• Loughborough University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Ulster University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Queen Mary University of London Featured Masters Courses
  • Loughborough University London Featured Masters Courses
Cranfield University Featured Masters Courses
University of Worcester Featured Masters Courses
FindA University Ltd Featured Masters Courses
University of Reading Featured Masters Courses
Bath Spa University Featured Masters Courses
"ancient" AND "dna"×
0 miles

Masters Degrees (Ancient Dna)

  • "ancient" AND "dna" ×
  • clear all
Showing 1 to 6 of 6
Order by 
This Masters course will open the door to a fascinating and fast-moving sector of analytical science that will build on your previous undergraduate studies, in chemistry, biology or other appropriate science courses. Read more
This Masters course will open the door to a fascinating and fast-moving sector of analytical science that will build on your previous undergraduate studies, in chemistry, biology or other appropriate science courses. You will gain knowledge and scientific skills that are directly applicable to the field of forensic science, with prospects of employment in forensic science laboratories as well as in other analytical science laboratories.

The course involves a unique combination of forensic chemistry and forensic biology, covering subjects such as trace evidence, toxicology and DNA analysis. Once you have covered the underlying principles of both areas, you can then specialise in your chosen field for your MSc research project.

The course is accredited by the Chartered Society of Forensic Sciences, which enhances its credibility and currency among potential employers.

This course can also be taken part time - for more information, please view this web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/forensic-science-dtpfrs6/

Learn From The Best

Our teaching team are active researchers who routinely incorporate their expertise and enthusiasm into their teaching. Many of the staff have worked in forensic science laboratories and have been involved in high profile cases such as the Stephen Lawrence, Joanna Yeates, Suffolk strangler and Jigsaw murder cases. Their areas of research include toxicology, the analysis of fibres and their transfer and persistence and the analysis of ancient DNA.

Academic staff include former forensic biologists, forensic toxicologists, and forensic fibre experts. They continue to maintain close links with the industry including the police and practising forensic scientists. Many of them are well-established within professional forensic science societies and organisations, which directly inform policy and practices within the field.

Teaching And Assessment

Our teaching will give you a solid grounding in all the technical areas that are key to forensic science, while simultaneously developing the higher level of independent thinking and advanced interpretation that is expected at Masters level. To support your learning journey, many of the staff have an ‘open door’ policy which makes it easy to ask questions; it’s also possible to book appointments with them so that you can work through queries about lab work, concepts and theories, and any other aspects of the subject.

We use different types of assessments: some will contribute to your final grade while others will be used to provide you with guidance on your progress and reinforce your learning. You can expect both your tutors and your peers to provide useful comments and feedback throughout the course.

Module Overview
AP0700 - Graduate Science Research Methods (Core, 20 Credits)
AP0703 - Subject Exploration (Core, 20 Credits)
AP0708 - Applied Sciences Research Project (Core, 60 Credits)
AP0723 - Practices & Procedures in Forensic Science (Core, 20 Credits)
AP0724 - Forensic Toxicology & Drugs of Abuse (Core, 20 Credits)
AP0725 - Criminalistics (Core, 20 Credits)
AP0726 - Forensic Genetics (Core, 20 Credits)

Learning Environment

You will have access to a dedicated crime scene house to enable you to examine simulated crime scenes. Students can also access Return to Scene (R2S) software which provides a 360 degree interactive scan of a crime scene allowing you to perform further analysis in detail after you have left the scene. Northumbria University has also invested heavily in an impressive suite of analytical equipment allowing you to gain first-hand experience of the techniques used in operational laboratories.

We use a range of technologies to enhance your learning, with tools including web-based self-guided exercises, online tests with feedback, and electronic discussion boards. These tools support and extend the material that is delivered during lectures.

You will have 24/7 term-time access to Northumbria’s library, which was ranked #2 in the Times Higher Education Student Experience Survey for 2015 and has been accredited by the UK Government for Customer Service Excellence since 2010.

