodies.

Genetically modified plants have improved crop yields and are able to grow in a changing environment. Manipulation of cellular organisms through gene editing methods have also yielded a greater understanding of many disease states and have allowed us to understand how life itself functions.

Course structure

You begin your studies focusing on the fundamentals of advanced cell biology and molecular biology before specialising in both molecular and plant biotechnology. Practical skills are developed throughout the course and you gain experience in molecular biology techniques such as PCR and sub cloning alongside tissue culture.

Core to the program is the practical module where you gain experience in a range of techniques used in the determination of transcription and translational levels, for example.

All practicals are supported by experienced academic staff, skilled in the latest biotechnological techniques.

Research and statistical skills are developed throughout the program. Towards the end of the program you apply your skills on a two month research project into a current biotechnological application. Employability skills are developed throughout the course in two modules.

The masters (MSc) award is achieved by successfully completing 180 credits.

The postgraduate certificate (PgCert) is achieved by successfully completing 60 credits.

The postgraduate diploma (PgDip) is achieved by successfully completing 120 credits. 

Core modules:

  • Cell biology (15 credits)
  • Biotechnology (15 credits)
  • Plant biotechnology (15 credits)
  • Molecular biology (15 credits)
  • Applied biomedical techniques (15 credits)
  • Professional development (15 credits)
  • Research methods and statistics (15 credits)
  • Research project (60 credits)

Optional modules :

  • Human genomics and proteomics (15 credits)
  • Cellular and molecular basis of disease (15 credits)
  • Cellular and molecular basis of cancer (15 credits)

Assessment

As students progress through the course they are exposed to a wide range of teaching and learning activities. The assessment strategy of the postgraduate course considers diverse assessment methods. Some modules offer dedicated formative feedback to aid skills development with assessments going through several rounds of formative tutor and peer feedback. Summative assessment methods are diverse, with examinations present in theory-based modules to test independent knowledge and data analysis. Several modules are entirely coursework-based, with a portfolio of skills such laboratory practical's and research proposals generated throughout the course forming the summative tasks. In all cases, the assessment criteria for all assessed assignments are made available to student prior to submission. 

Employability

The course is suitable for people wishing to develop their knowledge of molecular and cell biotechnology and its application to solving health and industrial problems.

You can find career opportunities in areas such as

  • biotechnology research
  • medical research in universities and hospitals
  • government research agencies
  • biotechnology industry
  • pharmaceutical industry.

Students on this course have gone on to roles including experimental officers in contract research, research and development in scientists, diagnostics specialists and applications specialists. Many of our graduates also go on to study for PhDs and continue as academic lecturers.



Read less
Investigate the effects of pathogens on the body, the intricacies of the human immune system and the impact of infections. Read more

Investigate the effects of pathogens on the body, the intricacies of the human immune system and the impact of infections. You will explore current topics in medical microbiology and biotechnology, studying specific global health issues and the involvement of biotechnology in medicine, and you will collaborate with experts in our new Centre for Biomedical Science Research.

You will be trained in research methods and study science communication across a range of media. You will gain advanced laboratory expertise across a number of key areas, learning techniques including immunoassays, protein analysis and spectrophotometry as well as developing your expertise in molecular virology and molecular biology. Guided by tutors and working as part of a research team you will carry out a detailed research project chosen from a range of microbiological areas. 

Research Excellence Framework 2014

Research Excellence Framework 2014: twice as many of our staff - 220 - were entered into the research assessment for 2014 compared to the number entered in 2008.

Course Benefits

You will spend a considerable proportion of your time in a hands-on environment, spending over 200 hours within the biomedical science laboratories, completing practicals and working on a specific research project that interests you and aligns with our expertise.

We will give you access to Class 2 microbiology facilities, along with cell culture and micro-electric fabrication equipment. With our new dedicated biomedical sciences research laboratory (opened in 2013) you will be able to conduct project work in a dedicated research environment and will benefit from an enhanced range of equipment.

