• New College of the Humanities Featured Masters Courses
  • Coventry University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
Queen Mary University of London Featured Masters Courses
FindA University Ltd Featured Masters Courses
Imperial College London Featured Masters Courses
FindA University Ltd Featured Masters Courses
"applied" AND "bioinforma…×
0 miles

Masters Degrees (Applied Bioinformatics)

  • "applied" AND "bioinformatics" ×
  • clear all
Showing 1 to 15 of 108
Order by 
Bioinformatics is one of the most exciting fields in modern science. It is defined as the application of IT and computational methods used to tackle biological challenges. Read more
Bioinformatics is one of the most exciting fields in modern science. It is defined as the application of IT and computational methods used to tackle biological challenges. Since its origins in genomic sequence analysis more than 20 years ago, bioinformatics has spread, not only across the whole of molecular biology, but also into every field of life science. This includes drug discovery, food technology, medicine, agriculture and environmental science. The first of its kind in the UK, Cranfield’s established Applied Bioinformatics MSc is highly regarded by employers for its real-world relevance and applied content, and has been recognised by the BBSRC (Biotechnology and Biological Sciences Research Council) as providing the necessary skills and experience to contribute to their vision of developing and maintaining world-class UK bioscience.

Read less
The two-year MSc Bioinformatics concerns a new scientific discipline with roots in computer science, statistics and molecular biology. Read more

MSc Bioinformatics

The two-year MSc Bioinformatics concerns a new scientific discipline with roots in computer science, statistics and molecular biology. Bioinformaticians apply information technology to store, retrieve and manipulate these data and employ statistical methods capable of analysing large amounts of biological data to predict gene functions and to demonstrate relationships between genes and proteins.

Programme summary

DNA contains information about life, but how is this information used? Biological data, such as DNA and RNA sequence information produced by next-generation sequencing techniques, is accumulating at an unprecedented rate. Life scientists increasingly use bioinformatics resources to address their specific research questions. Bioinformaticians bridge the gap between complex biological research questions and this complex data. Bioinformaticians use and develop computational tools to predict gene function(s) and to demonstrate and model relationships between genes, proteins and metabolites in biological systems. Bioinformatics is an interdisciplinary field that applies computational and statistical techniques to the classification, interpretation and integration of large-scale biological data sets. If different data types are joined then complex interactions in biological systems can be studied. The use of systems biology methods to study complex biological interactions offers a wealth of possibilities to understand various levels of aggregation and enables control of biological systems on different scales. Systems biology approaches are therefore quickly gaining importance in many disciplines of life sciences, such as in applied biotechnology where these methods are now used to develop strategies for improving production in fermentation. Other examples include bioconversion and enzymatic synthesis, and in the study of human metabolism and its alterations where systems biology methods are applied to understand a variety of complex human diseases, including metabolic syndromes and cancer. The Wageningen Master programme focuses on the practical application of bioinformatics and systems biology approaches in many areas of the Life Sciences. To ensure that students acquire a high level of understanding of modelling and computing principles, the students are trained in the fundamentals of database management, computer programming, structural and functional genomics, proteomics and systems biology methods. This training includes advanced elective courses in molecular biology and biostatistics.

Thesis tracks

Bioinformatics
The bioinformatics track focuses on the practical application of bioinformatics knowledge and skills in molecular life sciences. It aims at creating and using bioinformatics resources to address specific research questions. The knowledge and skills gained can be applied in many life science disciplines such as molecular & cell biology, biotechnology, (human) genetics, health & medicine and environmental & biobased technology.

Systems Biology
The systems biology track focuses on the study of the complex interactions in biological systems and on the emerging properties derived from these. Systems biology approaches to complex biological problems offer a wealth of possibilities to understand various levels of aggregation. It enables control of biological systems on completely different scales, ranging from the molecular cellular level to marine, plant, or animal ecosystems to a desired state. The knowledge and skills gained can be applied in many life science disciplines including molecular & cell biology, applied biotechnology, genetics, medicine and vaccine development, environmental and biobased technology.

Your future career

Bioinformatics and Systems Biology are new fast growing biology based interdisciplinary fields of research poorly served by the traditional curricula of Life Sciences. As demand has outpaced the supply of bioinformaticians, the first job after graduation is often a PhD project at a research institute or university. It is expected that five years after graduation, about one third will stay employed as a scientist at a university or research centre, while the others choose for careers at research-oriented pharmaceutical and biotechnological companies.

Alumnus Tom van den Bergh.
"It is sometimes difficult for doctors to diagnose genetic diseases caused by missense mutations. A missense mutation does not necessarily mean that you have the gene-associated disease and will become ill since not all missense mutations lead to appreciable protein changes." Tom created a database for Fabry’s disease for his final thesis. He wrote a computer programme that reads publications and stores all information about Fabry mutations in its database. Genetic researchers can, in turn, quickly access this database to determine if the mutation they found in a patient has already been addressed in literature and what the effects were.

