• University of Leeds Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University College London Featured Masters Courses
Imperial College London Featured Masters Courses
University of Reading Featured Masters Courses
Durham University Featured Masters Courses
London School of Economics and Political Science Featured Masters Courses
"applied" AND "bioinforma…×
0 miles

Masters Degrees (Applied Bioinformatics)

We have 115 Masters Degrees (Applied Bioinformatics)

  • "applied" AND "bioinformatics" ×
  • clear all
Showing 1 to 15 of 115
Order by 
The first of its kind in the UK, this MSc is highly regarded by employers for its real-world relevance and applied content. The course aims to develop advanced theoretical knowledge and computational skills and apply them to help solve real-life biological problems. Read more

The first of its kind in the UK, this MSc is highly regarded by employers for its real-world relevance and applied content. The course aims to develop advanced theoretical knowledge and computational skills and apply them to help solve real-life biological problems. This MSc is recognised by the BBSRC.

Who is it for?

This course aims to equip graduate scientists with the computational skills and awareness needed to archive, analyse and interpret the vast amounts of biological data now becoming available. On completion of this course, you will be able to apply information technology to the development of new drugs and diagnostic tools.

Additionally, you will gain the skills to design and implement new tools and software plugins to fulfil the need of the research community, and will be equipped with a diverse set of knowledge and skills that directly meet the requirements of employers in this sector.

Why this course?

This new and fast-growing field requires forward-thinking people who understand both the biological and computing aspects of this science – this MSc has been specifically designed to produce graduates of this nature.

Our students come from the UK and a combination of European and International countries. You will therefore experience working closely with people from different cultures and backgrounds – essential skills for your future career.

Class sizes are kept relatively small to help create an interactive environment and to ensure each student receives excellent support from our academic team.

Course details

The taught programme is generally delivered from October until March and is comprised of eight compulsory taught modules, a group project and an individual thesis project. Students on the part-time programme will complete all of the compulsory modules based on a flexible schedule that will be agreed with the Course Director.

Group project

Working in project teams is part of everyday working life. It requires not only your individual expertise but also an appreciation of the skills of the other members of the team. This part of the course gives you the opportunity of working as part of a team on a group project. This is an invaluable experience that will help you to recognise and implement the differing contributions that colleagues bring to team work, and the different roles that we can choose to play within a team. 

Industry related projects

A four-month thesis project carried out either at Cranfield or an external research establishment or commercial organisation within the UK or Europe. This gives you the chance to concentrate on a subject area of particular interest to you, perhaps in collaboration with the type of organisation that you are hoping to find employment with.

Real-life-problems solving thesis projects

Our MSc students finalise their hands-on study practice with individual thesis projects that solve problems in multidisciplinary areas whilst working under academic supervision. Some recent projects include:

  • Development of a Web-based resource for tuberculosis genotyping and diagnosis from whole genome sequencing data: PhyTB.

This project by Ernest Diez (2013-2014) is focused on creating PhyTB - an application for the interactive study of variation in M.tuberculosis using data from the PhyloTrack library.

Visit project page

Further reading

  • Applications of data science and machine learning in detection of meat adulteration.

This project by MSc student Rafal Kural (2014-2015) is focused on the application of machine learning methods to unravel hidden patterns of meat samples using Fourier Transform Spectrometry, Gas Chromatography Mass Spectrometry, High Performance Liquid Chromatography and VideometerLab. Over the course of this work it has been proven that it is certainly possible to obtain very accurate detection of meat adulteration, reaching sample adulteration level prediction accuracy of 100% for GCMS and 90-97% for FTIR and VM data.

Assessment

Taught Modules 40%, Group Project 20%, Individual Research Project 40%

Funding

To help students in finding and securing appropriate funding we have created a funding finder where you can search for suitable sources of funding by filtering the results to suit your needs. Visit the funding finder.

The Cranfield ScholarshipWe have a limited number of scholarships available for candidates from around the world applying for the 2017 intake. Scholarships are awarded to applicants who show both aptitude and ability for the subject they are applying. Find out more about the Cranfield Scholarship

Postgraduate Loan from Student Finance EnglandA Postgraduate Loan is now available for UK and EU applicants to help you pay for your Master’s course. You can apply for a loan at GOV.UK

Your career

Bioinformatics is a fast-growing field that offers progressive career opportunities for forward-thinking people who are ready to grasp the challenge; people who understand both the biological and computing aspects of this science. 

Our MSc opens doors to careers in industry, public research establishments and university research. The multidisciplinary nature of our course has allowed our students to follow diverse career paths in various medical-related sectors including:

  • Pharmaceutical and Biotech companies
  • Plant research institutes
  • Food sector
  • Public Institutions
  • Bioinformatics
  • IT companies.


Read less
Do you already have an academic bachelor’s degree in another scientific field and do you want to pursue your academic career in the field of Computer Science?… Read more
Do you already have an academic bachelor’s degree in another scientific field and do you want to pursue your academic career in the field of Computer Science? Then the master’s in Applied Computer Sciences is the programme you’re looking for! It is organised in such a way to accommodate your scientific background and future-oriented academic interests – developing the necessary Computer Science skills by complementing your primary field of expertise. Above all that, we offer a wide variety of highly specialised elective courses.

Approach

The first year of the programme focuses on developing knowledge of computer science concepts and techniques, with respect to the earlier studies. Lectures address both hardware and software. Elective courses in the second year allow applying the skills established in the first year, in a specialization, such as software development, telecommunications, multimedia, numeric engineering, bioinformatics, or robotics, as well as many other possibilities. Practical sessions and a master's thesis are also built into the study program.

