• Ross University School of Veterinary Medicine Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Durham University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
De Montfort University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Cranfield University Featured Masters Courses
Aberdeen University Featured Masters Courses
"analytical" AND "biochem…×
0 miles

Masters Degrees (Analytical Biochemistry)

We have 92 Masters Degrees (Analytical Biochemistry)

  • "analytical" AND "biochemistry" ×
  • clear all
Showing 1 to 15 of 92
Order by 
This programme is designed to provide comprehensive training in analytical chemistry and its implementation in a variety of fields including biomedical, pharmaceutical, food and environmental analysis. Read more
This programme is designed to provide comprehensive training in analytical chemistry and its implementation in a variety of fields including biomedical, pharmaceutical, food and environmental analysis.

The programme comprises a broad range of modules covering all the major analytical techniques, complemented by studies in transferable and professional skills, with the option to study aspects of medicinal and pharmaceutical chemistry if desired.

Core study areas include research methods, separation techniques, mass spectrometry and associated techniques, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include sensors, pharmacokinetics and drug metabolism, drug targets, drug design and drug synthesis and innovations in analytical science.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-chemistry/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Separation Techniques
- Pharmacokinetics and Drug Metabolism

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Mass Spectrometry and Associated Techniques
- Drug Targets, Drug Design and Drug Synthesis
- Sensors

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

Careers in a variety of industries including pharmaceuticals, chemicals, food, environmental management, contract analysis laboratories, public laboratories, regulatory authorities and instrument manufacturers in either technical or marketing functions or preliminary study for a PhD.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-chemistry/

Read less
Analytical Toxicology enables students to gain detailed knowledge and understanding of the theory and practice of analytical toxicology and its application. Read more
Analytical Toxicology enables students to gain detailed knowledge and understanding of the theory and practice of analytical toxicology and its application.

Key benefits

- A unique programme that integrates both clinical and forensic toxicology with analytical science.
- Programme content has been developed in consultation with both national and international experts in the field of clinical and forensic toxicology.
- A strong practical element which includes a research project carried out either in industry or within a King’s laboratory, for example, in King’s Drug Control Centre.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/analytical-toxicology-msc.aspx

- Programme modules:

Principles of Analytical Toxicology
Biochemical Toxicology
Clinical & Forensic Toxicology
Advanced Analytical Toxicology
Analytical Research Project

- Course purpose -

To provide graduates with a detailed knowledge and understanding of the theory and practice of analytical toxicology and its application to the best standards of clinical and forensic practice.

- Course format and assessment -

Four taught modules, providing a firm theoretical and practical (laboratory) training in specialist skills. Also an in-depth laboratory-based research project. The assessment of the taught modules is by written examination paper and coursework (practical reports, case studies, poster and oral presentations, essays). The research project is judged on the basis of a written report, poster presentation and mini viva voce.

Career prospects

Expected career paths include analytical and supervisory roles within government and private institutions.

Why study at King's:

• Internationally renowned clinicians and academics
• Largest provider of healthcare professional training in Europe
• Links with industry, health services and policy makers
• Clinical attachment with the best teaching hospitals as part of King’s Health Partners http://www.kingshealthpartners.org
• Integrated inter-professional learning throughout the courses
• Our graduates are highly sought after nationally and internationally
• King’s College London is ranked equal 19th university in the world (2015 QS World University Rankings)
• Located in the heart of London.

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

Read less
Developed in response to the Engineering and Physical Sciences Research Council (EPSRC), and after extensive consultation with industry, this programme is designed for graduates in chemistry or closely related disciplines who wish to contribute to drug development and analysis, a process that requires multidisciplinary skills. Read more
Developed in response to the Engineering and Physical Sciences Research Council (EPSRC), and after extensive consultation with industry, this programme is designed for graduates in chemistry or closely related disciplines who wish to contribute to drug development and analysis, a process that requires multidisciplinary skills.

The programme comprises a broad range of modules covering the major aspects of analytical and pharmaceutical chemistry, complemented by studies in transferable and professional skills.