Research-Rich Learning

We host the Northumbria University Centre for Forensic Science and our research directly impacts on what and how you learn. Northumbria is helping to push the frontiers of knowledge in areas such as:
-Forensic fibre comparisons using statistical and chemometric approaches
-DNA profiling in contexts such as injuries to children and poaching of wildlife
-Human genetic and phenotypic variation
-Analytical toxicology

As part of the course, you will undertake a Masters project that will require you to evaluate relevant literature as well as to develop your ideas within the context of existing research. The project will involve information retrieval, critical appraisal, presentation of aims and strategy, development of advanced analytical and problem-solving skills, the discussion and interpretation of results, and the composition of a written dissertation. Each project will be aligned to an active area of research that is specific to an academic member of staff.

Give Your Career An Edge

This course is accredited by the Chartered Society of Forensic Sciences. This reflects the relevance and rigour of the curriculum, and provides assurance of workplace-ready knowledge and application.

The focus on practical laboratory work, combined with the mix of group work, independent learning and professional practice, will help ensure that you develop skills that are transferable to a range of careers and disciplines.

Throughout your time at Northumbria we will prompt you to reflect on your self-development through the Higher Education Achievement Report process. We will also encourage you to take advantage of the services of our Careers and Employment Service such as CV advice and interview preparation.

Your Future

Forensic science has gained a high profile through TV dramas and, in the years ahead the sector is likely to be further transformed by technological advances in a number of fields. With an MSc Forensic Science you will be well-placed to take up a fascinating and rewarding role in forensic science laboratories.

What’s more, by developing the attributes of a Masters student, including the ability to solve complex problems, think critically, and work effectively with others and on your own, you will enhance your employability in all sectors of the analytical science industry. You will also be well equipped to pursue further studies at PhD level.

Read less
Medical Life Sciences is an English-taught two-year Master’s programme in molecular disease research and bridges the gap between the sciences and medical studies. Read more
Medical Life Sciences is an English-taught two-year Master’s programme in molecular disease research and bridges the gap between the sciences and medical studies. You will get to know clinical research from scratch; you will learn how to investigate diseases/disease mechanisms both in ancient and contemporary populations, how to translate research results into prevention, diagnosis and therapies of diseases.
From the basics of medical science to lab experiments for the Master’s thesis, individual scientific training takes first priority. Experimental work in state-of-the-art research labs is essential in Medical Life Sciences; clinical internships, data analysis, lectures, seminars and electives complement the Medical Life Sciences curriculum.
Evolutionary biology will train you in thinking from cause to consequence. Molecular paleopathology and ancient DNA research tell you a lot about disease through human history. These insights help to fight disease today, which is why evolutionary medicine is becoming a cutting-edge research field. Whether you want to focus on ancient populations and paleopathology or on specific disease indications nowadays, here you get the tools and skills to do both.
To lay the foundation for working in medical research, Medical Life Sciences includes courses on clinical manifestations of diseases, molecular pathology and immunology. Hands-on courses in molecular biology, bioinformatics, clinical cell biology, medical statistics, and human genetics broaden your knowledge and make the interfaces between medicine and the sciences visible. You will learn how to acquire knowledge, verify and use it.. That biomedicine has many facets to discover is the great thing that keeps students fascinated and well-equipped for finding a job in academia or the industry.

Focus Areas

From the second semester, you additionally specialise in one of the following focus areas:

INFLAMMATION takes you deep into the molecular mechanisms of chronic inflammatory diseases, the causal network between inflammatory processes and disease, genetics and environment. New research results for prevention, diagnosis and therapy will be presented and discussed. An internship in specialised clinics helps to see how “bed to bench side”, i.e. translational medicine, works.

EVOLUTIONARY MEDICINE looks at how interrelations between humans and their environment have led to current disease susceptibility. Why do we suffer from chronic diseases such as diabetes, heart disease and obesity? Is our lifestyle making us sick? Why are certain genetic variants maintained in populations despite their disease risk? Evolutionary medicine focuses on bridging the gap between evolutionary biology and medicine by considering the evolutionary origins of common diseases to help find new biomedical approaches for preventing and treating them.