 All areas of computer science are covered
The programme offers lectures in all traditional areas of the computer science and also in more specialized fields like software engineering, embedded systems, web design, telecommunications, multimedia, bioinformatics, robotics and many other subjects.

 Adaptable to your background and field of interest
Since Computer Science has become a diffuse area, we decided to organize this programme in a way that it can be adapted to the background and the field of interest of the student. Students start with a number of courses (depending on their background) summarizing the basic concepts in order to gain enough knowledge to be able to take elective courses and to make a master thesis in their field of interest. All this happens in an academic environment where research is done in all topics with great interaction among the researchers and large involvement of the students.

Joint organisation of two departments provides wide range of research topics
Two departments, the Department of Computer Science in the Faculty of Science and the Department of Electronics and Informatics in the Faculty of Engineering, jointly organise the Master programmes. Together, they have more than 200 researchers who cover a wide range of research topics.

Learning outcomes

During the two master years students are able to continue to build on the broad ranging basic scientific knowledge acquired as part of their Bachelor programme, complemented with the Information Technology profile, combining a multidisciplinary engineering training with an in-depth specialisation in Applied Computer Science.

The Master of Science in Applied Sciences and Engineering : Applied Computer Science programme is designed to train young people who are capable of making an effective contribution to the conception, realisation and coaching of projects of scientific and/or technological scope for the benefit of the fast-changing world we live in.

Curriculum

Available on http://www.vub.ac.be/en/study/applied-sciences-and-engineering-applied-computer-science/programme

Admission requirements

Applicants should have at least a bachelor degree in one of the following areas:
- Engineering
- Mathematics
- Geography/Geology
- Biology/ Biochemistry/ Biotechnology/ Chemsitry
- Economics
- Physics
Students holding a Bachelor’s or Master's degree in another field of the exact sciences or engineering can also apply.

Read less
What is the Master of Bioinformatics all about?.  Bioinformaticians are distinguished by their ability to formulate biologically relevant questions, design and implement the appropriate solution by managing and analysing high-throughput molecular biological and sequence data, and interpret the obtained results. Read more

What is the Master of Bioinformatics all about?

 Bioinformaticians are distinguished by their ability to formulate biologically relevant questions, design and implement the appropriate solution by managing and analysing high-throughput molecular biological and sequence data, and interpret the obtained results.

Structure

This interdisciplinary two-year programme focuses on acquiring

  • basic background knowledge in diverse disciplines belonging to the field of bioinformatics, including statistics, molecular biology and computer science
  • expert knowledge in the field of bioinformatics
  • programming skills
  • engineering skills

The 120-credit programme consists of a reorientation package (one semester), a common package (two semesters) and a thesis.

The Master of Bioinformatics is embedded in a strong bioinformatics research community in KU Leuven, who monthly meet at the Bioinformatics Interest Group. Bioinformatics research groups are spread over the Arenberg and Gasthuisberg campus and are located in the research departments of Microbial and Molecular Systems (M2S), Electrical Engineering (ESAT), Human Genetics, Microbiology and Immunology (REGA), Cellular and Molecular Medicine, Chemistry and Biology. Several of these bioinformatics research groups are also associated with the Flemish Institute for Biotechnology (VIB).

Is this the right programme for me? 

Are you a biochemist or molecular biologist with a keen interest in mathematics and programming? Are you a mathematician or statistician and want to apply your knowledge to complex biological questions? Do you want to develop new methods that can be used by doctors, biologists and biotechnology engineers? Then this is the right program for you!

Objectives

The student:

  • Possesses a broad knowledge of the principles of genetics, biochemistry and molecular and cellular biology that underlie the model systems, the experimental techniques, and the generation of data that are analysed and modelled in bioinformatics.
  • Possesses a broad knowledge of the basic mathematical disciplines (linear algebra, calculus, dynamical systems) that underlie mathematical and statistical modelling in bioinformatics.
  • Masters the concepts and techniques from information technology (database management, structured and object-oriented programming, semantic web technology) for the management and analysis of large amounts of complex and distributed biological and biomedical data.
  • Masters the concepts and techniques from machine learning and frequentist and Bayesian statistics that are used to analyse and model complex omics data.
  • Has acquired knowledge of the core methods of computational biology (such as sequence analysis, phylogenetic analysis, quantitative genetics, protein modelling, array analysis).
  • Has advanced interdisciplinary skills to communicate with experts in life sciences, applied mathematics, statistics, and computer science to formalise complex biological problems into appropriate data management and data analysis strategies.
  • Can - in collaboration with these experts - design complex omics experiments and analyse them independently.
  • Can independently collect and manage data from specialised literature and public databases and critically analyse and interpret this data to solve complex research questions, as well as develop tools to support these processes.
  • Investigates and understands interaction with other relevant science domains and integrate them within the context of more advanced ideas and practical applications and problem solving.
  • Demonstrates critical consideration of and reflection on known and new theories, models or interpretation within the specialty; and can efficiently adapt to the rapid evolution the life sciences, and especially in omics techniques, by quickly learning or developing new analysis strategies and incorporating them into the learned competences.
  • Presents personal research, thoughts, ideas, and opinions of proposals within professional activities in a suitable way, both written and orally, to peers and to a general public.
  • Develop and execute original scientific research and/or apply innovative ideas within research units.
  • Understands ethical, social and scientific integrity issues and responsibilities and is able to analyse the local and global impact of bioinformatics and genomics on individuals, organisations and society.

