• University of Leeds Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Loughborough University Featured Masters Courses
  • Queen Mary University of London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Loughborough University London Featured Masters Courses
  • Ulster University Featured Masters Courses
  • Arden University Featured Masters Courses
Cranfield University Featured Masters Courses
University of Reading Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Bath Spa University Featured Masters Courses
"analytical" AND "science…×
0 miles

Masters Degrees (Analytical Science)

  • "analytical" AND "science" ×
  • clear all
Showing 1 to 15 of 1,269
Order by 
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Applied Analytical Science (LCMS) at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Applied Analytical Science (LCMS) at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

World demand for mass spectrometry and chromatography has grown at an unprecedented rate, with qualified graduates in short supply and highly sought after. Swansea is the only UK institution to offer a range of schemes solely dedicated to these topics, drawing upon expertise in the Institute of Mass Spectrometry (IMS), based at a long established UK centre of excellence. The MSc in Applied Analytical Science (LCMS) includes fundamentals of MS and chromatography with key industrial topics covering ‘-omics’, pharmaceutical, environmental and forensic analysis, data handling, professional management and good laboratory practice (GLP). The unique combination of industry participation and content on the Applied Analytical Science (LCMS) programme provides a vocationally-relevant qualification with invaluable training and experience sought in the UK and worldwide.

Professional Accreditation

We are pleased to announce that the Royal Society of Chemistry (RSC) has accredited the “MSc in Applied Analytical Science (LCMS)” for satisfying the academic requirements of the award of CHARTERED CHEMIST (CChem) from 2015 and awarded to qualifying students. Accreditation of Postgraduate schemes have only recently been undertaken by the RSC and our scheme is one of the first to achieve accreditation.

Key Features

Course content for the Applied Analytical Science (LCMS) programme is designed for the needs of industry: Essential topics such as fundamentals of mass spectrometry and separation science, professional management of laboratory practice, data analysis and method development plus industrially-current applications areas.

Extensive training in a research-led Institute: To improve their analytical science skills to professional levels required for the workplace.

Highly practical course and extensive in-house equipment: MSc students can experience more in-depth and ‘hands-on’ learning than most current analytical MSc programmes. Additional sessions including experiment design, health and safety, and laboratory skills are held in preparation of the research project, to ensure students are adequately equipped for project work.

Many taught modules encourage problem solving skills, involving relevant simulated (pre-existing) scenarios: To develop analytical thinking, professional and academic skills through advanced practical and theoretical studies and the submission of a scientifically defensible dissertation.

Participation of expert industrial guest lecturers: Unique opportunities to network with potential employers and enhanced employability prospects in highly skilled and relevant areas such as pharmaceuticals, agriculture, food and nutrition, homeland security, clinical diagnostics, veterinary and forensic science, environmental analysis, plus marketing and sales, to name a few.

Assessment that encourage transferrable skills essential for employment: Including case studies, presentations, problem sheets, data processing and informatics exercises in addition to the traditional examinations and essay based assignments.

Modules

Modules on the Applied Analytical Science (LCMS) programme typically include:

• Mass spectrometry – basics and fundamentals

• Separation science and sample handling

• Data analysis and method development

• Professional management and laboratory practice

• Proteomics

• Pharmaceutical

• Environmental and forensic analysis

• Medical and life sciences

• Metabolomics, lipidomics and bioactive lipids

• Data analysis and method development

• Dissertation: MS experimental project



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Applied Analytical Science (LCMS) at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Applied Analytical Science (LCMS) at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

World demand for mass spectrometry (MS) and chromatography has grown at an unprecedented rate, with qualified graduates in short supply and highly sought-after. Postgraduate (PG) training is essential as undergraduates are not taught to the required depth. Swansea is the only UK institution to offer a range of schemes solely dedicated to these topics, drawing upon expertise in the Institute of Mass Spectrometry (IMS), based at a long established UK centre of excellence.

Key Features

Course content designed for the needs of industry:

Essential topics such as fundamentals of mass spectrometry and separation science, professional management of laboratory practice, data analysis and method development.

Extensive training in a research-led Institute:

To improve their analytical science skills to professional levels required for the workplace.

Highly practical course and extensive in-house equipment:

MRes Applied Analytical Science (LCMS) students can experience more in-depth and ‘hands-on’ learning than most current analytical MRes programmes. Additional sessions including experiment design, health and safety, and laboratory skills are held in preparation of the research project, to ensure students are adequately equipped for project work.

Taught modules encourage problem solving skills, involving relevant simulated (pre-existing) scenarios:

To develop analytical thinking, professional and academic skills through advanced practical and theoretical studies and the submission of a scientifically defensible thesis.

Participation of expert industrial guest lecturers:

Unique opportunities to network with potential employers and enhanced employability prospects in highly skilled and relevant areas such as pharmaceuticals, agriculture, food and nutrition, homeland security, clinical diagnostics, veterinary and forensic science, environmental analysis, plus marketing and sales, to name a few.

Assessments that encourage transferrable skills essential for employment:

Including case studies, problem sheets, data processing and informatics exercises in addition to the traditional examinations and essay based assignments.

Modules

All MRes Applied Analytical Science (LCMS) students will complete the following taught modules:

Mass spectrometry – basics and fundamentals

Separation science and sample handling

Data analysis and method development

Professional management and laboratory practice

MRes students will also be expected to complete a 120 credit research thesis with a viva.

Professional Accreditation

Professional Development (PD) Portfolio

This will enable students to organise and highlight current competencies and training needs into a single document. This can be essential in documenting necessary requirements for continued professional development with a relevant professional body (i.e. Royal Society of Chemistry, RSC, CChem status).

A PD portfolio will typically contain:

- Educational training and experience

From external parties such as National Mass Spectrometry Facility (NMSF), industrial guest lecturers, and educational exercises recognised by the RSC.

- Practical/instrument training and experience

From external parties such as NMSf and instrument manufacturers.

- Research training and experience

MRes project - health and safety, project training, laboratory practice competency framework test and research

- Qualifications

Plus any affiliations and CV.

This will be an organised and detailed record of competencies for presenting to prospective employers with the potential to offer Swansea University (SU) PG students an edge in ensuring gainful relevant employment.

Accreditation.