You'll benefit from working with a first class teaching team. One of our lecturers, Dr Margarita Gomez Escalada, developed internationally-recognised research data on treating acne using the ingredient thyme, with a student who performed all the practical tests for her project.

Core modules

  • Contemporary Research In Biomedical Science
  • Advanced Professional Practice and Research
  • Bio-analytical Techniques
  • Infection and Immunity
  • Advanced Medical Microbiology
  • Applied Biotechnology
  • Research Project

Job Prospects

You will be able to go into a range of careers, including those within pharmaceutical companies, food manufacturing, chemical facilities or developing further investigative and innovative research. A move into a more senior position will be available to you, such as senior researcher or laboratory analyst roles, where you would be involved in designing research projects and analysing the data generated.

  • Medical Research Scientist
  • Labratory Analyst
  • Microbiologist


Read less
This Masters in Biotechnology programme provides you with an advanced practical knowledge of biotechnology and molecular genetic technologies underpinning modern biotechnology and how they can be applied to solve real world problems. Read more

This Masters in Biotechnology programme provides you with an advanced practical knowledge of biotechnology and molecular genetic technologies underpinning modern biotechnology and how they can be applied to solve real world problems. The programme offers training in a broad range of topics including environmental biotechnology, synthetic biology, plant engineering, stem cell therapies and vaccine development.

Why this programme

  • Ranked amongst the world top 100 for biological sciences.
  • If you wish to improve your knowledge of modern molecular, biochemical, cell biological and genetic techniques for biotechnological applications, this programme is designed for you.
  • You will gain a sound understanding of the nature of business based on bioscience knowledge and research, their opportunities for innovation and regulatory requirement constraints, intellectual property and ethical issues.
  • We have exciting scholarship opportunities.
  • You will learn how to assess the current literature, be encouraged to form opinions based on scientific merit, and implement these ideas in future research planning.
  • You will be taught by experts in the field of Biotechnology who run active, internationally recognised, research groups here at Glasgow.
  • The course involves extensive interaction with industry, through site visits, guest lectures and an 'Industrial Networking Symposium' where representatives from the European biotechnology and pharmaceutical industry will discuss their companies and answer your questions on working in the industrial sector.
  • This course has a strong laboratory component, with courses that run throughout the year, giving you hands on experience of diverse biotechnological research skills.
  • The flexible independent research project provides valuable training for students wishing to proceed to a PhD or into an industrial career; this may also be completed as a business based project.
  • Additional programme components include industrial networking sessions and a dedicated career workshop on progression planning. 
  • Our Masters in Biotechnology provides an advanced practical knowledge of how research and industry are being applied to solve real world problems.

Programme structure

The programme is made up of five teaching modules and a dissertation project. Each module explores different aspects of biotechnology. The dissertation allows you to specialise the degree through a chosen field of research. You will undertake this project with the support and guidance of your chosen academic expert.

The aims of these five course are to

  • enable students to study a wide range of biotechnology topics in depth.
  • allow students to benefit from leading-edge research-led teaching.
  • enhance students' conceptual, analytical and generic skills and to apply them to biotechnology problems.
  • prepare students for leading positions in the biotechnology industry or entry into PhD programmes.

Career prospects

This programme will prepare you for a career in the pharmaceutical or biotechnology industrial sectors or for entry into PhD programmes.