Related programmes:
MSc Biotechnology
MSc Molecular Life Sciences
MSc Plant Biotechnology

Read less
Do you already have an academic bachelor’s degree in another scientific field and do you want to pursue your academic career in the field of Computer Science?… Read more
Do you already have an academic bachelor’s degree in another scientific field and do you want to pursue your academic career in the field of Computer Science? Then the master’s in Applied Computer Sciences is the programme you’re looking for! It is organised in such a way to accommodate your scientific background and future-oriented academic interests – developing the necessary Computer Science skills by complementing your primary field of expertise. Above all that, we offer a wide variety of highly specialised elective courses.

Approach

The first year of the programme focuses on developing knowledge of computer science concepts and techniques, with respect to the earlier studies. Lectures address both hardware and software. Elective courses in the second year allow applying the skills established in the first year, in a specialization, such as software development, telecommunications, multimedia, numeric engineering, bioinformatics, or robotics, as well as many other possibilities. Practical sessions and a master's thesis are also built into the study program.

 All areas of computer science are covered
The programme offers lectures in all traditional areas of the computer science and also in more specialized fields like software engineering, embedded systems, web design, telecommunications, multimedia, bioinformatics, robotics and many other subjects.

 Adaptable to your background and field of interest
Since Computer Science has become a diffuse area, we decided to organize this programme in a way that it can be adapted to the background and the field of interest of the student. Students start with a number of courses (depending on their background) summarizing the basic concepts in order to gain enough knowledge to be able to take elective courses and to make a master thesis in their field of interest. All this happens in an academic environment where research is done in all topics with great interaction among the researchers and large involvement of the students.

Joint organisation of two departments provides wide range of research topics
Two departments, the Department of Computer Science in the Faculty of Science and the Department of Electronics and Informatics in the Faculty of Engineering, jointly organise the Master programmes. Together, they have more than 200 researchers who cover a wide range of research topics.

Learning outcomes

During the two master years students are able to continue to build on the broad ranging basic scientific knowledge acquired as part of their Bachelor programme, complemented with the Information Technology profile, combining a multidisciplinary engineering training with an in-depth specialisation in Applied Computer Science.

The Master of Science in Applied Sciences and Engineering : Applied Computer Science programme is designed to train young people who are capable of making an effective contribution to the conception, realisation and coaching of projects of scientific and/or technological scope for the benefit of the fast-changing world we live in.

Curriculum

Available on http://www.vub.ac.be/en/study/applied-sciences-and-engineering-applied-computer-science/programme

Admission requirements

Applicants should have at least a bachelor degree in one of the following areas:
- Engineering
- Mathematics
- Geography/Geology
- Biology/ Biochemistry/ Biotechnology/ Chemsitry
- Economics
- Physics
Students holding a Bachelor’s or Master's degree in another field of the exact sciences or engineering can also apply.

Read less
Life Sciences is one of the strategic research fields at the University of Helsinki. The multidisciplinary Master’s Programme in Life Science Informatics (LSI) integrates research excellence and research infrastructures in the Helsinki Institute of Life Sciences (HiLIFE). Read more
Life Sciences is one of the strategic research fields at the University of Helsinki. The multidisciplinary Master’s Programme in Life Science Informatics (LSI) integrates research excellence and research infrastructures in the Helsinki Institute of Life Sciences (HiLIFE). As a student, you will gain access to active research communities on three campuses: Kumpula, Viikki, and Meilahti. The unique combination of study opportunities tailored from the offering of the three campuses provides an attractive educational profile. The LSI programme is designed for students with a background in mathematics, computer science and statistics, as well as for students with these disciplines as a minor in their bachelor’s degree, with their major being, for example, ecology, evolutionary biology or genetics.

As a graduate of the LSI programme you will:
-Have first class knowledge and capabilities for a career in life science research and in expert duties in the public and private sectors.
-Competence to work as a member of a group of experts.
-Have understanding of the regulatory and ethical aspects of scientific research.
-Have excellent communication and interpersonal skills for employment in an international and interdisciplinary professional setting.
-Understand the general principles of mathematical modelling, computational, probabilistic and statistical analysis of biological data, and be an expert in one specific specialisation area of the LSI programme.
-Understand the logical reasoning behind experimental sciences and be able to critically assess research-based information.
-Have mastered scientific research, making systematic use of investigation or experimentation to discover new knowledge.
-Have the ability to report results in a clear and understandable manner for different target groups.
-Have good opportunities to continue your studies for a doctoral degree.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The Life Science Informatics Master’s Programme has six specialisation areas, each anchored in its own research group or groups.

Algorithmic Bioinformatics
Goes with the Genome-scale algorithmics, Combinatorial Pattern Matching, and Practical Algorithms and Data Structures on Strings research groups. This specialisation area educates you to be an algorithm expert who can turn biological questions into appropriate challenges for computational data analysis. In addition to the tailored algorithm studies for analysing molecular biology measurement data, the curriculum includes general algorithm and machine learning studies offered by the Master's Programmes in Computer Science and Data Science.