An application to the Royal Society of Chemistry will be submitted after the first year of study.

Careers and Employability

Course content designed for the needs of industry

Fundamentals of mass spectrometry and separation science, professional management of laboratory practice, data analysis and method development.

Extensive training in a research-led Institute

Highly practical course and extensive in-house equipment

Experience more in-depth and ‘hands-on’ MRes than most Applied Analytical Science courses.

Taught modules encourage problem solving skills, involving relevant simulated (pre-existing) scenarios

Assessments that encourage transferrable skills essential for employment

Professional Development (PD) Portfolio

Participation of expert industrial guest lecturers

Unique networking opportunities with relevant potential employers for enhanced employability in areas such as:

- Pharmaceuticals

- Food and Nutrition

- Clinical diagnostics

- Forensics

- Environment

- Agriculture

- Homeland security

- Marketing and sales

- Veterinary

- Cosmology

- Geology

- Textile manufacture

- Archaeology

Facilities

Applied Analytical Science graduates will be extensively trained in a research-led institute. The highly practical nature of the course and extensive in-house equipment will enable students to experience a more in-depth and 'hands-on' MRes than most current analytical courses.

Instrumentation/techniques within IMS include:

Liquid chromatography/high resolution tandem mass spectrometry (LC/HRMS and LC/HRMSn)

Liquid chromatography/mass spectrometry (LC/MSn); low resolution MS.

Nano-liquid chromatography/mass spectrometry (nano-LC/MS)

Gas chromatography/mass spectrometry (GC/MS)

Liquid chromatography/ultraviolet spectrophotometry (LC/UV)

Liquid chromatography/diode array (LC/DAD)

Electrospray ionisation-mass spectrometry (ESI-MS)

Atmospheric pressure chemical ionisation-mass spectrometry (APCI-MS)

Electron ionisation-mass spectrometry (EI-MS)

Chemical ionisation-mass spectrometry (CI-MS)

Liquid secondary ion-mass spectrometry (LSI-MS i.e. ‘Fast Atom Bombardment’, FAB),

Matrix-assisted laser desorption/ionisation-mass spectrometry (MALDI-MS)

We routinely carry out a number of sample preparation techniques including:

Solid phase extraction (SPE)

Liquid-liquid extraction (LLE)

Electrophoretic techniques

Affinity extraction

Ion-exchange

Precipitation



Read less
This master programme aims to provide highly employable analytical scientists who not only have a thorough understanding of the key techniques within the discipline but also have successfully completed an extended project either set in an industrial context or carried out in the laboratories of one of our industrial partners. Read more

Overview

This master programme aims to provide highly employable analytical scientists who not only have a thorough understanding of the key techniques within the discipline but also have successfully completed an extended project either set in an industrial context or carried out in the laboratories of one of our industrial partners.

As a student on the programme, you will benefit from our research expertise and our links with industries that provide the foundation for placement opportunities. All students on this MSc will undertake a 30 week placement with an industrial context, either in Keele University’s laboratories or at the industrial partner’s premises, which will ultimately boost your employability skills.

The focus of this master's degree is very much on each student acquiring the scientific knowledge, the technical skills and the wide range of professional skills to enable them to start their career working with confidence in an industrial or international laboratory context.

See the website https://www.keele.ac.uk/pgtcourses/mscanalyticalscienceforindustry/

Course Aims

Knowledge
- To engender and develop an enthusiasm for analytical science and provide an intellectually stimulating and beneficial learning experience

- To provide an education to master’s level in key areas of analytical science, principally in chromatography, spectroscopy, microscopy and related techniques, and including the analysis and interpretation of experimental and digital data

- To provide a thorough knowledge and experience of techniques relevant to the analytical sciences and their practical application across a range of relevant materials and applications

- To provide a critical awareness of and engagement with current methods and techniques within the analytical sciences, some of which is at, or informed by, the forefront of the discipline

Skills:
- To develop confidence in practical, analytical, problem-solving and quantitative skills within the context of analytical science

- To demonstrate the abilities and skills necessary to research, devise, plan, execute and report on an original investigation or research project within the discipline

Employment:
- To demonstrate a high level of scientific knowledge and skills, including transferable skills, in a UK-based or international workplace setting

- To be able to deal with complex issues, including ethical issues, both systematically and creatively, make sound judgements in the absence of complete data, and communicate outcomes clearly to specialist and non-specialist audiences;

- To demonstrate independence and originality in tackling and solving problems, and act autonomously in planning and implementing tasks at a professional or equivalent level

- To demonstrate the qualities and transferable skills necessary for employment requiring:
the exercise of initiative and personal responsibility,
confidence in decision-making in complex, unpredictable and open-ended situations,
the independent learning ability required for continuing professional development,
productive collaborative working with others.

Course content

The first semester is spent at Keele studying modules on research skills, industrial context and both the theory and practice of analytical techniques, principally those based on chromatography, spectroscopy and imaging/ microscopy.

The extended individual project is carried out over semesters two and three, either at Keele or in the laboratories of an industrial partner. The location and nature of the project will be decided at the start of the programme and, for each individual student, many of the skills they develop in semester one will be studied and demonstrated in the context of their project topic.

These include literature review, research context, which includes planning, financial and ethical considerations, and science communication. There will also be lectures and laboratory classes aimed at extending your understanding of analytical techniques applied to industrial materials and problems and how such measurements are quality assured.

You will also develop the ability to use a range of data analysis methods and databases to interpret the results of your work and be able to write informative reports and use other means to communicate these outcomes to others.

The assessment of the extended project will include a written report, as well as participation in a post-graduate student symposium where you will present your work to both staff and students.

Teaching & Assessment

A broad range of teaching methods are employed including lectures, laboratory classes, problems classes, workshops and informal tutorials. As this is a post-graduate course there is an emphasis on tutor-guided, independent work. During the extended project whether undertaken at Keele or within an industrial laboratory, you will work both on your own tasks and in a team context with others and this will be evidenced through your project portfolio.

Over the whole programme the assessment tasks will be set in the context of the work of a professional analytical scientist and will provide a variety of challenges within which you can demonstrate the development of your knowledge and skills.

All academic staff operate an open-door policy and are happy to provide support, advice and guidance to all students subject to their availability.