ONCOLOGY delves deep into molecular research on malignant diseases, the interplay of genetics and environment, cell biology of tumours, and many other aspects. You will achieve a better understanding of unresolved problems and opportunities of current research approaches.

LONGEVITY focuses on molecular mechanisms that seem to counteract the detrimental effect of ageing. The disease resilience and metabolic stability of extraordinarily fit people well over 90 years of age are of special interest. This research is complemented by experiments on model organisms. You will also look at the molecular pathways of ageing, and which role genes and the environment play. How the intricate web of counteracting effects triggering ageing and/or longevity works stands as the central focus of this area.

Scientists and clinicians will make you familiar with these topics in lectures and seminars. You will discuss different research approaches, perspectives and the latest developments in medical research. Lab practicals in state-of-the-art research labs, a lab project, and the experimental Master's thesis will provide ample opportunity to be involved in real-time research projects.

Electives

To widen your perspective, you choose one of three electives designed to complement the focus areas. The schedules are designed so that you can take part in more than one elective if places are available. Tracing Disease through Time looks at disease etiology by analysing biomolecules, diets and pathogens in archaeological specimens. You may opt for Epidemiology to immerse yourself in epidemiological approaches with special emphasis on cardiovascular diseases, one of the greatest health threats in modern societies. Another option is Molecular Imaging, which gives you insight into the world of high-tech imaging in medical research.

Additional electives such as Neurology, Tissue Engineering or Epithelial Barrier Functions and Soft Skills courses such as Project Management, Career Orientation and English Scientific Writing are integrated into the curriculum.

Read less
Study at the frontiers of archaeological science. Like a handful of comparable courses, the York MSc in Bioarchaeology provides training in the advanced osteoarchaeological analysis of skeletal remains. Read more
Study at the frontiers of archaeological science

Why choose this course?

Like a handful of comparable courses, the York MSc in Bioarchaeology provides training in the advanced osteoarchaeological analysis of skeletal remains. Uniquely, however, it is the only course in the UK to combine this discipline with the molecular analysis of human remains. Nowhere else can you immerse yourself in the study of stable isotopes, lipid residue analysis, palaeoproteomics and ancient DNA – and play an active role in the development of new techniques in this constantly evolving branch of archaeology. In 2014, seven of the top 100 discoveries in science were in archaeology, and BioArCh staff were involved in three of these.
-Advanced training in human osteoarchaeology, delivered by the UK’s leading practitioners
-Study ancient biomolecules in world-class facilities at the BioArch centre and Department of Biology
-Unique opportunity to combine bioarchaeology with complementary subjects and tailor a course to suit your interests
-Access an incredible range of in-house analytical equipment
-Take part in cutting-edge science and build essential practical skills
-Work alongside leading researchers and academics in a diverse range of specialisms
-Work on diverse material that is often ‘fresh out of the ground’ and make valuable contributions to live projects Receive career and research guidance from staff with significant experience in the sector and a track record of successfully placing PhD students

What does the course cover?

Through a combination of academic studies, practical training and dissertation research, this course provides a thorough grounding in all aspects of bioarchaeology theory, investigation and practice.

Uniquely, you can combine bioarchaeology with a range of subjects and tailor your degree to your own interests. You could adopt a ‘period’ focus, for example, to specialise in the bioarchaeology of the Medieval, Viking, Mesolithic or early prehistoric periods. You could combine human bioarchaeology with zooarchaeology and orientate your course towards more advanced studies of bone function and anatomy. Or you could focus on skills such as GIS modelling and field archaeology.

Who is it for?

This course is designed for students with a passionate interest in the future of archaeology, who want to work at the frontiers of archaeological science. The degree is primarily aimed at those whose previous experience is in archaeology, anthropology, biology or related fields, but we do accept students from diverse backgrounds. The common factor among our student intake is a keen interest in science and in human remains at a biomolecular or bone level.

What can it lead to?