Applied Bioinformatics
Jointly with The Institute of Biotechnology and genetics. Bioinformatics has become an integral part of biological research, where innovative computational approaches are often required to achieve high-impact findings in an increasingly data-dense environment. Studies in applied bioinformatics prepare you for a post as a bioinformatics expert in a genomics research lab, working with processing, analysing and interpreting Next-Generation Sequencing (NGS) data, and working with integrated analysis of genomic and other biological data, and population genetics.

Biomathematics
With the Biomathematics research group, focusing on mathematical modelling and analysis of biological phenomena and processes. The research covers a wide spectrum of topics ranging from problems at the molecular level to the structure of populations. To tackle these problems, the research group uses a variety of modelling approaches, most importantly ordinary and partial differential equations, integral equations and stochastic processes. A successful analysis of the models requires the study of pure research in, for instance, the theory of infinite dimensional dynamical systems; such research is also carried out by the group.

Biostatistics and Bioinformatics
Offered jointly by the statistics curriculum, the Master´s Programme in Mathematics and Statistics and the research groups Statistical and Translational Genetics, Computational Genomics and Computational Systems Medicine in FIMM. Topics and themes include statistical, especially Bayesian methodologies for the life sciences, with research focusing on modelling and analysis of biological phenomena and processes. The research covers a wide spectrum of collaborative topics in various biomedical disciplines. In particular, research and teaching address questions of population genetics, phylogenetic inference, genome-wide association studies and epidemiology of complex diseases.

Eco-evolutionary Informatics
With ecology and evolutionary biology, in which several researchers and teachers have a background in mathematics, statistics and computer science. Ecology studies the distribution and abundance of species, and their interactions with other species and the environment. Evolutionary biology studies processes supporting biodiversity on different levels from genes to populations and ecosystems. These sciences have a key role in responding to global environmental challenges. Mathematical and statistical modelling, computer science and bioinformatics have an important role in research and teaching.

Systems Biology and Medicine
With the Genome-scale Biology Research Program in Biomedicum. The focus is to understand and find effective means to overcome drug resistance in cancers. The approach is to use systems biology, i.e., integration of large and complex molecular and clinical data (big data) from cancer patients with computational methods and wet lab experiments, to identify efficient patient-specific therapeutic targets. Particular interest is focused on developing and applying machine learning based methods that enable integration of various types of molecular data (DNA, RNA, proteomics, etc.) to clinical information.

Selection of the Major

During the first Autumn semester, each specialisation area gives you an introductory course. At the beginning of the Spring semester you are assumed to have decided your study direction.

Programme Structure

Studies amount to 120 credits (ECTS), which can be completed in two years according to a personal study plan.
-60 credits of advanced studies from the specialisation area, including a Master’s thesis, 30 credits.
-60 credits of other studies chosen from the programme or from other programmes (e.g. computer science, mathematics and statistics, genetics, ecology and evolutionary biology).

Internationalization

The Life Science Informatics MSc is an international programme, with international students and an international research environment. The researchers and professors in the programme are internationally recognized for their research. A significant fraction of the teaching and research staff is international.

As a student you can participate in an international student exchange programme, which offers the possibility to include international experience as part of your degree. Life Science Informatics itself is an international field and graduates can find employment in any country.

In the programme, all courses are given in English. Although the Helsinki region is very international and English is widely spoken, you can also take courses to learn Finnish via the University of Helsinki’s Language Centre’s Finnish courses. The Language Centre also offers an extensive programme of foreign language courses for those interested in learning new languages.

Read less
Our MSc Applied Bioscience course will develop your skills within several major areas of applied bioscience, including molecular cell biology, biomedical genetics and specialised topics in medical diagnostics. Read more
Our MSc Applied Bioscience course will develop your skills within several major areas of applied bioscience, including molecular cell biology, biomedical genetics and specialised topics in medical diagnostics. You'll focus on the rapidly evolving research into the applications of bioscience in healthcare, to diagnose and treat diseases. You'll also develop a comprehensive and critical understanding of the theory and practice of advanced analytical techniques as used and applied in bioscience.

Throughout our course you'll develop advanced knowledge and skills in the diverse areas of applied bioscience, emphasising on medical applications. Upon completion you'll be able to confidently design, execute and critically analyse both independent and group based scientific research in an appropriate area of applied bioscience.

You'll be immersed in an environment that mirrors a modern laboratory setting and benefit from the expertise of our Biomedical Science team and their intimate knowledge and collaborations within the field of bioscience. Using our purpose-built laboratory facilities, you'll be in the heart of our rapidly evolving scientific environment.

Our course is suitable for candidates who wish to specialise in the current medical applications of bioscience such as molecular and cell biology as a progression from a relevant first degree and for candidates with a strong background in ‘traditional’ analytical science (chemistry or biology).