Additional Costs

There may be additional living costs associated with the industrial project placement part of this programme which would depend on the nature and location of the placement and the individual circumstances and choices of the student. These would be discussed with the course tutor prior to enrolment. There would also be general costs for text books, inter-library loans, photocopying and printing, for example.

International Students

We welcome international students on this course. All international students will undertake a project at Keele University, that links in with industry. Please contact us for the entry requirements for international students.

Applicants who have not had their secondary or tertiary education through the medium of English are expected to have attained the equivalent of an IELTS score of at least 6.5 from an IELTS provider, which is approved by Keele University. Applicants are invited to contact the University before taking the IELTs test.

Distinctive Keele Curriculum

MSc programmes at Keele offers the added value of the Distinctive Keele Curriculum (DKC), which develops students' intellectual, personal and professional capabilities (Keele Graduate Attributes) through both subject-specific and generic workshops and activities.

Scholarships

There are substantial scholarships available, please see this link: http://www.keele.ac.uk/studentfunding/bursariesscholarships/internationalfunding/postgraduate/
or
http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
Do you want to take up a career in research and development? We’re recruiting ambitious students with degrees in Chemistry, Physics, Life Sciences, Engineering, Mathematics or Statistics. Read more
Do you want to take up a career in research and development? We’re recruiting ambitious students with degrees in Chemistry, Physics, Life Sciences, Engineering, Mathematics or Statistics.

We offer you a coherent training programme in Analytical Science, a central and interdisciplinary science which supports research and development in a huge number of key industries. Analytical Science underpins many aspects of biological and clinical sciences,environmental sciences, pharmaceutical sciences, materials science and synthetic chemistry. This course offers expertise from international experts within academia and collaborating companies like Syngenta and AstraZeneca.

You’ll gain hands-on experience in a variety of relevant techniques, enabling you to work in any modern laboratory since the skills you acquire will be readily transferable between disciplines. You’ll also have an incredible opportunity to undertake cutting-edge research with a world-leading group or company. By the end of the course you’ll be positioned to take up employment in research and development roles within a number of sectors, or to take up further study with a PhD.

Structure

The course spans 1 year, the first 23 weeks are lecture-based, providing you with a diverse toolbox in analytical sciences enabling you to complete a successful 20 week research project.
Term 1 and Term 2 (23 weeks):
-Mass Spectrometry
-Chromatography & Separation Science
-Team Research Project: Real World Analysis
-Electrochemistry & Sensors
-Principles & Techniques in Quantitative and Qualitative Analysis
-Magnetic Resonance
-Techniques for the Characterisation of Biomolecules
-Microscopy & Imaging
-Statistice for Data Analysis
-Transferable Skills

Then choose 1 of:
-Advanced Electron Microscopy - Theory & Practice
-Advanced Statistics & Chemometrics

Research Project (20 weeks):
-Immerse yourself in a real research project, supervised by our renowned academics.

Read less
Competent Pharmaceutical and Analytical Scientists are presently in demand in the pharmaceutical and related industries. This course has been designed with input from Pharmacists and Pharmaceutical Scientists with a wide range of industrial and research experience. Read more
Competent Pharmaceutical and Analytical Scientists are presently in demand in the pharmaceutical and related industries. This course has been designed with input from Pharmacists and Pharmaceutical Scientists with a wide range of industrial and research experience. Pharmaceutical analysis involves the testing of drug substances and the formulation of pharmaceutical drugs as they are utilized. This course will provide you with a comprehensive overview of the most recent technological developments and applications in Pharmaceutical and Analytical Science. The different methods of drug formulation currently being used, and being developed, are described alongside the instrumental techniques which can be used in the analysis of drug components. The modules are taught by enthusiasts who are experts in their fields. The course is two thirds taught material and one third project.

Read less
This programme will enable you to tackle important real-world problems through the creation of new instrumentation and techniques, or improvements to existing methods. Read more
This programme will enable you to tackle important real-world problems through the creation of new instrumentation and techniques, or improvements to existing methods. Laboratory reports, scientific papers, presentations and dissertations will develop your skills in scientific and academic reporting.

You’ll develop your knowledge of molecular analytics through 11 modules taken in the first six months. In the second half of your first year, you can apply your learning through two 10-week research projects, one with an experimental and one with a computational focus. There is a good chance that at least one of these projects will be in collaboration with one of our industrial partners. The experience of working across two different research environments will provide excellent preparation for your further career.

Throughout your course, you’ll benefit from using high-specification instrumentation in the areas of mass spectrometry, electrochemistry, optical, NMR and EPR spectroscopies and state of the art microscopy, among others. You will also have the opportunity to develop skills in computation and modelling.

Read less
This programme will enable you to tackle important real-world problems through the creation of new instrumentation and techniques, or improvements to existing methods. Read more
This programme will enable you to tackle important real-world problems through the creation of new instrumentation and techniques, or improvements to existing methods. Laboratory reports, scientific papers, presentations and dissertations will develop your skills in scientific and academic reporting.

You’ll develop your knowledge of molecular analytics through 11 modules taken in the first six months. In the second half of your first year, you can apply your learning through two 10-week research projects, one with an experimental and one with a computational focus. There is a good chance that at least one of these projects will be in collaboration with one of our industrial partners. The experience of working across two different research environments will provide excellent preparation for your PhD and your further career.

Throughout your course, you’ll benefit from using high-specification instrumentation in the areas of mass spectrometry, electrochemistry, optical, NMR and EPR spectroscopies and state of the art microscopy, among others. You will also have the opportunity to develop skills in computation and modelling.

Read less
Leiden University offers five different specialisations in the MSc programme in Computer Science. - Bioinformatics. - Computer Science and Advanced Data Analytics. Read more
Leiden University offers five different specialisations in the MSc programme in Computer Science:

- Bioinformatics
- Computer Science and Advanced Data Analytics
- Computer Science and Science Communication and Society
- Computer Science and Science-Based Business
- Data Science: Computer Science

Visit the website: http://en.mastersinleiden.nl/programmes/computer-science/en/introduction

Course detail

Leiden University offers five different specialisations in the MSc programme in Computer Science.