Molecular analysis is used increasingly widely in archaeology, but the range of osteological and molecular skills offered by the course provide valuable training and expertise for a wide range of careers and further study.

Many students go on to take PhDs at York and other institutions around the world. Others pursue a wide range of professional careers, from osteoarchaeology and environmental archaeology to the medical humanities and laboratory technician work.

Careers

By the end of the MSc Bioarchaeology course you will be able to:
-Identify and record human bone assemblages
-Age, sex and assess pathologies from human bones
-Understand advanced methods for analysing bone tissues, including biomolecular methods
-Apply chemical and biomolecular methods to skeletal material
-Understand the processes of decay and diagenesis of bone tissue
-Critically evaluate published research and datasets
-Orally present knowledge and concepts
-Work effectively within a laboratory environment
-Plan, design and undertake a piece of independent research

These skills and techniques are deployed widely in the field of archaeological research and exploration, but they are also valuable for a wide range of careers and further studies.

Many our MSc Bioarchaeology postgraduates go on to further research in bioarchaeological and environmental fields. The BioArch department has a successful track record of placing students on PhD courses in York and institutions worldwide.

Here’s a selection of the career and research destinations of some of our recent students: US graduate school programmes
-Archaeological field units
-Environmental archaeology
-Professional archaeologists – field and laboratory based
-Laboratory technicians
-Demonstrators
-University/research technicians
-Academia
-On-site osteoarchaeologists
-Medical humanities

Read less
Study at the world centre for Mesolithic research. The University of York is the only place in the world where you can study a Masters programme Mesolithic archaeology. Read more
Study at the world centre for Mesolithic research

Why choose this course?

The University of York is the only place in the world where you can study a Masters programme Mesolithic archaeology. Mesolithic studies have gathered huge momentum in recent years, with academics at York leading the way in uncovering significant new evidence on sites such as Howick and the internationally renowned Star Carr – not far from York.

The lack of detailed study into the Mesolithic period means there is a huge amount waiting to be discovered. Almost any project investigating the period is sure to uncover something new and previously unknown. That gives our students an incredible opportunity to become leading specialists in the period, and to get involved in truly pioneering projects.
-Study in the globally recognised centre for Mesolithic archaeology
-Make new discoveries in this under-researched field of study
-Get involved in globally significant Mesolithic field projects
-Gain ‘hands-on’ experience of experimental archaeology at our Mesolithic camp
-Work alongside world leaders conducting pioneering research
-Learn about cutting-edge techniques, such as ancient DNA and stable isotope analysis and climate-change reconstruction
-Receive career and research guidance from experienced and knowledgeable staff

What does the course cover?
The MA in Mesolithic Studies provides an important review of the European Mesolithic, exploring the ways in which the period has been interpreted from the 19th century, up to the present day. It also explores key topics such as technology, consumption practices, death and burial, plants and animals, and settlement, drawing on the research carried out in the department.

Students have the opportunity to get involved in one of several Mesolithic excavation projects, including nearby Star Carr, site of the oldest house and oldest carpentry in Europe, Howick in Northumberland, and coastal shell middens in Europe, all of which have featured on TV and in the media.

Who is it for?
This course is suitable for graduates of archaeology, anthropology, biology or related fields, as well as for people with relevant experience or enthusiasm for the subject.

What can it lead to?
This masters course gives you the chance to specialise in an exciting area of archaeology, but also gives you the essential skills and knowledge required for many different archaeological and related careers or further study. While some students take the course as the gateway to further specialist research at PhD level, others go on to a wide variety of careers.

Careers

By the end of the MA in Mesolithic Studies course you will have:
-A thorough understanding of the history of research and the theoretical approaches in Mesolithic Studies
-A broad foundation in the key aspects of Mesolithic lifeways
-Developed a critical understanding of the key debates in the period
-Developed an ability to gather and organise information and arguments in a critical and independent manner through writing essays under various conditions
-Undertaken a piece of independent research on a topic within the field of Mesolithic archaeology
-Developed presentation skills through the delivery of seminar papers on a range of diverse themes

Many course graduates go on to further specialist research at PhD level, many of which have been funded, and then pursue careers in academia. Others have gone into a range of careers, from teaching and digital archiving to commercial archaeology work and wilderness training.