Careers

Healthcare is a rapidly growing and constantly evolving sector. MSc Applied Bioscience course encourages the development of specialist cross-disciplinary laboratory skills, such as molecular genetics and bioinformatics, accompanied by an emphasis on professional practice. Graduates from the MSc Applied Bioscience course will have training to progress into a wide range of careers within the sciences, including industry and academic research, clinical trials, product development, production and quality assurance.

Cambridge is the home of the Wellcome Trust Sanger Institute, the Biomedical Campus at Addenbrooke's Hospital and the Babraham Research Institute. Throughout the course, you will have the opportunity to attend seminars or events with Cambridge’s many local biotechnology companies. Graduates from the course are also in the perfect position to continue an academic career and move up to our Biomedical Science PhD.

MSc Applied Bioscience is the right course for you if you:
•Want to develop a wide array of practical and conceptual scientific skills which are vital for a career in Biosciences
•Find the biosciences fascinating and want to deepen your understanding of the applications in healthcare
•Are interested in pursuing a career in research – either academic, clinical or industrial

Core modules

Molecular Genetics and Bioinformatics
Modern Medical Diagnostics
Research Methods and Preparation
Laboratory Techniques in Bioscience
Professional and Ethical Practice
Major Project

Assessment

We use a range of assessment methods to enable both you and the university to check your progress during your studies and then to ensure that you meet the required standards when you complete the course.

Although they vary, our assessment strategies are all carefully designed to challenge you so that you expand your critical and analytical thinking as well as your problem-solving skills. The assessments will enable you to demonstrate that you can synthesise existing knowledge and accumulate new knowledge, and will evidence the development of your professional practice. Some examples of assessment include poster and oral presentations, essays and portfolios of evidence. In addition, you will undertake practicals in many of the modules, developing your technical laboratory skills.

Please note that you will need to complete all of the above core modules. This course does not have any optional modules.

Your faculty

The Faculty of Science & Technology is one of the largest of five faculties at Anglia Ruskin University. Whether you choose to study with us full- or part-time, on campus or at a distance, there’s an option whatever your level – from a foundation degree, to a BSc, MSc, PhD or professional doctorate.

Whichever course you pick, you’ll gain the theory and practical skills needed to progress with confidence. Join us and you could find yourself learning in the very latest laboratories or on field trips or work placements with well-known and respected companies. You may even have the opportunity to study abroad.

Everything we do in the faculty has a singular purpose: to provide a world-class environment to create, share and advance knowledge in science and technology fields. This is key to all of our futures.

Read less
The MSc in Applied Biosciences and Biotechnology aims to. To equip graduates to pursue careers in bioscience and biotechnology either in industry or academic research. Read more
The MSc in Applied Biosciences and Biotechnology aims to:

• To equip graduates to pursue careers in bioscience and biotechnology either in industry or academic research.
• Produce graduates with an in-depth understanding of the core principles and methodologies underlying current biotechnological research.
• To enable students to develop the transferable qualities and skills required for employment or research in the biosciences sector.
• Produce bioscience graduates with training in relevant business and entrepreneurial skills.
• Provide a training in laboratory and research skills.
• Meet the global need for graduates who can successfully contribute to the rapidly developing industrial biotechnology sector.

The biotechnology sector has grown rapidly in recent years and there are increasing career opportunities worldwide for experienced graduates who have been trained in advanced molecular bioscience, systems biology and ‘omics’ technologies, together with exposure to entrepreneurship and innovation. Demand for these skills is predicted to increase sharply over the next decade due to investment in the “green economy”, notably in the areas of bioenergy and industrial biotechnology. Moreover glycoprotein biopharmaceuticals comprise an increasing proportion of new drugs and their development, manufacture and quality control demands interdisciplinary skills in applied biosciences and biotechnology which can only be gained via advanced training at postgraduate level.

Degree structure
The course is comprised of three parts: a taught component, a tutored dissertation, which includes a mini-conference, and a research component. The taught component in weeks 1-30 will include lectures, seminars, computer practicals and tutorials. Computer based practicals will be held throughout weeks 1-14. The dissertation will be carried out in weeks 31-35. A full time laboratory based research project will be carried out from week 36 to 52.

Weeks 1-15: Induction week followed by courses in Biochemistry, Molecular Cell Biology, Bioinformatics, Systems Biology and Statistics which introduce students to the fundamental concepts of modern biology, including cell biology, genomics, proteomics, experimental techniques and data handling. Assessment will be through a written examination in week 15.
Weeks 16-30: All students attend two modules comprising advanced lectures in applied bioscience and biotechnology encompassing: industrial biotechnology, glycol-technology, structural biology, cellular damage, repair and ageing, genes and genomics, infection and immunity, stem cells and regenerative medicine, neurobiology in health and disease, integrative systems biology and synthetic biology. Additional seminars and workshops will introduce students to innovation and entrepreneurship. All students will attend weekly seminars from invited external speakers from industry and the public sector. Assessment will be through two written examinations in week 30.
Weeks 31-35: Students will undertake a full-time tutored dissertation followed by a mini-conference.
Weeks 36-52: Students will undertake full-time individual projects in the research laboratories of the Department of Life Sciences.