Career paths

Bioinformaticians find careers in the life sciences domain in the broadest sense: industry, the academic world, health care, etc. The expanding need for bioinformatics in biological and medical research ensures a large variety of job opportunities in fundamental and applied research. 60% of our graduates start a PhD after graduation.

 



Read less
Goal of the pro­gramme. Life Sciences.  is one of the strategic research fields at the University of Helsinki. The multidisciplinary Master’s Programme in Life Science Informatics (LSI) integrates research excellence and research infrastructures in the Helsinki Institute of Life Sciences (. Read more

Goal of the pro­gramme

Life Sciences is one of the strategic research fields at the University of Helsinki. The multidisciplinary Master’s Programme in Life Science Informatics (LSI) integrates research excellence and research infrastructures in the Helsinki Institute of Life Sciences (HiLIFE).

The Master's Programme is offered by the Faculty of Science. Teaching is offered in co-operation with the Faculty of Medicine and the Faculty of Biological and Environmental Sciences. As a student, you will gain access to active research communities on three campuses: Kumpula, Viikki, and Meilahti. The unique combination of study opportunities tailored from the offering of the three campuses provides an attractive educational profile. The LSI programme is designed for students with a background in mathematics, computer science and statistics, as well as for students with these disciplines as a minor in their bachelor’s degree, with their major being, for example, ecology, evolutionary biology or genetics. As a graduate of the LSI programme you will:

  • Have first class knowledge and capabilities for a career in life science research and in expert duties in the public and private sectors
  • Competence to work as a member of a group of experts
  • Have understanding of the regulatory and ethical aspects of scientific research
  • Have excellent communication and interpersonal skills for employment in an international and interdisciplinary professional setting
  • Understand the general principles of mathematical modelling, computational, probabilistic and statistical analysis of biological data, and be an expert in one specific specialisation area of the LSI programme
  • Understand the logical reasoning behind experimental sciences and be able to critically assess research-based information
  • Have mastered scientific research, making systematic use of investigation or experimentation to discover new knowledge
  • Have the ability to report results in a clear and understandable manner for different target groups
  • Have good opportunities to continue your studies for a doctoral degree

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The Life Science Informatics Master’s Programme has six specialisation areas, each anchored in its own research group or groups.

Algorithmic bioinformatics with the Genome-scale algorithmicsCombinatorial Pattern Matching, and Practical Algorithms and Data Structures on Strings research groups. This specialisation area educates you to be an algorithm expert who can turn biological questions into appropriate challenges for computational data analysis. In addition to the tailored algorithm studies for analysing molecular biology measurement data, the curriculum includes general algorithm and machine learning studies offered by the Master's Programmes in Computer Science and Data Science.

Applied bioinformaticsjointly with The Institute of Biotechnology and genetics.Bioinformatics has become an integral part of biological research, where innovative computational approaches are often required to achieve high-impact findings in an increasingly data-dense environment. Studies in applied bioinformatics prepare you for a post as a bioinformatics expert in a genomics research lab, working with processing, analysing and interpreting Next-Generation Sequencing (NGS) data, and working with integrated analysis of genomic and other biological data, and population genetics.

Biomathematics with the Biomathematics research group, focusing on mathematical modelling and analysis of biological phenomena and processes. The research covers a wide spectrum of topics ranging from problems at the molecular level to the structure of populations. To tackle these problems, the research group uses a variety of modelling approaches, most importantly ordinary and partial differential equations, integral equations and stochastic processes. A successful analysis of the models requires the study of pure research in, for instance, the theory of infinite dimensional dynamical systems; such research is also carried out by the group. 

Biostatistics and bioinformatics is offered jointly by the statistics curriculum, the Master´s Programme in Mathematics and Statistics and the research groups Statistical and Translational GeneticsComputational Genomics and Computational Systems Medicine in FIMM. Topics and themes include statistical, especially Bayesian methodologies for the life sciences, with research focusing on modelling and analysis of biological phenomena and processes. The research covers a wide spectrum of collaborative topics in various biomedical disciplines. In particular, research and teaching address questions of population genetics, phylogenetic inference, genome-wide association studies and epidemiology of complex diseases.  

Eco-evolutionary Informatics with ecology and evolutionary biology, in which several researchers and teachers have a background in mathematics, statistics and computer science. Ecology studies the distribution and abundance of species, and their interactions with other species and the environment. Evolutionary biology studies processes supporting biodiversity on different levels from genes to populations and ecosystems. These sciences have a key role in responding to global environmental challenges. Mathematical and statistical modelling, computer science and bioinformatics have an important role in research and teaching.

Systems biology and medicine with the Genome-scale Biology Research Program in BiomedicumThe focus is to understand and find effective means to overcome drug resistance in cancers. The approach is to use systems biology, i.e., integration of large and complex molecular and clinical data (big data) from cancer patients with computational methods and wet lab experiments, to identify efficient patient-specific therapeutic targets. Particular interest is focused on developing and applying machine learning based methods that enable integration of various types of molecular data (DNA, RNA, proteomics, etc.) to clinical information.



Read less
Our MSc Applied Bioscience course will develop your skills within several major areas of applied bioscience, including molecular cell biology, biomedical genetics and specialised topics in medical diagnostics. Read more
Our MSc Applied Bioscience course will develop your skills within several major areas of applied bioscience, including molecular cell biology, biomedical genetics and specialised topics in medical diagnostics. You'll focus on the rapidly evolving research into the applications of bioscience in healthcare, to diagnose and treat diseases. You'll also develop a comprehensive and critical understanding of the theory and practice of advanced analytical techniques as used and applied in bioscience.