Read less
Biotechnology encompasses all aspects of the industrial application of living organisms and/ or biological techniques. It is a collection of technologies that capitalise on the attributes of cells and biological molecules, such as DNA, to work for us. Read more
Biotechnology encompasses all aspects of the industrial application of living organisms and/ or biological techniques. It is a collection of technologies that capitalise on the attributes of cells and biological molecules, such as DNA, to work for us. The primary biotechnology activity carried out in Ireland is research and development. Ireland has experienced massive growth across the biotechnology sector including food, environmental and pharmaceutical industries in the last decade. Ireland is home to nine of the top 10 global pharmaceutical and biotechnology companies, such as GlaxoSmithKline, Pfizer, Merck, BristolMyers Squibb and Genzyme, with seven of the 10 world blockbuster pharmaceuticals made here. The MSc in Biotechnology is taught by leading
academics in the UCD School of Biomolecular and Biomedical Science and focuses on broadening your knowledge and understanding of the current technologies and processes in the biotechnology industry, including approaches being applied to further advance the discovery and design of new and highly innovative biotech and pharmaceutical products and technologies. It also provides modules on food and environmental biotechnology, as well as industrially relevant expertise in facility design, bioprocess technology, regulatory affairs and clinical trials.

Key Fact

During the third semester you will conduct research in an academic or industrial lab. Projects will be carried out within research groups of the UCD School of Biomolecular and Biomedical Science using state-of-the-art laboratory and computational facilities or in Irish and multinational biotechnology companies, across the spectrum of the dynamic biotechnology industry in Ireland.

Course Content and Structure

Taught masters Taught modules Individual research project
90 credits 60 credits 30 credits
You will gain experimental and theoretical knowledge in the following topics:
• Pharmacology and Drug Development
• Medical Device Technology
• Biomedical Diagnostics
• Recombinant DNA Technology
• Microbial and Animal Cell Culture
• Food Biotechnology
• Facility Design
• Environmental Biotechnology
• Regulatory Affairs
• Drug Development and Clinical Trials
• Bioprocessing Laboratory Technology
Assessment
• Your work will be assessed using a variety
of methods including coursework, group
and individual reports, written and online
exams, and presentations

Career Opportunities

This advanced graduate degree in Biotechnology has been developed in consultation with employers and therefore is recognised and valued by them. A key feature is the opportunity to carry out a project in industry which will allow graduates to develop connections with prospective employers, thereby enhancing chances of employment on graduation. You will also have the opportunity to become part of a network of alumni in the fi eld of Biotechnology. Prospective employers include Abbott; Allergan; Amgen; Baxter Healthcare; Beckman Coulter; Biotrin International Ltd.; Boston Scientifi c; Elan Corporation; Eli Lilly and Co.; Celltech; GlaxoSmithKline; Icon Clinical Research; Johnson & Johnson Ltd.; Kerry Group Plc.; Merck Sharp & Dohme; Quintiles; Sandoz; Serology Ltd.

Facilities and Resources

• The UCD School of Biomolecular and Biomedical Science is closely linked to the UCD Conway Institute of Biomolecular and Biomedical Research, which provides cutting edge core technologies including the premier Mass Spectrometry Resource in the country, NMR spectroscopy, real time PCR, electron microscopy, light microscopy, digital pathology and fl ow cytometry.

Read less
Do you already have an academic bachelor’s degree in another scientific field and do you want to pursue your academic career in the field of Computer Science?… Read more
Do you already have an academic bachelor’s degree in another scientific field and do you want to pursue your academic career in the field of Computer Science? Then the master’s in Applied Computer Sciences is the programme you’re looking for! It is organised in such a way to accommodate your scientific background and future-oriented academic interests – developing the necessary Computer Science skills by complementing your primary field of expertise. Above all that, we offer a wide variety of highly specialised elective courses.

Approach

The first year of the programme focuses on developing knowledge of computer science concepts and techniques, with respect to the earlier studies. Lectures address both hardware and software. Elective courses in the second year allow applying the skills established in the first year, in a specialization, such as software development, telecommunications, multimedia, numeric engineering, bioinformatics, or robotics, as well as many other possibilities. Practical sessions and a master's thesis are also built into the study program.

 All areas of computer science are covered
The programme offers lectures in all traditional areas of the computer science and also in more specialized fields like software engineering, embedded systems, web design, telecommunications, multimedia, bioinformatics, robotics and many other subjects.