Please see course webpage on the Imperial website for further information: http://www.imperial.ac.uk/life-sciences/postgraduate/masters-courses/msc-in-applied-biosciences-and-biotechnology/

Read less
Centauri Therapeutics Ltd, in partnership with the School of Human and Life Sciences at Christchurch University is offering a MRes studentship in the area of Bioinformatics and SELEX technologies. Read more
Centauri Therapeutics Ltd, in partnership with the School of Human and Life Sciences at Christchurch University is offering a MRes studentship in the area of Bioinformatics and SELEX technologies.
Systematic Evolution of Ligands by Exponential Enrichment (SELEX) enables the enrichment of oligonucleotide aptamers from highly diverse libraries of unique sequences. Nucleic acid aptamers are short, single-stranded oligonucleotides that form three-dimensional structures capable of high affinity binding to specific targets. High-affinity aptamers have been identified against a broad range of proteins, carbohydrates and small molecules. NGS technology and sophisticated bioinformatics analyses are applied to SELEX campaigns with the aim of early identification of aptamer families. The project will focus on the identification of novel aptamers to microbial targets. Bioinformatic analyses will be applied to understand and direct the outputs from SELEX screening campaigns.
Centauri Therapeutics is a UK-based biotechnology company focused on the discovery and development of novel molecules targeting life threatening diseases. We are interested in the application of SELEX technology to the identification of therapeutic aptamers. We are looking for highly-motivated and talented people who are about to complete, or have recently completed, their degree-level studies. Candidates must show enthusiasm and aptitude for bioinformatics (ideally with Unix/programming experience) alongside molecular and cellular biology laboratory research. The student will predominantly be based at Discovery Park, Sandwich but will also spend time at the Canterbury Campus of Christchurch University.
The studentships provide for UK/EU tuition fees and stipend, and are available from September 2016. Applicants should have a Molecular Biology or related degree, and in the first instance should submit an application letter and CV to Samit Kundu (CCCU, ) and Helen Lavender (Centauri Therapeutics, ) at the earliest opportunity. Applications will be considered on a continuing basis until the post is filled.

Read less
Designed to develop the key skills of a bioinformatics in computer science graduates or talented graduates of life science based subjects the MSc Computational Bioinformatics course is the ideal route into a career in this developing area of science. Read more
Designed to develop the key skills of a bioinformatics in computer science graduates or talented graduates of life science based subjects the MSc Computational Bioinformatics course is the ideal route into a career in this developing area of science.

Bioinformatics is fundamental to the future development of biological science and is a rapidly developing area.

The University of Wolverhampton has a highly successful Brain Tumour UK neuro-oncology research centre and this course is designed to integrate with research in this area to show applications of bioinformatics to medicine.

The course covers key areas of information retrieval, creation and advancement of databases, algorithms, computational and statistical techniques to solve the practical problems of handling experimental data.

We offer an introduction to the genetic basis of oncology and disease to enable you to understand the needs of medical research scientists.

The course has both group and individual research projects to develop professional skills for a future successful career.

Read less
Develop skills in programming, statistical modeling, and other areas of computer science to help you analyze and interpret complex biological data. Read more
Develop skills in programming, statistical modeling, and other areas of computer science to help you analyze and interpret complex biological data. Through the graduate program in bioinformatics, you’ll learn to blend expertise in computational and biological sciences, leading to a deeper understanding in areas like genomics, diseases, and drug discovery.

KEY LEARNING OUTCOMES

Through the master's degree in the field of bioinformatics, you:
-Gain an understanding of applied learning in related computer science subjects, including programming languages, statistical modeling, visualization, databases, and algorithms.
-Develop skills in scientific practice, including experimental or case study design, scientific data analysis, writing and communication, ethics, and effective collaboration.
-Build a foundation in life science theory as it relates to biotechnology.

PROGRAM OVERVIEW

The master’s degree includes nine courses—at least four taken on campus—and a thesis or internship.

-Get started. You begin by completing three admission courses from the program curriculum. This is your opportunity to demonstrate your commitment and ability to perform well as a Harvard student.
-Apply to the program. While completing your third admission course, you submit your application. We have application periods in the fall, spring, and summer.
-Continue your studies, online and on campus. As you progress through the program, you choose from courses offered on campus or online, in the fall, spring, or summer. You are required take at least four courses on campus as part of your degree.
-Complete your thesis or internship. If you choose the thesis option, you work with a thesis director to conduct in-depth research on a topic relevant to your work experience or academic interests, producing publishable quality results. You’ll emerge with a solid understanding of how scientific research is executed and communicated. For the internship, you have the opportunity to apply your knowledge of quantitative analysis and computational design to solve a biological problem, either with your current or potential employer.
-Graduate with your Harvard degree. You participate in the annual Harvard Commencement, receiving your Harvard University degree: Master of Liberal Arts (ALM) in extension studies, field: Bioinformatics.