Throughout our course you'll develop advanced knowledge and skills in the diverse areas of applied bioscience, emphasising on medical applications. Upon completion you'll be able to confidently design, execute and critically analyse both independent and group based scientific research in an appropriate area of applied bioscience.

You'll be immersed in an environment that mirrors a modern laboratory setting and benefit from the expertise of our Biomedical Science team and their intimate knowledge and collaborations within the field of bioscience. Using our purpose-built laboratory facilities, you'll be in the heart of our rapidly evolving scientific environment.

Our course is suitable for candidates who wish to specialise in the current medical applications of bioscience such as molecular and cell biology as a progression from a relevant first degree and for candidates with a strong background in ‘traditional’ analytical science (chemistry or biology).

Careers

Healthcare is a rapidly growing and constantly evolving sector. MSc Applied Bioscience course encourages the development of specialist cross-disciplinary laboratory skills, such as molecular genetics and bioinformatics, accompanied by an emphasis on professional practice. Graduates from the MSc Applied Bioscience course will have training to progress into a wide range of careers within the sciences, including industry and academic research, clinical trials, product development, production and quality assurance.

Cambridge is the home of the Wellcome Trust Sanger Institute, the Biomedical Campus at Addenbrooke's Hospital and the Babraham Research Institute. Throughout the course, you will have the opportunity to attend seminars or events with Cambridge’s many local biotechnology companies. Graduates from the course are also in the perfect position to continue an academic career and move up to our Biomedical Science PhD.

MSc Applied Bioscience is the right course for you if you:
•Want to develop a wide array of practical and conceptual scientific skills which are vital for a career in Biosciences
•Find the biosciences fascinating and want to deepen your understanding of the applications in healthcare
•Are interested in pursuing a career in research – either academic, clinical or industrial

Core modules

Molecular Genetics and Bioinformatics
Modern Medical Diagnostics
Research Methods and Preparation
Laboratory Techniques in Bioscience
Professional and Ethical Practice
Major Project

Assessment

We use a range of assessment methods to enable both you and the university to check your progress during your studies and then to ensure that you meet the required standards when you complete the course.

Although they vary, our assessment strategies are all carefully designed to challenge you so that you expand your critical and analytical thinking as well as your problem-solving skills. The assessments will enable you to demonstrate that you can synthesise existing knowledge and accumulate new knowledge, and will evidence the development of your professional practice. Some examples of assessment include poster and oral presentations, essays and portfolios of evidence. In addition, you will undertake practicals in many of the modules, developing your technical laboratory skills.

Please note that you will need to complete all of the above core modules. This course does not have any optional modules.

Your faculty

The Faculty of Science & Technology is one of the largest of five faculties at Anglia Ruskin University. Whether you choose to study with us full- or part-time, on campus or at a distance, there’s an option whatever your level – from a foundation degree, to a BSc, MSc, PhD or professional doctorate.

Whichever course you pick, you’ll gain the theory and practical skills needed to progress with confidence. Join us and you could find yourself learning in the very latest laboratories or on field trips or work placements with well-known and respected companies. You may even have the opportunity to study abroad.

Everything we do in the faculty has a singular purpose: to provide a world-class environment to create, share and advance knowledge in science and technology fields. This is key to all of our futures.

Read less
The MSc in Applied Biosciences and Biotechnology aims to. To equip graduates to pursue careers in bioscience and biotechnology either in industry or academic research. Read more
The MSc in Applied Biosciences and Biotechnology aims to:

• To equip graduates to pursue careers in bioscience and biotechnology either in industry or academic research.
• Produce graduates with an in-depth understanding of the core principles and methodologies underlying current biotechnological research.
• To enable students to develop the transferable qualities and skills required for employment or research in the biosciences sector.
• Produce bioscience graduates with training in relevant business and entrepreneurial skills.
• Provide a training in laboratory and research skills.
• Meet the global need for graduates who can successfully contribute to the rapidly developing industrial biotechnology sector.

The biotechnology sector has grown rapidly in recent years and there are increasing career opportunities worldwide for experienced graduates who have been trained in advanced molecular bioscience, systems biology and ‘omics’ technologies, together with exposure to entrepreneurship and innovation. Demand for these skills is predicted to increase sharply over the next decade due to investment in the “green economy”, notably in the areas of bioenergy and industrial biotechnology. Moreover glycoprotein biopharmaceuticals comprise an increasing proportion of new drugs and their development, manufacture and quality control demands interdisciplinary skills in applied biosciences and biotechnology which can only be gained via advanced training at postgraduate level.

Degree structure
The course is comprised of three parts: a taught component, a tutored dissertation, which includes a mini-conference, and a research component. The taught component in weeks 1-30 will include lectures, seminars, computer practicals and tutorials. Computer based practicals will be held throughout weeks 1-14. The dissertation will be carried out in weeks 31-35. A full time laboratory based research project will be carried out from week 36 to 52.

Weeks 1-15: Induction week followed by courses in Biochemistry, Molecular Cell Biology, Bioinformatics, Systems Biology and Statistics which introduce students to the fundamental concepts of modern biology, including cell biology, genomics, proteomics, experimental techniques and data handling. Assessment will be through a written examination in week 15.
Weeks 16-30: All students attend two modules comprising advanced lectures in applied bioscience and biotechnology encompassing: industrial biotechnology, glycol-technology, structural biology, cellular damage, repair and ageing, genes and genomics, infection and immunity, stem cells and regenerative medicine, neurobiology in health and disease, integrative systems biology and synthetic biology. Additional seminars and workshops will introduce students to innovation and entrepreneurship. All students will attend weekly seminars from invited external speakers from industry and the public sector. Assessment will be through two written examinations in week 30.
Weeks 31-35: Students will undertake a full-time tutored dissertation followed by a mini-conference.
Weeks 36-52: Students will undertake full-time individual projects in the research laboratories of the Department of Life Sciences.