Three specialisations are dedicated to the research areas of the Leiden Institute of Advanced Computer Science:

- Computer Science and Advanced Data Analytics
- Bioinformatics
- Data Science for Computer Science

The other two specialisations are more broadly oriented, and combine at least one year of the computer science curriculum with training in which specific career opportunities in science-related professions can be explored:

- Computer Science and Science-Based Business.
- Computer Science and Science Communication and Society

Reasons to Choose Computer Science in Leiden:

- The programme offers stimulating, significant and innovative research in the field of Computer Science, including recent advances in Data Analytics and Natural Computing.

- Research at the Leiden Institute of Advanced Computer Science (LIACS) has an excellent international reputation.

- The strength of the programmes is the individual approach: an individually tailored programme will be designed for each student.

- The researchers and assistants are easily accessible. Students and staff work closely together in a research-oriented environment.

- Students with an MSc in Computer Science are admissible to a PhD programme.

- It provides students with a thorough computer science background that will allow them to pursue careers in research or industrial environments.

Careers

Masters of Science in Computer Science are not only professionally trained, they also have an analytical mind and problem-solving attitude. These qualities ensure a wide variety of career opportunities.

Master of Science students in Leiden work in a multinational environment and are being prepared to operate in international settings.

How to apply: http://en.mastersinleiden.nl/arrange/admission

Funding

For information regarding funding, please visit the website: http://prospectivestudents.leiden.edu/scholarships

Read less
This Masters course will open the door to a fascinating and fast-moving sector of analytical science that will build on your previous undergraduate studies, in chemistry, biology or other appropriate science courses. Read more
This Masters course will open the door to a fascinating and fast-moving sector of analytical science that will build on your previous undergraduate studies, in chemistry, biology or other appropriate science courses. You will gain knowledge and scientific skills that are directly applicable to the field of forensic science, with prospects of employment in forensic science laboratories as well as in other analytical science laboratories.

The course involves a unique combination of forensic chemistry and forensic biology, covering subjects such as trace evidence, toxicology and DNA analysis. Once you have covered the underlying principles of both areas, you can then specialise in your chosen field for your MSc research project.

The course is accredited by the Chartered Society of Forensic Sciences, which enhances its credibility and currency among potential employers.

This course can also be taken part time - for more information, please view this web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/forensic-science-dtpfrs6/

Learn From The Best

Our teaching team are active researchers who routinely incorporate their expertise and enthusiasm into their teaching. Many of the staff have worked in forensic science laboratories and have been involved in high profile cases such as the Stephen Lawrence, Joanna Yeates, Suffolk strangler and Jigsaw murder cases. Their areas of research include toxicology, the analysis of fibres and their transfer and persistence and the analysis of ancient DNA.

Academic staff include former forensic biologists, forensic toxicologists, and forensic fibre experts. They continue to maintain close links with the industry including the police and practising forensic scientists. Many of them are well-established within professional forensic science societies and organisations, which directly inform policy and practices within the field.

Teaching And Assessment

Our teaching will give you a solid grounding in all the technical areas that are key to forensic science, while simultaneously developing the higher level of independent thinking and advanced interpretation that is expected at Masters level. To support your learning journey, many of the staff have an ‘open door’ policy which makes it easy to ask questions; it’s also possible to book appointments with them so that you can work through queries about lab work, concepts and theories, and any other aspects of the subject.

We use different types of assessments: some will contribute to your final grade while others will be used to provide you with guidance on your progress and reinforce your learning. You can expect both your tutors and your peers to provide useful comments and feedback throughout the course.

Module Overview
AP0700 - Graduate Science Research Methods (Core, 20 Credits)
AP0703 - Subject Exploration (Core, 20 Credits)
AP0708 - Applied Sciences Research Project (Core, 60 Credits)
AP0723 - Practices & Procedures in Forensic Science (Core, 20 Credits)
AP0724 - Forensic Toxicology & Drugs of Abuse (Core, 20 Credits)
AP0725 - Criminalistics (Core, 20 Credits)
AP0726 - Forensic Genetics (Core, 20 Credits)

Learning Environment

You will have access to a dedicated crime scene house to enable you to examine simulated crime scenes. Students can also access Return to Scene (R2S) software which provides a 360 degree interactive scan of a crime scene allowing you to perform further analysis in detail after you have left the scene. Northumbria University has also invested heavily in an impressive suite of analytical equipment allowing you to gain first-hand experience of the techniques used in operational laboratories.

We use a range of technologies to enhance your learning, with tools including web-based self-guided exercises, online tests with feedback, and electronic discussion boards. These tools support and extend the material that is delivered during lectures.

You will have 24/7 term-time access to Northumbria’s library, which was ranked #2 in the Times Higher Education Student Experience Survey for 2015 and has been accredited by the UK Government for Customer Service Excellence since 2010.

Research-Rich Learning

We host the Northumbria University Centre for Forensic Science and our research directly impacts on what and how you learn. Northumbria is helping to push the frontiers of knowledge in areas such as:
-Forensic fibre comparisons using statistical and chemometric approaches
-DNA profiling in contexts such as injuries to children and poaching of wildlife
-Human genetic and phenotypic variation
-Analytical toxicology

As part of the course, you will undertake a Masters project that will require you to evaluate relevant literature as well as to develop your ideas within the context of existing research. The project will involve information retrieval, critical appraisal, presentation of aims and strategy, development of advanced analytical and problem-solving skills, the discussion and interpretation of results, and the composition of a written dissertation. Each project will be aligned to an active area of research that is specific to an academic member of staff.

Give Your Career An Edge

This course is accredited by the Chartered Society of Forensic Sciences. This reflects the relevance and rigour of the curriculum, and provides assurance of workplace-ready knowledge and application.

The focus on practical laboratory work, combined with the mix of group work, independent learning and professional practice, will help ensure that you develop skills that are transferable to a range of careers and disciplines.

Throughout your time at Northumbria we will prompt you to reflect on your self-development through the Higher Education Achievement Report process. We will also encourage you to take advantage of the services of our Careers and Employment Service such as CV advice and interview preparation.

Your Future

Forensic science has gained a high profile through TV dramas and, in the years ahead the sector is likely to be further transformed by technological advances in a number of fields. With an MSc Forensic Science you will be well-placed to take up a fascinating and rewarding role in forensic science laboratories.