COST

Affordability is core to our mission. Our 2016–17 graduate tuition is $2,550 per course; the total tuition cost of earning the graduate degree is approximately $25,500.

FINANCIAL SERVICES

The Student Financial Services staff can assist you in identifying funds that will help you meet the costs of your education. You can find more information here: http://www.extension.harvard.edu/tuition-enrollment/financial-aid

Read less
The Department of Mathematical Sciences offers a professionally oriented Master’s of Arts degree program in applied statistics. The lively and versatile curriculum focuses on training that is applicable in the real world, and the program aims to prepare skillful statisticians for professional careers in industry. Read more
The Department of Mathematical Sciences offers a professionally oriented Master’s of Arts degree program in applied statistics. The lively and versatile curriculum focuses on training that is applicable in the real world, and the program aims to prepare skillful statisticians for professional careers in industry. The track includes an integral lab component that emphasizes the practice of contemporary data analysis and exposes students to methods, software and theory commonly used in applications of statistics.

The MA is designed to provide students with a solid foundation of practical knowledge to work with applied statistics in depth, for future careers in the public and private sectors as statistical scientists, consultants and engineers to manage and analyze data. The program requires courses specific to the area of applied statistics, and the student is required to finish 10 courses and two 1-credit capstone seminars for a total of 42 credits. An exit exam or final thesis is not required.

Driven by the ever-greater reliance of businesses and governments on data, the demand for professionals with strong quantitative analytical skills is now higher than ever. Program graduates will be trained to pursue careers in a variety of fields that require data-crunching and quantitative analysis. Well-trained statisticians and data scientists are employed in the following roles in a wide spectrum of industries:
◾statistical consultants
◾risk managers
◾insurance actuaries
◾quants (and traders)
◾production/manufacturing quality control managers
◾market researchers
◾sports statisticians
◾economists
◾biomedical, biometrics, and bioinformatics researchers
◾sociology researchers
◾psychology researchers
◾biostatisticians in pharmaceutical industry
◾government statisticians (census)

All applicants must submit the following:

- Online graduate degree application and application fee
- Transcripts from each college/university which you attended
- Three letters of recommendation
- Personal statement (2-3 pages) describing your reasons for pursuing graduate study, your career aspirations, your special interests within your field, and any unusual features of your background that might need explanation or be of interest to your program's admissions committee
- Resume or Curriculum Vitae (max. 2 pages)
- Official GRE scores

And, for international applicants:
- International Student Financial Statement form
- Official bank statement/proof of support
- Official TOEFL, IELTS, or PTE Academic scores

Read less
This course is for biosciences graduates looking to open up a route into industry, and for practising professionals seeking to widen their experience and qualifications, and extend their knowledge of applied molecular biology/bioinformatics. Read more
This course is for biosciences graduates looking to open up a route into industry, and for practising professionals seeking to widen their experience and qualifications, and extend their knowledge of applied molecular biology/bioinformatics.

It provides a sound understanding of the subject’s key principles, as well as how these can be effectively applied to a wide range of industrial and environmental applications.

You will benefit from working with excellent technology and research equipment in our state-of-the-art laboratories, and you also receive a thorough grounding in the necessary computing skills needed to access important online databases, such as the human genome.

You will be challenged to look to the frontiers of (and even beyond) current thinking in the subject, and to be aware of how your studies impact on your future career/professional role.

To complement this, you will gain essential intellectual and transferable skills such as independent planning, hypothesis formulation and testing, and the importance of originality.

Read less
Today's society faces the challenge of providing high-quality, patient-centred, sustainable and affordable healthcare, in an environment of increased demand and scarce resources. Read more
Today's society faces the challenge of providing high-quality, patient-centred, sustainable and affordable healthcare, in an environment of increased demand and scarce resources. The Health Informatics MSc at UCL aims to form future leaders who will address this challenge, transforming healthcare delivery through the use of information and communication technologies.

Degree information

Our graduates are professionals able to effectively engage with clinicians, managers, patients and policymakers, with the necessary skills and tools to harness healthcare information for improving clinical practice and service delivery. They possess the knowledge about healthcare problems, the concepts used to analyse them and the principles that govern the successful engineering, application and evaluation of solutions.

Students undertake modules to the value of 180 credits.

The programme consists of one core module (15 credits), seven optional modules (105 credits) and a research project (60 credits). A Postgraduate Diploma (120 credits, flexible study 2-5 years) is offered. A Postgraduate Certificate (60 credits, flexible study over a period of two years) is offered.