Please see course webpage on the Imperial website for further information: http://www.imperial.ac.uk/life-sciences/postgraduate/masters-courses/msc-in-applied-biosciences-and-biotechnology/

Read less
Develop skills in programming, statistical modeling, and other areas of computer science to help you analyze and interpret complex biological data. Read more
Develop skills in programming, statistical modeling, and other areas of computer science to help you analyze and interpret complex biological data. Through the graduate program in bioinformatics, you’ll learn to blend expertise in computational and biological sciences, leading to a deeper understanding in areas like genomics, diseases, and drug discovery.

KEY LEARNING OUTCOMES

Through the master's degree in the field of bioinformatics, you:
-Gain an understanding of applied learning in related computer science subjects, including programming languages, statistical modeling, visualization, databases, and algorithms.
-Develop skills in scientific practice, including experimental or case study design, scientific data analysis, writing and communication, ethics, and effective collaboration.
-Build a foundation in life science theory as it relates to biotechnology.

PROGRAM OVERVIEW

The master’s degree includes nine courses—at least four taken on campus—and a thesis or internship.

-Get started. You begin by completing three admission courses from the program curriculum. This is your opportunity to demonstrate your commitment and ability to perform well as a Harvard student.
-Apply to the program. While completing your third admission course, you submit your application. We have application periods in the fall, spring, and summer.
-Continue your studies, online and on campus. As you progress through the program, you choose from courses offered on campus or online, in the fall, spring, or summer. You are required take at least four courses on campus as part of your degree.
-Complete your thesis or internship. If you choose the thesis option, you work with a thesis director to conduct in-depth research on a topic relevant to your work experience or academic interests, producing publishable quality results. You’ll emerge with a solid understanding of how scientific research is executed and communicated. For the internship, you have the opportunity to apply your knowledge of quantitative analysis and computational design to solve a biological problem, either with your current or potential employer.
-Graduate with your Harvard degree. You participate in the annual Harvard Commencement, receiving your Harvard University degree: Master of Liberal Arts (ALM) in extension studies, field: Bioinformatics.

COST

Affordability is core to our mission. Our 2016–17 graduate tuition is $2,550 per course; the total tuition cost of earning the graduate degree is approximately $25,500.

FINANCIAL SERVICES

The Student Financial Services staff can assist you in identifying funds that will help you meet the costs of your education. You can find more information here: http://www.extension.harvard.edu/tuition-enrollment/financial-aid

Read less
Bioinformatics is often described as the future of biological research, combining all areas of biology, including genetics, molecular biology, biochemistry and physiology, with computer science, statistics and applied mathematics. Read more

Bioinformatics is often described as the future of biological research, combining all areas of biology, including genetics, molecular biology, biochemistry and physiology, with computer science, statistics and applied mathematics.

As a student in the Master of Science (Bioinformatics), you’ll learn from and work with high-profile researchers and practitioners in the heart of the renowned Parkville Biomedical Precinct, one of the most highly concentrated biological research and health services precincts in the world. You’ll undertake a customised first year of study, dependent on your entry pathway, followed by a common second year that will foster a broad knowledge of bioinformatics, with strong foundations in computer science, while also working independently on a significant research project. 



Read less
Today's society faces the challenge of providing high-quality, patient-centred, sustainable and affordable healthcare, in an environment of increased demand and scarce resources. Read more

Today's society faces the challenge of providing high-quality, patient-centred, sustainable and affordable healthcare, in an environment of increased demand and scarce resources. The Health Informatics MSc at UCL aims to form future leaders who will address this challenge, transforming healthcare delivery through the use of information and communication technologies.

About this degree

Our graduates are professionals able to effectively engage with clinicians, managers, patients and policymakers, with the necessary skills and tools to harness healthcare information for improving clinical practice and service delivery. They possess the knowledge about healthcare problems, the concepts used to analyse them and the principles that govern the successful engineering, application and evaluation of solutions.

Students undertake modules to the value of 180 credits.

The programme consists of one core module (15 credits), seven optional modules (105 credits) and a research project (60 credits).

A Postgraduate Diploma (120 credits, flexible study 2-5 years) is offered.

A Postgraduate Certificate (60 credits, flexible study over a period of two years) is offered.

Core modules

  • Principles of Health Informatics

Optional modules

  • Research Methods in Healthcare
  • Information Systems in Healthcare
  • Electronic Health Records
  • Patient Safety and Clinical Risk
  • Clinical Decision Support Systems
  • eHealth: Patients and the Internet
  • Information Law and Governance in Clinical Practice
  • Learning Health Systems
  • Principles of Health Data Analytics
  • Principles of Health Data Science*
  • Data Methods for Health Research*
  • Machine Learning in Healthcare & Biomedicine*

*Full-time MSc students have option to share Data Science for Research in Health & Biomedicine modules

Dissertation/report

All MSc students undertake an independent research project, normally based at their place of work, which culminates in a piece of work written in the style of a journal article.

Teaching and learning

The programme is taught by 'blended learning', and therefore includes interactive online teaching and face-to-face lectures, seminars and workshops including substantial use of examples of real clinical systems. Assessment is through examination, critical evaluations, technical tasks, coursework and project reports, compulsory programming and database assignments, and the dissertation.