What’s more, by developing the attributes of a Masters student, including the ability to solve complex problems, think critically, and work effectively with others and on your own, you will enhance your employability in all sectors of the analytical science industry. You will also be well equipped to pursue further studies at PhD level.

Read less
This programme gives you the opportunity to study the main contexts of contemporary science and technology; gain a broad base in science policy, communication, sociology and engagement; enjoy flexibility in specialisation; and work in an interdisciplinary environment with research experts. Read more
This programme gives you the opportunity to study the main contexts of contemporary science and technology; gain a broad base in science policy, communication, sociology and engagement; enjoy flexibility in specialisation; and work in an interdisciplinary environment with research experts.

Degree information

The programme provides broad-based training in three disciplines: science policy and governance; science communication, engagement, and evaluation; and sociology of modern science and technology. This programme encourages specialised investigation. It also encourages interdisciplinary integration. Our degree works in dialogue with our sister MSc programme in History and Philosophy of Science, which adds historical and analytical depth to our offer.

MSc students undertake modules to the value of 180 credits.

The programme consists of one core module (15 credits), four optional modules (60 credits), three ancillary modules (45 credits) and a dissertation (60 credits) Postgraduate Diploma students undertake modules to the value of 120 credits: one core (15 credits), four optional (60 credits), and three ancillary (45 credits), studied over one year. Postgraduate Certificate students undertake modules to the value of 60 credits. The programme consists of one core module (15 credits), and three optional modules (45 credits), studied over one year.

Core module
-Introduction to Science and Technology Studies

Optional modules - students must take three modules from a prescribed list of options including:
-Practical Science Communication and Engagement
-Curating the History of Science
-Responsible Science and Emerging Technologies
-Science in the 20th Century and Beyond
-Science Policy Beyond Borders
-Science, Media, and Culture
-Science, Security, and Social Research
-Sociology and the Sociology of Science
-Special Topics Seminar in STS
-Ancillary Modules

Students must take two ancillary modules which may be options from our own degrees, for example, Material Culture and Science in the 18th Century OR, Knowledge, Evidence, and Explanation in Science, OR, they might be selected from any other programme at UCL.

Dissertation/report
All MSc students undertake an independent research project which culminates in a dissertation of 10,000–12,000 words.

Teaching and learning
The programme is delivered through a combination of seminars, lectures, tutorials and research supervision. Student performance is assessed through coursework such as long and short essays, advocacy work, and project work.

Careers

Our programme provides essential training and study for students wishing to pursue PhD level study in several fields, and also provides appropriate training and qualifications sought by individuals pursuing careers in areas such as education, museum and archival curatorship, or administration and policy-making in science, engineering and health care.

Employability
The programme offers a range of transferable skills and networking opportunities. No matter whether your career plan looks towards the public or private sector, we can help you build a portfolio of skills and contacts that will give your CV the edge. Highlights of the programme include:

the chance to develop practical media skills, including audio production
learning to write for different audiences
developing your skills in both practical and theoretical science communication, including working in a major London museum
to meet and network with policy makers.

Why study this degree at UCL?

There is no UK academic department quite like UCL Science & Technology Studies. The department combines award-winning teaching with award-winning public engagement.

We are research active over an enormous range of topics. Our teaching builds on research not only in our subject specialties but also in the fundamentals of teaching and learning.

Our programme makes unique use of London’s attractions and resources. We have close links with the Science Museum, the National Maritime Museum, the Natural History Museum, the Wellcome Library, and UCL Museums & Collections. We also use the city as a classroom, with custom-made walking tours, site visits, and special excursions.

Read less
The School of Life Science has developed an extremely active and successful undergraduate, Biomedical Science programme. We have embraced specialists working in local NHS Trusts to develop outstanding, collaborative relationships covering key diagnostic and clinical specialties. Read more

Overview

The School of Life Science has developed an extremely active and successful undergraduate, Biomedical Science programme. We have embraced specialists working in local NHS Trusts to develop outstanding, collaborative relationships covering key diagnostic and clinical specialties. Not only do students benefit from the inclusion of such specialist practitioners onto our teaching programmes, but could also be offered highly competitive research opportunities working within the hospital itself.

This MSc programme builds on this wealth of experience and best practice to enable well-qualified students to develop their scientific training and employability skills within a Biomedical context. The need for innovation and a multidisciplinary approach to Biomedical Science has never been more important. The teaching strategies embedded within this programme embrace these principles in its pursuit of Clinical Biochemistry, Medical Immunology and Haematology.

IBMS Accreditation

This programme is accredited by the Institute of Biomedical Science (IBMS) as the professional body of Biomedical Scientists within the United Kingdom. The IBMS aims to promote and develop the role of Biomedical Science within healthcare to deliver he best possible service for patient care and safety.

Accreditation is a process of peer review and recognition by the profession of the achievement of quality standards for delivering Masters level programmes.

Individuals awarded a Masters degree accredited by the Institute are eligible for the title of Chartered Scientist and the designation CSci if they meet the other eligibility criteria of corporate membership and active engagement in Continued Professional Development. A Masters level qualification is also one of the entry criteria for the Institute’s Higher Specialist Examination and award of the Higher Specialist Diploma, a pre-requisite for the membership grade of Fellowship and designation FIBMS.

The aim of IBMS accreditation is to ensure that, through a spirit of partnership between the Institute and the University, a good quality degree is achieved that prepares the student for employment in circumstances requiring sound judgement, critical thinking, personal responsibility and initiative in complex and unpredictable professional environments.

The Institute lists 10 advantages of IBMS accreditation:
1. Advances professional practice to benefit healthcare services and professions related to biomedical science.

2. Develops specific knowledge and competence that underpins biomedical science.

3. Provides expertise to support development of appropriate education and training.

4. Ensures curriculum content is both current and anticipatory of future change.

5. Facilitates peer recognition of education and best practice and the dissemination of information through education and employer networks.

6. Ensures qualification is fit for purpose.

7. Recognises the achievement of a benchmark standard of education.

8. The degree award provides access to professional body membership as a Chartered Scientist and for entry to the Higher Specialist Diploma examination.