 Adaptable to your background and field of interest
Since Computer Science has become a diffuse area, we decided to organize this programme in a way that it can be adapted to the background and the field of interest of the student. Students start with a number of courses (depending on their background) summarizing the basic concepts in order to gain enough knowledge to be able to take elective courses and to make a master thesis in their field of interest. All this happens in an academic environment where research is done in all topics with great interaction among the researchers and large involvement of the students.

Joint organisation of two departments provides wide range of research topics
Two departments, the Department of Computer Science in the Faculty of Science and the Department of Electronics and Informatics in the Faculty of Engineering, jointly organise the Master programmes. Together, they have more than 200 researchers who cover a wide range of research topics.

Learning outcomes

During the two master years students are able to continue to build on the broad ranging basic scientific knowledge acquired as part of their Bachelor programme, complemented with the Information Technology profile, combining a multidisciplinary engineering training with an in-depth specialisation in Applied Computer Science.

The Master of Science in Applied Sciences and Engineering : Applied Computer Science programme is designed to train young people who are capable of making an effective contribution to the conception, realisation and coaching of projects of scientific and/or technological scope for the benefit of the fast-changing world we live in.

Curriculum

Available on http://www.vub.ac.be/en/study/applied-sciences-and-engineering-applied-computer-science/programme

Admission requirements

Applicants should have at least a bachelor degree in one of the following areas:
- Engineering
- Mathematics
- Geography/Geology
- Biology/ Biochemistry/ Biotechnology/ Chemsitry
- Economics
- Physics
Students holding a Bachelor’s or Master's degree in another field of the exact sciences or engineering can also apply.

Read less
The MSc Biotechnology programme aims to provide participants with the skills, knowledge and experience that are needed to pursue a successful career in biotechnology. Read more
The MSc Biotechnology programme aims to provide participants with the skills, knowledge and experience that are needed to pursue a successful career in biotechnology. Through tutorials, lectures, assignments and a four-month research project, the programme focuses on the adaptation and application of biological processes for commercial and industrial use. This course would be suitable for graduates with a primary degree in the Biological Sciences who wish to extend their knowledge and skills for a career in the biotechnology sector.

Graduates have found employment in the pharmaceutical and food industries, and in diagnostic and research services, with companies such as Abbott, Allergan, ICON Clinical Research, Norbrook Laboratories and Pfizer. They are pursuing careers in manufacturing, quality assurance, product development and research, as well as the broader sectors of sales, marketing, and regulatory affairs.

Programme Content:

Core Modules

Research Project:

Five-month laboratory project with an academic research team on a biotechnology topic.

Frontiers in Biotechnology:

An interactive tutorial-based module that will develop students' transferable skill and knowledge of recent advances in biotechnology.

Current Methodologies in Biotechnology:

Experts will teach methodologies fundamental to biotechnological research and application.

Diagnostic Biotechnology:

A comprehensive overview of immunological and molecular diagnostics applied in current biotechnological applications.

Fundamental Concepts in Pharmacology:

Fundamental understanding of how drugs work and how they are discovered and developed.

Protein Technology:

Enhancing protein production and function of biopharmaceutical and industrial proteins on a commercial scale.

Introduction to Business:

Concepts of marketing, management and accountancy and their application in biotechnology businesses.

Optional Modules (Choose 2)

Advanced Industrial Process:

This module is designed to develop an awareness of microbial technologies and their applications to biotechnology.

Applied Concepts of Pharmacology:

This module introduces students to autonomic pharmacology and drug discovery and development.

Scientific Writing:

This module aims to provide students with an in-dept understanding of the process of scientific publications.

Immunology:

Emphasis on the clinical value of manipulation of the immune system.

Quality Management Systems:

QMS for the efficient and safe running of commercial and industrial biotechnology enterprises.

Cell & Molecular Biology: Advanced Technologies

This module outlines the fundamentals of cell and molecular biology.

Read less

Show 10 15 30 per page



Cookie Policy    X