Further information on modules and degree structure is available on the department website: Health Informatics MSc

Careers

Health informatics is a subject of growing importance, with exciting career development prospects for clinicians, managers, administrators and technologists. The main areas where our graduates find employment are business intelligence, information management, project and programme management, informatics analysts and directors, quality and service improvement management.

Recent career destinations for this degree

  • Business & Performance Manager, Camden & Islington NHS FT
  • Business Intelligence Analyst, Hinchingbrooke Hospital (NHS)
  • Commissioning Manager, NHS South Tees Clinical Commissioning Group
  • Programme Manager, NHS Wakefield Clinical Commissioning Group (CCG)
  • Project Manager, Cambridge University Hospitals NHS Foundation Trust

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The MSc in Health Informatics at UCL is taught by a team of specialists within the UCL Institute of Health Informatics, and understanding how information technologies can be harnessed for improving the delivery of care is central to their academic mission. UCL is at the centre of a vast network of clinical collaborators and houses probably the largest concentration of health informatics expertise in the UK.

The institute conducts world-leading research and our teaching, which is research based, focuses on areas such as electronic healthcare records, decision support systems, consumer health informatics, and clinical and applied bioinformatics.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Why choose this course?. This course is for biosciences graduates looking to open up a route into industry, and for practising professionals seeking to widen their experience and qualifications, and extend their knowledge of applied molecular biology/bioinformatics. Read more

Why choose this course?

This course is for biosciences graduates looking to open up a route into industry, and for practising professionals seeking to widen their experience and qualifications, and extend their knowledge of applied molecular biology/bioinformatics. It provides a sound understanding of the subject’s key principles, as well as how these can be effectively applied to a wide range of industrial and environmental applications. You will benefit from working with excellent technology and research equipment in our state-of-the-art laboratories, and you also receive a thorough grounding in the necessary computing skills needed to access important online databases, such as the human genome. You will be challenged to look to the frontiers of (and even beyond) current thinking in the subject, and to be aware of how your studies impact on your future career/professional role. To complement this, you will gain essential intellectual and transferable skills such as independent planning, hypothesis formulation and testing, and the importance of originality.

What happens on the course?

Typical modules may include:

  • Modern Computer Science
  • Data Management
  • DNA Datamining
  • Masters' Laboratory Techniques
  • Molecular Genetics and Genomics
  • Research Methods
  • Research Project

Why Wolverhampton?

The University of Wolverhampton has a long-standing reputation for the provision of training in Molecular Biology at all levels. The course is has been at the forefront in the identification of bioinformatic skills and has lead to graduates achieving high profile employment as bioinformaticians. This course addresses the rapidly developing field of modern genetics and prepares them for the post- genomics era. The research-active staff who are associated with the Research Institute in Healthcare Science (research evaluated as of national and international excellence at the last Research Assessment Exercise) provide a highly research-focused environment which informs both teaching and the students’ own research projects.

Career Path

Career paths vary from technical to managerial in the industrial, educational, health and research sectors - typically, you will be heading for a role in the areas of general molecular biology, biochemical science, medical science and biotechnology (including pharmaceuticals).

You may prefer to go into postgraduate research at an academic or private sector institution, or embark on a science teaching career.

Find out more about the School of Sciences

https://www.wlv.ac.uk/about-us/our-schools-and-institutes/faculty-of-science-and-engineering/school-of-sciences/



Read less
Our established programme in Biotechnology, which has been extensively updated, includes a wide range of modern molecular biology techniques and how biotechnology can be used by today's society. Read more
Our established programme in Biotechnology, which has been extensively updated, includes a wide range of modern molecular biology techniques and how biotechnology can be used by today's society. You will complement your theoretical studies with hands on experience of fully controlled fermenters that are up to pilot-plant scale, and are linked to modern monitoring and control systems.

You will study a range of subjects in considerable depth, including bioactive compounds, industrial bioprocesses, microbial physiology and fermentation technology, microbial production of novel metabolites, monitoring and control of fermentation, topics in biotechnology, and types of bioreactors.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-APPLIED MOLECULAR BIOLOGY
-FERMENTATION TECHNOLOGY
-INDUSTRIAL AND ENVIRONMENTAL BIOTECHNOLOGY
-POSTGRADUATE RESEARCH METHODS
-POSTGRADUATE PROJECT
-SCIENCE, TECHNOLOGY AND COMMERCIALISATION

Option modules
-COMMUNICATING SCIENCE
-EXTENDED POSTGRADUATE PROJECT
-MOLECULAR BIOINFORMATICS
-MOLECULAR AND CELLULAR THERAPEUTICS
-REGENERATIVE MEDICINE
-SYSTEMS BIOLOGY

Associated careers

The course is aimed at those aspiring to be researchers and managers in the biotechnology and pharmaceutical industries or other biosectors.

Read less
The JKU Master in Bioinformatics is a 2 years full-time program with 120 ECTS points. It is an interdisciplinary study with all courses in English. Read more
The JKU Master in Bioinformatics is a 2 years full-time program with 120 ECTS points. It is an interdisciplinary study with all courses in English. The first semester is a transitional phase of bridge modules that prepares students from various fields for the following courses according to their prior education.

JKU is a vibrant place to study and a premier institution for research. It is among the top young universities in Europe and has a strong commitment to fundamental and applied research.