9. Strengthens links between the professional body, education providers employers and students.

10. Provides eligibility for the Higher Education Institution (HEI) to become a member of HUCBMS (Heads of University Centres of Biomedical Science)

See the website https://www.keele.ac.uk/pgtcourses/biomedicalbloodscience/

Course Aims

The main aim of the programme is to provide multidisciplinary, Masters Level postgraduate training in Biomedical Blood Science. This will involve building on existing, undergraduate knowledge in basic science and applying it to clinical, diagnostic and research applications relevant to Clinical Biochemistry, Medical Immunology and Haematology.

Intended learning outcomes of the programme reflect what successful students should know, understand or to be able to do by the end of the programme. Programme specific learning outcomes are provided in the Programme Specification available by request, but to summarise the overarching course, aims are as follows:

- To develop students’ knowledge and understanding of different theoretical perspectives, methodological approaches, research interests and practical applications within Blood Science

- To explore and explicitly critique the clinical, diagnostic and research implications within the fields of Clinical Biochemistry,

- Medical Immunology and Haematology, and to place this in the context of a clinical laboratory, fully considering the potential implications for patients, health workers and research alike

- To develop a critical awareness of Biomedical ethics and to fully integrate these issues into project management including grant application and business planning

- To support student autonomy and innovation by providing opportunities for students to demonstrate originality in developing or applying their own ideas

- To direct students to integrate a complex knowledge base in the scrutiny and accomplishment of professional problem-solving scenarios and project development

- To enable student acquirement of advanced laboratory practical competencies and high level analytical skills

- To promote and sustain communities of practice that allow students to share best practice, encourage a multidisciplinary approach to problem-solving and to develop extensive communication skills, particularly their ability to convey complex, underpinning knowledge alongside their personal conclusions and rationale to specialist and nonspecialist listeners

- To provide students with a wide range of learning activities and a diverse assessment strategy in order to fully develop their employability and academic skills, ensuring both professional and academic attainment

Course Content

This one year programme is structured so that all taught sessions are delivered in just two days of the working week. Full-time students are expected to engage in independent study for the remaining 3 days per week. Consolidating taught sessions in this way allows greater flexibility for part-time students who will be expected to attend one day a week for two academic years, reducing potential impact in terms of workforce planning for employers and direct contact for students with needs outside of their academic responsibilities.

Semester 1 will focus on two main areas, the first being Biomedical ethics, grant application and laboratory competencies. The second area focuses on the clinical and diagnostic implications of Blood Science for patients and health workers, with the major emphasis being on Clinical Biochemistry.

Semester 2 will also focus on two main themes; firstly, business planning methodological approaches, analytical reasoning and research. Secondly, the clinical and diagnostic implications of Blood Science for patients and health workers, with the major emphasis being on Haematology and Immunology.

Compulsory Modules (each 15 credits) consist of:
- Biomedical Ethics & Grant Proposal
- Project Management & Business Planning
- Advanced Laboratory Techniques*
- Research Methodologies *
- Case Studies in Blood Science I
- Case Studies in Blood Science II
- Clinical Pathology I
- Clinical Pathology II

*Students who have attained the IBMS Specialist Diploma and are successfully enrolling with accredited prior certified learning are exempt from these two modules.

Dissertation – Biomedical Blood Science Research Project (60 credits)

This research project and final dissertation of 20,000 words is an excellent opportunity for students to undertake laboratory based research in their chosen topic and should provide an opportunity for them to demonstrate their understanding of the field via applications in Biomedical Science. Biomedical Science practitioners are expected to complete the laboratory and data collection aspects of this module in conjunction with their employers.

Requirements for an Award:
In order to obtain the Masters degree, students are required to satisfactorily accrue 180 M Level credits. Students who exit having accrued 60 or 120 M Level credits excluding the ‘Dissertation – Biomedical Blood Science Research Project’ are eligible to be awarded the Postgraduate Certificate (PgC) and Postgraduate Diploma (PgD) respectively

Teaching and Learning Methods

This programme places just as much emphasis on developing the way in which students approach, integrate and apply new knowledge and problem-solving as it is with the acquisition of higher level information. As such, particular emphasis is placed on developing critical thinking, innovation, reflective writing, autonomous learning and communication skills to prepare candidates for a lifetime of continued professional development.

The teaching and learning methods employed throughout this programme reflect these principles. For example, there is greater emphasis on looking at the subject from a patient-orientated, case study driven perspective through problem-based learning (PBL) that encourages students to think laterally, joining up different pieces of information and developing a more holistic level of understanding.

Assessment

The rich and varied assessment strategy adopted by this programme ensure student development of employability
and academic skills, providing an opportunity to demonstrate both professional and academic attainment. Assessment design is
largely driven by a number of key principles which include: promotion of independent learning, student autonomy, responsibility for personal learning and development of innovation and originality within one’s chosen area of interest. Note that not all modules culminate in a final examination.

Additional Costs

Apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for this post graduate programme.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
The Science Communication Unit at UWE Bristol is renowned for its innovative and diverse range of national and international activities designed to engage the public with science. Read more
The Science Communication Unit at UWE Bristol is renowned for its innovative and diverse range of national and international activities designed to engage the public with science. Our MSc Science Communication course is an excellent opportunity to benefit from the Unit's expertise, resources and contacts.

As well as drawing on the academic and practical experience of staff within the Science Communication Unit, our MSc programme gives you an opportunity to meet a range of visiting lecturers and benefit from their practical experience. This also provides an excellent networking opportunity for students interested in developing contacts among science communication practitioners.

Course detail

The course combines a solid theoretical background with practical skill development, and has excellent links with the sectors and industries it informs. Visiting specialists also help you understand what they are looking for in future employees.

Introductory modules provide a broad theoretical foundation in issues such as the rationale for public engagement with science, understanding the audience, the role of the media in society, communication theory and models of informal learning. You'll then have the opportunity to specialise by choosing from modules that cover practical skills related to taking science directly to the public, as well as new approaches to science communication such as digital media. This allows you to hone your practical skills and develop a portfolio that shows your expertise as a science communicator. In the final year, you may choose to further develop your portfolio, for example by mounting a practical science communication project, or take on a more theoretical or research-based project, perhaps with an external science communication organisation.