Core modules
-Principles of Health Informatics

Optional modules
-Research Methods in Healthcare
-Information Systems in Healthcare
-Shared Care and Electronic Health Records
-Patient Safety and Clinical Risk
-Clinical Knowledge and Decision Making
-eHealth: Patients and the Internet
-Information Law and Governance in Clinical Practice
-Healthcare Quality and Evidence Based Practice
-Using Information in Healthcare Management
-Principles of Health Data Science*
-Data Methods for Health Research*
-Machine Learning in Healthcare & Biomedicine*
-*Full-time MSc students have option to share Data Science for Research in Health & Biomedicine modules

Dissertation/report
All MSc students undertake an independent research project, normally based at their place of work, which culminates in a piece of work written in the style of a journal article.

Teaching and learning
The programme is taught by 'blended learning', and therefore includes interactive online teaching and face-to-face lectures, seminars and workshops including substantial use of examples of real clinical systems. Assessment is through examination, critical evaluations, technical tasks, coursework and project reports, compulsory programming and database assignments, and the dissertation.

Careers

Health Informatics is a subject of growing importance, with exciting career development prospects for clinicians, managers, administrators and technologists.

Destinations of recent graduates of the programme include:
-Cancer Partners UK, IT Director
-CM Chemicals, Product Specialist
-NHS, Data Manager

Top career destinations for this degree:
-Infomation Analyst, NHS Royal Marsden Hospital
-Senior Clinical Analyst, Harris Corporation
-Deputy Information Manager, South West London and St George's Mental Health NHS Trust
-Project Manager, Health & Social Care Information Centre (HSCIC)
-Implementation Consultant / Projec Manager, Stalis

Why study this degree at UCL?

The MSc in Health Informatics at UCL is taught by a team of specialists within the UCL Institute of Health Informatics, and understanding how information technologies can be harnessed for improving the delivery of care is central to their academic mission. UCL is at the centre of a vast network of clinical collaborators and houses probably the largest concentration of health informatics expertise in the UK.

The institute conducts world-leading research and our teaching, which is research based, focuses on areas such as electronic healthcare records, decision support systems, consumer health informatics, and clinical and applied bioinformatics.

Read less
- check at. http://www.unipd.it/en/biotecnologie-alimentazione. http://www.unipd.it/en/how-apply. Instructions in English. http://www.unipd.it/en/educational-offer/second-cycle-degrees/school-of-agricultural-sciences-and-veterinary-medicine?ordinamento2011&keyIF0362. Read more

Admission Notice now available

- check at
http://www.unipd.it/en/biotecnologie-alimentazione
http://www.unipd.it/en/how-apply

Instructions in English:
http://www.unipd.it/en/educational-offer/second-cycle-degrees/school-of-agricultural-sciences-and-veterinary-medicine?ordinamento=2011&key=IF0362
.

Biotechnologies for Food Science

In the 2016-2017 academic year, the University of Padova inaugurated a new curriculum of the Master Degree “Biotechnology applied to Food Security and Nutrition” (Second Cycle Degree) entitled “Biotechnologies for Food Science " to be entirely taught in English.
The “Biotechnologies for Food Science " Master degree (MSc) is an interdisciplinary and research-oriented Master of Science Programme and explores how to produce healthier and safer food following a cross-cutting, farm/field-to-fork approach. It is focused on the application of advanced biotechnologies in food production and safety and it is the ideal trait-d’union between the requests of consumers, of producers in the agro-food sector and research applied to production and food-safety.
The course has a strong component on cutting-edge methods, such as genomics, bioinformatics, proteomics, metabolomics, nanotechnologies, all in the context of animal and crop production as well as food quality and safety. Theoretical lessons are mixed with practical training, offering hands-on experience in advanced DNA, RNA, and protein analysis together with substantial lab sessions in bioinformatics. Lectures will deal with food production, hygiene and quality, molecular methods of agro-food analyses, effects of agro-biotech products on human beings and environments. Moreover environmental stresses, disease mechanisms, pathogens and pests will be treated as essential to understand how to protect crop and farm animals and how food might impact on human health: the lectures move across animal infectious disease, immunology, microbiology, plant pests and pathogens as well as abiotic stresses to show how biotechnology might help preventing disease and improve food production. As consumers are increasingly worried about the presence of contaminants in food and on the real origin of what they eat; the Programme includes a course in food toxicology and regulation, and one on traceability for food authentication.
Our Programme is based at the Agripolis campus, where are located four departments of the School of Agriculture and Veterinary Medicine of the University of Padova, all of which contribute to the MSc course, offering the best opportunities for a rich, cross-disciplinary experience in a highly qualified scientific environment.

Who is the MSc candidate?

This programme is open to Italian and foreign students from the EU and abroad, interested in learning and implementing effective value-added practices for the production of high-quality food products both in the EU and in international markets. English knowledge must be minimum at B2 level (CEFR). Applying students might possibly have a three-year Bachelor’s degree in a field connected with the Master’s curriculum. Good background in molecular biology, biochemistry, and microbiology is requested.

How is the programme organised?