Visit us on Facebook: https://www.facebook.com/StudyBioinformatics

Read less
The Department of Mathematical Sciences offers a professionally oriented Master’s of Arts degree program in statistics. The lively and versatile curriculum focuses on training that is applicable in the real world, and the program aims to prepare skillful statisticians for professional careers in industry. Read more

The Department of Mathematical Sciences offers a professionally oriented Master’s of Arts degree program in statistics. The lively and versatile curriculum focuses on training that is applicable in the real world, and the program aims to prepare skillful statisticians for professional careers in industry. The track includes an integral lab component that emphasizes the practice of contemporary data analysis and exposes students to methods, software and theory commonly used in applications of statistics.

The MA is designed to provide students with a solid foundation of practical knowledge to work with statistics in depth, for future careers in the public and private sectors as statistical scientists, consultants and engineers to manage and analyze data. The program requires courses specific to the area of applied statistics, and the student is required to finish 10 courses and two 1-credit capstone seminars for a total of 42 credits. An exit exam or final thesis is not required.

Driven by the ever-greater reliance of businesses and governments on data, the demand for professionals with strong quantitative analytical skills is now higher than ever. Program graduates will be trained to pursue careers in a variety of fields that require data-crunching and quantitative analysis. Well-trained statisticians and data scientists are employed in the following roles in a wide spectrum of industries:

◾statistical consultants

◾risk managers

◾insurance actuaries

◾quants (and traders)

◾production/manufacturing quality control managers

◾market researchers

◾sports statisticians

◾economists

◾biomedical, biometrics, and bioinformatics researchers

◾sociology researchers

◾psychology researchers

◾biostatisticians in pharmaceutical industry

◾government statisticians (census)

All applicants must submit the following:

- Online graduate degree application and application fee

- Transcripts from each college/university which you attended

- Three letters of recommendation

- Personal statement (2-3 pages) describing your reasons for pursuing graduate study, your career aspirations, your special interests within your field, and any unusual features of your background that might need explanation or be of interest to your program's admissions committee

- Resume or Curriculum Vitae (max. 2 pages)

- Official GRE scores

And, for international applicants:

- International Student Financial Statement form

- Official bank statement/proof of support

- Official TOEFL, IELTS, or PTE Academic scores



Read less
Admission Notice now available. - check at. http://www.unipd.it/en/biotecnologie-alimentazione. http://www.unipd.it/en/how-apply. Read more

Admission Notice now available

- check at

http://www.unipd.it/en/biotecnologie-alimentazione

http://www.unipd.it/en/how-apply

Instructions in English:

http://www.unipd.it/en/educational-offer/second-cycle-degrees/school-of-agricultural-sciences-and-veterinary-medicine?ordinamento=2011&key=IF0362

.

Biotechnologies for Food Science

In the 2016-2017 academic year, the University of Padova inaugurated a new curriculum of the Master Degree “Biotechnology applied to Food Security and Nutrition” (Second Cycle Degree) entitled “Biotechnologies for Food Science " to be entirely taught in English.

The “Biotechnologies for Food Science " Master degree (MSc) is an interdisciplinary and research-oriented Master of Science Programme and explores how to produce healthier and safer food following a cross-cutting, farm/field-to-fork approach. It is focused on the application of advanced biotechnologies in food production and safety and it is the ideal trait-d’union between the requests of consumers, of producers in the agro-food sector and research applied to production and food-safety.

The course has a strong component on cutting-edge methods, such as genomics, bioinformatics, proteomics, metabolomics, nanotechnologies, all in the context of animal and crop production as well as food quality and safety. Theoretical lessons are mixed with practical training, offering hands-on experience in advanced DNA, RNA, and protein analysis together with substantial lab sessions in bioinformatics. Lectures will deal with food production, hygiene and quality, molecular methods of agro-food analyses, effects of agro-biotech products on human beings and environments. Moreover environmental stresses, disease mechanisms, pathogens and pests will be treated as essential to understand how to protect crop and farm animals and how food might impact on human health: the lectures move across animal infectious disease, immunology, microbiology, plant pests and pathogens as well as abiotic stresses to show how biotechnology might help preventing disease and improve food production. As consumers are increasingly worried about the presence of contaminants in food and on the real origin of what they eat; the Programme includes a course in food toxicology and regulation, and one on traceability for food authentication.

Our Programme is based at the Agripolis campus, where are located four departments of the School of Agriculture and Veterinary Medicine of the University of Padova, all of which contribute to the MSc course, offering the best opportunities for a rich, cross-disciplinary experience in a highly qualified scientific environment.

Who is the MSc candidate?

This programme is open to Italian and foreign students from the EU and abroad, interested in learning and implementing effective value-added practices for the production of high-quality food products both in the EU and in international markets. English knowledge must be minimum at B2 level (CEFR). Applying students might possibly have a three-year Bachelor’s degree in a field connected with the Master’s curriculum. Good background in molecular biology, biochemistry, and microbiology is requested.

How is the programme organised?

Biotechnologies for Food Science is a 2-year Master programme (120 ECTS, equivalent to a Master of Science). Requirements for graduation include courses and preparation and defense of the Master thesis. Students will be encouraged to spend a period of their studies abroad, through Erasmus+ or other local programmes and agreements. Financial support to meet part of the cost for thesis work is granted to best students.

Visit the MSc “Biotechnologies for Food Science” page on the Università di Padova web-site (http://www.unipd.it/en/biotecnologie-alimentazione) for more details.

Teaching methods

Teaching takes place in an international environment and includes lectures and laboratory activities, practical exercises and seminars by experts; opportunities for intensive tutoring and for master thesis-related stages of at least six months duration will be available with outstanding companies in the sector of the food industry or with other relevant organisations in the private or public sphere. The Programme assists students to find suitable internship opportunities with qualified laboratories in Italy and abroad.