Modules

You will take the following three modules:
• Science and Society
• Science, the Public and Media

You then choose two from these three modules:
• Science on Air and on Screen
• Science in Public Spaces
• Writing Science

Format

Unlike most Master's courses in this area, the MSc Science Communication addresses the needs of working students. There are short, intensive teaching blocks of three to five days, and you can expect to attend three teaching sessions for each 30 credit module.

If you study this programme part-time, you'll take two 30 credit modules each for two academic years. It's possible to complete the part-time course in two years by finishing your project during the summer of the second year, or you may prefer to take a third year. Full-time students take four taught modules and complete the project in 14 months.

Group sessions are supplemented by directed and independent study, email discussions, tutorials and mentoring.

Assessment

The modules are assessed in a variety of ways, to reflect the theoretical concepts, knowledge and practical skills you'll develop. For example, through portfolios, reports and oral presentations all of which you can use to attract prospective employers. The ability to evaluate your own work and others' is critical to success in the workplace, and several assessments are designed to help you acquire these skills.

Careers / Further study

Science communication skills are in high demand in a wide range of sectors and industries, such as journalism, public relations, science centres and museums, science education, professional consultancy and Research Council/learned institutions.

Throughout the course, we'll encourage you to develop the professional skills to help you secure employment or research positions.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
The Science Communication Unit at UWE Bristol is renowned for its innovative and diverse range of national and international activities designed to engage the public with science. Read more
The Science Communication Unit at UWE Bristol is renowned for its innovative and diverse range of national and international activities designed to engage the public with science. The Postgraduate Certificate in Practical Science Communication, linked to the world-class MSc Science Communication course, and also designed by the Science Communication Unit, is aimed at students seeking an additional qualification. It is an opportunity to benefit from the Unit's expertise, resources and contacts.

As well as drawing on the academic and practical experience of staff within the Science Communication Unit, the course gives you an opportunity to meet a range of visiting lecturers and benefit from their practical experience. This also provides an excellent networking opportunity for students interested in developing contacts among science communication practitioners.

Course detail

The course focuses on practical skills development, and has excellent links with the sectors and industries it informs, with visiting specialists helping you to understand what they seek in future employees.

Depending on the options you take, you will develop skills in science writing, cutting-edge science communication techniques, and the abilities you'll need to develop and run science communication projects. This includes devising and managing projects, evaluations and funding.

Modules

You will choose two from these three modules (30 credits each):

• Science on Air and on Screen - Build your radio, TV and digital skills by critically exploring the role of broadcast media in the communication of science. You'll also make an 'as live' radio magazine programme about science, and a short film.

• Science in Public Spaces - Develop your own science communication initiative in this hands-on module from developing a creative concept, to seeking funding, and managing and evaluating a project. You'll explore a range of innovative approaches from sci-art, to museums, festivals to theatre.

• Writing Science - Develop journalistic and other writing styles, including writing for news media, public relations and educational purposes, with a view to developing a portfolio, as well as working on a magazine project.

Format

The course comprises short, intensive teaching blocks of three days (Thursday to Saturday) and you'll most likely need to attend three teaching sessions for each 30-credit module. Group sessions are supplemented by directed and independent study, email discussions, and tutorials.

Assessment

We assess modules in a variety of ways, to reflect the practical skills you'll develop. For example, through portfolios, reports and oral presentations - all of which you can use to attract prospective employers.

Careers / Further study

Practical science communication skills are in high demand in a wide range of sectors and industries, such as journalism, public relations, science centres and museums, science education, professional consultancy and Research Council/learned institutions.

Throughout the course, you are encouraged to develop the professional skills that will help you secure employment or research positions in science communication, or to combine it with your existing career.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
The MSc Archaeological Science will provide you with a solid grounding in the theory and application of scientific principles and techniques within archaeology. Read more
The MSc Archaeological Science will provide you with a solid grounding in the theory and application of scientific principles and techniques within archaeology. The programme also develops critical, analytical and transferable skills that prepare you for professional, academic and research careers in the exciting and rapidly advancing area of archaeological science or in non-cognate fields.

The programme places the study of the human past at the centre of archaeological science enquiry. This is achieved through a combination of science and self-selected thematic or period-based modules allowing you to situate your scientific training within the archaeological context(s) of your choice. The programme provides a detailed understanding of the foundations of analytical techniques, delivers practical experience in their application and data processing, and the ability to design and communicate research that employs scientific analyses to address archaeological questions. Upon graduation you will have experience of collecting, analysing and reporting on data to publication standard and ideally equipped to launch your career as a practising archaeological scientist.

Distinctive features

The MSc Archaeological Science at Cardiff University gives you access to:

• A flexible and responsive programme that combines training in scientific enquiry, expertise and vocational skills with thematic and period-focused archaeology.

• Materials, equipment, library resources and funding to undertake meaningful research in partnership with a wide range of key heritage organisations across an international stage.

• A programme with core strengths in key fields of archaeological science, tailored to launch your career in the discipline or to progress to doctoral research.

• A department where the science, theory and practice of archaeology and conservation converge to create a unique environment for exploring the human past.

• Staff with extensive professional experience in researching, promoting, publishing, and integrating archaeological science across academic and commercial archaeology and the wider heritage sector.

• An energetic team responsible for insights into iconic sites (e.g. Stonehenge, Çatalhöyük), tackling key issues in human history (e.g. hunting, farming, food, and feasts) through the development and application of innovative science (e.g. isotopes, residue analysis, DNA, proteomics)

• A unique training in science communication at every level - from preparing conference presentations and journal articles, to project reports, press releases and public engagement, our training ensures you can transmit the excitement of scientific enquiry to diverse audiences.

• Support for your future career ambitions. From further study to science advisors to specialists – our graduates work across the entire spectrum of archaeological science as well as moving into other successful careers.

Structure

There are two stages to this course: stage 1 and stage 2.

Stage 1 is made up of:

• 40 credits of Core Skills and Discipline-Specific Research Training modules for Archaeology and Conservation Master's students
• A minimum of 40 credits of Archaeological Science modules
• An additional 40 credits of Archaeological Science or Archaeology modules offered to MA and MSc students across the Archaeology and Conservation department

Stage 2 comprises:

• 60 credit Archaeological Science Dissertation (16-20,000 words, topic or theme chosen in consultation with academic staff)

Core modules:

Postgraduate Skills in Archaeology and Conservation
Skills and Methods for Postgraduate Study
Archaeological Science Dissertation

Teaching

Teaching is delivered via lectures, laboratory sessions, interactive workshops and tutorials, in addition to visits to relevant local resources such as the National Museum Wales and local heritage organisations.