Some of the organisations our past students now work for include the Chartered Institute for Archaeologists, Council for British Archaeology, Yorkshire Museums Trust, archaeological consultancies and even Wikipedia.

Read less
Study for this Masters in Bioarchaeology at Liverpool John Moores University and gain hands-on experience at the archaeology excavation at the Poulton Project, carry out novel research and discover new laboratory techniques. Read more
Study for this Masters in Bioarchaeology at Liverpool John Moores University and gain hands-on experience at the archaeology excavation at the Poulton Project, carry out novel research and discover new laboratory techniques.

-Complete this masters degree in one year (full time)
-Masters course developed and delivered by leading researchers in the field
-Excavation and bioarchaeological analysis of real human remains
-Gain hands-on experience in field and laboratory techniques using specialised bioarchaeological labs and facilities
-Substantial bone selection for research and for experience as teaching toolstools


Bioarchaeology is an exciting and fast-advancing science that combines archaeology with branches of the natural sciences. Study focuses on the key topics pertaining to human remains from archaeological sites.

Bioarchaeology includes areas of scientific investigation including palaeodemography, past behaviour, biological affinity, subsistence strategy, and health and well-being in the past.

The MSc in Bioarchaeology will help you to develop a broad understanding of these issues, through the excavation and analysis of human and animal remains. Analytical techniques will cover dental and osteological analyses, archaeological field methods, and ancient genetics.

The programme aims to develop your advanced practical skills in skeletal analysis, making use of the department’s well-equipped specialist laboratories and reference collections.

A particular strength of our provision and Faculty expertise is that we are able to address the bioarchaeology of many world areas and time periods. When you complete the course, you will have all the skills necessary to continue into an academic career or gain employment in research, museums, education or commercial organisations.

During the year you will be given a personal tutor that will support you throughout your time at LJMU and be following both your academic and professional development.

Please see guidance below on core and option modules for further information on what you will study.
Semester 1 (three core modules)

Advanced Osteology and Skeletal Pathology
Provides students with an advanced knowledge of the human skeleton and the ability to identify animal bones, methods of curation of skeletal collections and understanding of pathological modifications.
Research Design and Quantitative Methods
Provides extensive training in generic research knowledge and statistical techniques for the Natural Sciences. Students design a research project and are assessed via the preparation of a full grant application for the project.
Dental Anthropology
Provides students with the theoretical knowledge and practical experience required by bioarchaeologists to identify and examine human teeth.
Semester 2 (two core modules and one option)

Bioarchaeology: Bones, Teeth and Genes
Focuses on the different methods used to study human remains in archaeological and anthropological contexts. Delivery is through a combination of lectures, practicals, workshops and seminar sessions by experts in different fields, followed by reading and in-class discussion of recent literature.
Excavation
Covers field survey, site management, excavation and related data analysis. In addition to practicals and lectures, the course includes a non-residential field experience.
Dissertation
Comprises an independent, in-depth scientific research study on a chosen relevant topic. The following options are typically offered:
Ballistics and Arson Investigation
Teaches the fundamental principles of fire science, fire dynamics and material science, enabling students to demonstrate their application of fire investigation.
Taphonomy Trauma Analysis
Provides students with an extensive understanding of the biomechanics of human bones and the reaction of bones to the environment for a taphonomic history of the remains. Students gain a broad appreciation of different types of weapons to reconstruct a traumatic event using skeletal evidence.
Human Identification and Forensic DNA
Analyses the issues related to the identification of an unknown subject from both skeletal and genetic features. The module also introduces students to the use of a DNA typing approach for the identification of human remains.

Further guidance on modules

The information listed in the section entitled ‘What you will study’ is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal Academic Framework review, so may be subject to change. Students will be required to undertake modules that the University designates as core and will have a choice of designated option modules. Additionally, option modules may be offered subject to meeting minimum student numbers.