Examinations are written or oral and assess students’ participation also through reports, presentations, and group work.

Course structure

First year

During the first year of the programme the student will acquire knowledge on animal and crop genomics, focusing on the most advanced methods for high throughput genomic analysis (transcriptomics, genome-wide SNP analysis, epigenomics) and on the most recent approaches for selective breeding (genomic selection, genomic prediction). In parallel, the student will learn how bioinformatics tools might be applied to manage large sets of data, how biological data bases are organized and how to link different types of data. Extensive practical training in bioinformatics will be offered with various sessions in a dedicated lab. Food-borne pathogens and the positive role of microorganisms in food processes will be examined in an integrated microbiology course, while the molecular basis of pathology, host-response to infection, epidemiology, and diagnostics of transmissible diseases will form the basis of two courses. A course on biotechnology for crop production will introduce the molecular and physiological basis of crop production. Biotechnological approaches to improve crop yield, with particular attention to fruit production, and to reduce impact of abiotic stresses will examined. Molecular tools for food traceability and an intensive practical lab in DNA/RNA/protein analysis applied to food control will conclude the first year.

Second year

In the second year, the first semester have three courses. One will focus on novel technologies (proteomics, metabolomics, nanotechnology) and their application to food production. A second one will extend knowledge on plant biotechnology exploring advanced technologies for crop disease and pest management. A third one will deal with contaminants in food and food legislation. The second semester is completely dedicated to lab internship. It is possible to join a research lab in the campus or to have a working stage in the private sector.

link to the Campus descriptions:

http://youtu.be/gR4qcWUXvGg

Scholarships and Fee Waivers

The University of Padova, the Veneto Region and other organisations offer various scholarship schemes to support students. Below is a list of the funding opportunities that are most often used by international students in Padova.

You can find more information below and on our website here: http://www.unipd.it/en/studying-padova/funding-and-fees/scholarships

You can find more information on fee waivers here: http://www.unipd.it/en/fee-waivers



Read less
Statistics is one of the most important fields of study in the world. The techniques we use to model and manipulate data guide the political, financial and social decisions that shape our modern society. Read more
Statistics is one of the most important fields of study in the world. The techniques we use to model and manipulate data guide the political, financial and social decisions that shape our modern society. If you are a logical person and enjoy solving problems, statistics at Essex is for you.

Our Department of Mathematical Sciences embraces pure mathematics, applied mathematics and statistics, and operational research, and our course offers you the opportunity to study statistics alongside other mathematical subjects.

Providing a balance of solid statistical theory and practical application, this course builds your knowledge in all areas of statistics, data analysis and probability. You also have the opportunity to specialise, taking optional modules in topics including:
-Survey methodology
-Operations research
-Applied mathematics
-Computer science

Our interdisciplinary research recognises that mathematics, including what can be very abstract mathematics, is an essential part of research in many other disciplines.

Our department has an international reputation in many areas including semi-group theory, optimisation, probability, applied statistics, bioinformatics and mathematical biology.

Our expert staff

Our Department of Mathematical Sciences is a small but influential department, so our students and staff know each other personally. You never need an appointment to see your tutors and supervisors, just knock on our office doors – we are one of the few places to have an open-door policy, and no issue is too big or small.

Our staff have published several well-regarded text books and are world leaders in their individual specialisms, with their papers appearing in learned journals like Communications in Algebra, Studia Logica, International Journal of Algebra and Computation, SIAM Journal in Optimization, IEEE Evolutionary Computation, Computers and Operations Research, Ecology, Journal of Mathematical Biology, and Journal of Statistical Applications in Genetics and Molecular Biology.

Specialist facilities

-Unique to Essex is our renowned Maths Support Centre, which offers help to students, staff and local businesses on a range of mathematical problems. Throughout term-time, we can chat through mathematical problems either on a one-to-one or small group basis
-We have our own computer labs for the exclusive use of students in the Department of Mathematical Sciences – in addition to your core maths modules, you gain computing knowledge of software including Matlab and Maple
-We host regular events and seminars throughout the year
-Our students run a lively Mathematics Society, an active and social group where you can explore your interest in your subject with other students

Your future

Working in industries such as health, business, social care and finance, graduates are consistently in demand, working on projects such as efficacy of social policy, comparable data of cardiac rehabilitation and manipulation of raw data for academic research.

Our Masters graduates have progressed into careers in banking and finance, actuarial sciences, biological sciences, market research and statistics, management and consultancy etc.

We also offer supervision for PhD, MPhil and MSc by Dissertation. We have an international reputation in many areas such as semi-group theory, optimisation, probability, applied statistics, bioinformatics and mathematical biology, and our staff are strongly committed to research and to the promotion of graduate activities.

We additionally work with our Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Modelling Experimental Data
-Statistical Methods
-Stochastic Processes
-Applied Statistics
-Bayesian Computational Statistics
-Research Methods
-Dissertation
-Nonlinear Programming (optional)
-Financial Modelling (optional)
-Research Methods in Finance: Empirical Methods in Finance (optional)
-Machine Learning and Data Mining (optional)
-Cloud Technologies and Systems (optional)
-Time Series Econometrics (optional)
-Panel Data Methods (optional)
-Topics in Contemporary Social Theory (optional)
-Introduction to Survey Design and Management (optional)
-Applied Sampling (optional)

Read less

Show 10 15 30 per page



Cookie Policy    X