Lectures take a range of forms but generally provide a broad structure for each subject, an introduction to key concepts and relevant up-to-date information. The Archaeological Science Master's provides students with bespoke training in scientific techniques during laboratory sessions. This includes developing practical skills in the identification, recording and analysis of archaeological materials during hands on laboratory sessions. These range from macroscopic e.g. bone identification, to microscopic e.g. material identification or status with light based or scanning electron microscopy, to sample selection, preparation and analysis e.g. isotopic or aDNA and include health and safety and laboratory management skills. Students will be able to develop specialist practical skills in at least one area of study. In workshops and seminars, you will have the opportunity to discuss themes or topics, to receive and consolidate feedback on your individual learning and to develop skills in oral presentation.

This programme is based within the School of History, Archaeology and Religion and taught by academic staff from across Cardiff University and by external speakers. All taught modules within the Programme are compulsory and you are expected to attend all lectures, laboratory sessions and other timetabled sessions. Students will receive supervision to help them complete the dissertation, but are also expected to engage in considerable independent study.

Assessment

The 120 credits of taught Modules within Stage 1 of the Programme are assessed through in-course assessments, including:

Extended essays
Oral presentations
Poster presentations
Statistical assignments
Critical appraisals
Practical skills tests
Data reports
Research designs

You must successfully complete the taught component of the programme before progressing to Stage 2 where assessment is:

Dissertation (16-20,000 words)

Career prospects

After successfully completing this MSc, you should have a broad spectrum of knowledge and a variety of skills, making you highly attractive both to potential employers and research establishments. You will be able to pursue a wide range of professional careers, within commercial and academic archaeology and the wider heritage sector. Career paths will generally be specialist and will depend on the choice of modules. Graduates will be well placed to pursue careers as a specialist in isotope analysis, zooarchaeological analysis or human osteoarchaeology. They will also be in a position to apply for general laboratory based work and archaeological fieldwork. Working within science communication and management are other options. Potential employers include archaeological units, museums, universities, heritage institutions, Historic England and Cadw. Freelance or self-employment career routes are also common for animal and human bone analysts with postgraduate qualifications.

The archaeology department has strong links and collaborations across the heritage sector and beyond. British organisations that staff currently work with include Cadw, Historic England, English Heritage, Historic Scotland, National Museum Wales, the British Museum, the Welsh archaeological trusts and a range of other archaeology units (e.g. Wessex Archaeology, Oxford Archaeology, Cambridge Archaeology Unit, Archaeology Wales). In addition, staff are involved with archaeological research across the world. You will be encouraged to become involved in these collaborations via research projects and placements to maximise networking opportunities and increasing your employability.

Read less
Enhance your depth and breadth of knowledge, understanding and practical skills with this Analytical Forensic Science Masters from Liverpool John Moores University. Read more
Enhance your depth and breadth of knowledge, understanding and practical skills with this Analytical Forensic Science Masters from Liverpool John Moores University. Prepare for analytical careers in forensics and beyond.

•Complete this masters degree in one year (full time)
•Study a curriculum informed by research and industry practice
•Benefit from LJMU’s investment in Analytical Chemistry, accessing cutting edge technology, state-of-the-art laboratories and new crime scene facilities
•Learn from analytical forensic chemists, molecular biologists, crime scene and fire investigation specialists and leading national experts
•Develop transferrable legal and research skills
•Enjoy extensive career opportunities

Analytical Forensic Science is one of four forensic programmes offered by LJMU. All four options share a number of common modules, but each course has its own distinct identity.

Analytical Forensic Science has a heavy practical bias, enabling you to explore current and emerging analytical techniques and practices.
Using state-of-the-art laboratory, crime scene and moot room facilities, you will:
•explore the criminal justice system as a setting in which a forensic scientist might work
•be able to apply appropriate techniques following the analysis and evaluation of complex forensic cases
•learn to critically evaluate current crime scene techniques

You will enjoy a first class learning environment at the city centre Byrom Street site which boasts an ongoing £12 million laboratory investment programme and state-of-the-art research facilities in the newly developed Life Sciences building. Legal aspects of the course are taught in the Moot Room at the multi-million pound Redmonds building on Brownlow Hill.


This is a full time, year-long Masters course although you can opt to work at a slower pace and study over three years. There may even be the option to carry out the dissertation project in your existing place of work.
On joining the course you will be appointed a personal tutor who will offer academic and pastoral support. The School also operates an open door policy, providing access to members of staff when you need them.

Please see guidance below on core and option modules for further information on what you will study.
Advanced Drug Analysis and Toxicology
Combines theory and practical work in analytical chemistry techniques, relating to drug analysis including legal highs.
Law and Court Room Skills
Discusses the criminal justice systems under which a forensic scientist may work and examines expert witness testimony. Aspects of regulation and quality assurance are touched upon.
Research Methods
Covers grant application, critical appraisal of leading research and data interpretation and evaluation. This leads naturally into the dissertation.
Bioanalytical Techniques
Examines state-of-the-art biomolecular techniques, including DNA and protein analysis. Commonly used techniques in the forensic field will be critically analysed and performed along with emerging techniques which can form the basis of the dissertation or further postgraduate study.
Fire Investigation
Offers specialist knowledge of fire and explosive analysis both at the crime scene and in terms of analytical techniques.
Trace Evidence Analysis
Teaches you to identify, differentiate and analyse different types of trace evidence using advanced techniques. Microscopy, including SEM (EDX) and atomic force, form the basis of the practical analysis performed, along with other techniques.
Dissertation
The Dissertation research themes are led by staff and PhD students. Students are encouraged to present their research at conferences.
Further guidance on modules
The information listed in the section entitled ‘What you will study’ is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal Academic Framework review, so may be subject to change. Students will be required to undertake modules that the University designates as core and will have a choice of designated option modules. Additionally, option modules may be offered subject to meeting minimum student numbers.

Please email if you require further guidance or clarification.

Read less

Show 10 15 30 per page



Cookie Policy    X