Biotechnologies for Food Science is a 2-year Master programme (120 ECTS, equivalent to a Master of Science). Requirements for graduation include courses and preparation and defense of the Master thesis. Students will be encouraged to spend a period of their studies abroad, through Erasmus+ or other local programmes and agreements. Financial support to meet part of the cost for thesis work is granted to best students.
Visit the MSc “Biotechnologies for Food Science” page on the Università di Padova web-site (http://www.unipd.it/en/biotecnologie-alimentazione) for more details.

Teaching methods

Teaching takes place in an international environment and includes lectures and laboratory activities, practical exercises and seminars by experts; opportunities for intensive tutoring and for master thesis-related stages of at least six months duration will be available with outstanding companies in the sector of the food industry or with other relevant organisations in the private or public sphere. The Programme assists students to find suitable internship opportunities with qualified laboratories in Italy and abroad.
Examinations are written or oral and assess students’ participation also through reports, presentations, and group work.

Course structure

During the two-years MSc course students attend the following 12 course units

Applied genomics for animal and crop improvement
Applied Bionformatics
Food Microbiology and Food Microbial Biotechnology
Molecular basis of disease, immunology, and transmissible diseases
Laboratory of advanced DNA, RNA, and protein analysis
Biotechnology for crop production
Epidemiology and risk analysis
Traceability tools for species authentication  
Advanced technologies for the agrifood sector (nanotechnologies, proteomics, metabolomics)
Biotechnology for plant protection
Food toxicology and food regulation
Foreign language (English)

First year
During the first year of the programme the student will acquire knowledge on animal and crop genomics, focusing on the most advanced methods for high throughput genomic analysis (transcriptomics, genome-wide SNP analysis, epigenomics) and on the most recent approaches for selective breeding (genomic selection, genomic prediction). In parallel, the student will learn how bioinformatics tools might be applied to manage large sets of data, how biological data bases are organized and how to link different types of data. Extensive practical training in bioinformatics will be offered with various sessions in a dedicated lab. Food-borne pathogens and the positive role of microorganisms in food processes will be examined in an integrated microbiology course, while the molecular basis of pathology, host-response to infection, epidemiology, and diagnostics of transmissible diseases will form the basis of two courses. A course on biotechnology for crop production will introduce the molecular and physiological basis of crop production. Biotechnological approaches to improve crop yield, with particular attention to fruit production, and to reduce impact of abiotic stresses will examined. Molecular tools for food traceability and an intensive practical lab in DNA/RNA/protein analysis applied to food control will conclude the first year.

Second year
In the second year, the first semester have three courses. One will focus on novel technologies (proteomics, metabolomics, nanotechnology) and their application to food production. A second one will extend knowledge on plant biotechnology exploring advanced technologies for crop disease and pest management. A third one will deal with contaminants in food and food legislation. The second semester is completely dedicated to lab internship. It is possible to join a research lab in the campus or to have a working stage in the private sector.
link to the Campus descriptions:
http://youtu.be/gR4qcWUXvGg

Read less
Our established programme in Biotechnology, which has been extensively updated, includes a wide range of modern molecular biology techniques and how biotechnology can be used by today's society. Read more
Our established programme in Biotechnology, which has been extensively updated, includes a wide range of modern molecular biology techniques and how biotechnology can be used by today's society. You will complement your theoretical studies with hands on experience of fully controlled fermenters that are up to pilot-plant scale, and are linked to modern monitoring and control systems.

You will study a range of subjects in considerable depth, including bioactive compounds, industrial bioprocesses, microbial physiology and fermentation technology, microbial production of novel metabolites, monitoring and control of fermentation, topics in biotechnology, and types of bioreactors.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-APPLIED MOLECULAR BIOLOGY
-FERMENTATION TECHNOLOGY
-INDUSTRIAL AND ENVIRONMENTAL BIOTECHNOLOGY
-POSTGRADUATE RESEARCH METHODS
-POSTGRADUATE PROJECT
-SCIENCE, TECHNOLOGY AND COMMERCIALISATION

Option modules
-COMMUNICATING SCIENCE
-EXTENDED POSTGRADUATE PROJECT
-MOLECULAR BIOINFORMATICS
-MOLECULAR AND CELLULAR THERAPEUTICS
-REGENERATIVE MEDICINE
-SYSTEMS BIOLOGY

Associated careers

The course is aimed at those aspiring to be researchers and managers in the biotechnology and pharmaceutical industries or other biosectors.

Read less
The JKU Master in Bioinformatics is a 2 years full-time program with 120 ECTS points. It is an interdisciplinary study with all courses in English. Read more
The JKU Master in Bioinformatics is a 2 years full-time program with 120 ECTS points. It is an interdisciplinary study with all courses in English. The first semester is a transitional phase of bridge modules that prepares students from various fields for the following courses according to their prior education.

JKU is a vibrant place to study and a premier institution for research. It is among the top young universities in Europe and has a strong commitment to fundamental and applied research.

Visit us on Facebook: https://www.facebook.com/StudyBioinformatics

Read less

Show 10 15 30 per page



Cookie Policy    X