Please email if you require further guidance or clarification.

Read less
Study animals from the past with the techniques of the future. The MSc in Zooarchaeology at York is the UK's only dedicated programme in the archaeological study of animals. Read more
Study animals from the past with the techniques of the future

Why choose this course?

The MSc in Zooarchaeology at York is the UK's only dedicated programme in the archaeological study of animals. Any consideration of the human past is incomplete without examining the essential roles that animals have played in our economies and societies, and on this course you will study archaeological animal remains on a macro and micro scale to investigate what they tell us about how humans and other species have co-existed over the millennia.

Housed within BioArCh, York's world-leading centre for research into ancient biomolecules, the MSc in Zooarchaeology also draws heavily on the expertise of functional and comparative anatomists from the Centre for Anatomical and Human Sciences, part of the Hull York Medical School. We use the full range of available techniques, including advanced biomolecular methods and sophisticated morphometrics, to investigate and interpret animal bone data in a variety of cultural contexts.

The scope of the course is global, equipping you with the knowledge and techniques to study the roles of animals in human societies from the Palaeolithic to the present, around the world. You will learn from leading academics in both traditional and biomolecular zooarchaeology, and from dedicated specialists in evolutionary anatomy, enabling you both to master the latest analytical techniques and to examine skeletal anatomy at a level of detail not possible elsewhere.
-Study past relations between people and other animals, through the archaeological record
-Examine zooarchaeology across the entire span of human prehistory and history, right around the world
-Develop advanced skills in bone taphonomy and understand its importance to osteoarchaeological studies
-Explore biomolecular techniques, including DNA analysis, proteomics and stable isotope analysis
-Investigate skeletal anatomy in intricate detail
-Work alongside leading academics in zooarchaeological research
-Receive career and research guidance from Department of Archaeology staff with significant experience of successfully placing PhD students

What does the course cover?
This course covers the practical skills, analytical techniques, and interpretative frameworks necessary to study the roles of animals in past societies from the bones and other remains that we find on archaeological sites. Core modules and laboratory classes will provide you with a solid grounding in the essential tools of the zooarchaeologist's trade, while the option modules and dissertation allow you to explore and potentially specialise in a unique range of biomolecular and anatomical approaches.

Who is it for?
This course is aimed primarily at graduates in archaeology who want to specialise in the analysis and interpretation of animal remains, either as a basis for future research or as a practical specialism to further a career in archaeology. We are also happy to accept graduates of disciplines such as biology, zoology, ecology, and palaeontology who wish to focus on the study of animals in a human context.

What can it lead to?
The advanced skills and specialist knowledge gained on this course can provide the springboard for many varied careers or further study at PhD level. Previous graduates of the course have gone on to careers in museum services, universities, conservation organisations and commercial archaeology units around the world.

Careers

By the end of the MSc Zooarchaeology course you will have:
-Gained a thorough grounding in all aspects of vertebrate zooarchaeology, including general aspects that are applicable to invertebrate zooarchaeology
-Experienced the processes of data collection, analysis and interpretation, both in principle and in practice
-Developed a range of analytical abilities by studying and undertaking quantitative analysis of zooarchaeological data
-Gained essential critical skills through reviewing and assessing published work from throughout the world, including hunter-gatherer and agrarian sites, and socially complex societies
-Studied the vertebrate skeleton, its evolutionary origins and its adaptations
-Identified and recorded archaeological bone assemblages
-Reviewed the field of taphonomy and the practical recognition of the taphonomic ‘imprint’
-Developed independent research skills by completing a dissertation project

Many our MSc Zooarchaeology postgraduates go on to conduct further research at PhD level. Others progress into careers with archaeological units, museum services, conservation bodies and a range of other organisations.

Here’s a selection of possible destinations and careers for students of this course:
-Academia
-Professional archaeologists – field and laboratory based
-Museum outreach programmes and the heritage sector
-University/research technicians
-Commercial laboratory technicians
-US graduate school programmes

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X