Core study areas include research methods, separation techniques, pharmacokinetics and drug metabolism, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include mass spectrometry and associated techniques, drug targets, drug design and drug synthesis, sensors, innovations in analytical science and medicinal chemistry.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-pharmaceutical-science/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Separation Techniques
- Pharmacokinetics and Drug Metabolism

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Mass Spectrometry and Associated Techniques
- Drug Targets, Drug Design and Drug Synthesis
- Sensors

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

The programme is for those who wish to extend their knowledge in a particular area or broaden their field in order to increase their career prospects.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-pharmaceutical-science/

Read less
This course aims to provide you with the skills and knowledge of theory and practice that will enable you to work as a professional capable of making important contributions in the field of clinical biochemistry. Read more
This course aims to provide you with the skills and knowledge of theory and practice that will enable you to work as a professional capable of making important contributions in the field of clinical biochemistry. The course aims to further enhance your knowledge of clinical biochemistry, to engage you with contemporary issues and debates within the discipline, and to develop your critical and analytical skills.

The taught programme contains specific modules in Clinical Biochemistry, such as endocrinology and metabolism and diagnostic clinical biochemistry, which you can apply to diagnostic biomedicine, as well as offering you a choice of modules related to molecular diagnostics or haematology.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-CLINICAL ENDOCRINOLOGY AND METABOLISM
-DIAGNOSTIC CLINICAL BIOCHEMISTRY
-MOLECULAR SCIENCE AND DIAGNOSTICS
-POSTGRADUATE RESEARCH METHODS
-POSTGRADUATE PROJECT

Option modules
-AUTOMATION IN BIOMEDICAL SCIENCES
-CELL SIGNALLING AND GENETICS
-CELLULAR HAEMATOLOGY
-COMMUNICATING SCIENCE
-IMMUNOHAEMATOLOGY AND HAEMOSTASIS
-IMMUNOPATHOLOGY
-PRINCIPLES OF MOLECULAR MEDICINE

Associated careers

The course has been designed to provide professionals with a broad range of transferable skills in clinical biomedical sciences, with particular reference to possessing the ability to critically discuss and evaluate concepts, analytical techniques, current research and advanced scholarship in Clinical Biochemistry.

Successful completion of the course will enhance the career prospects of graduates for entering Ph.D programmes; you may find employment in hospital laboratories, academia, research institutes, as well as in the pharmaceutical and related industries.

Professional recognition

The course is accredited by the Institute of Biomedical science (IBMS).

Read less
This course in Industrial Physical Biochemistry provides graduates with an advanced knowledge and understanding of physical biochemistry, with particular relevance to industry. Read more
This course in Industrial Physical Biochemistry provides graduates with an advanced knowledge and understanding of physical biochemistry, with particular relevance to industry. Focusing upon technical knowledge and practical skills, the course is ideal for those wishing to pursue careers in research or develop a leading career in the field of physical biochemistry.

Specialist facilities in the School relevant to Industrial Physical Biochemistry include analytical ultracentrifugation, light scattering, protein and carbohydrate biochemistry, and access to Surface Plasmon Resonance, Atomic Force Microscopy, Fluorescence, X-ray crystallography and NMR facilities.

Computing facilities within the School are excellent. Advice on mathematical analysis, statistical design and computer programming is provided.

You will undertake a taught module (Fundamentals of Biomolecular Science) during the autumn semester with lectures, tutorials and a practical. The research module takes place from the start of the course (late September) until the end of August the following year. This is an opportunity to complete a major piece of independent research under the supervision of a member of academic staff. The project can be undertaken wholly or partially in an industrial company’s laboratory in any field of physical biochemistry. There are also two generic training modules.

Read less
Programme description. This programme offers you an academically-challenging and career-developing study of biological systems at the molecular and cellular level. Read more

Programme description

This programme offers you an academically-challenging and career-developing study of biological systems at the molecular and cellular level.

Biochemistry is fundamental to most areas of life-science; it has a major impact on modern medical research and is essential in the pharmaceutical, nutrition, forensic, bioengineering, agricultural and environmental industries.

The programme is designed to produce highly skilled and motivated biochemists that are suitable for employment in the life-sciences or for further academic research.

You will be taught to apply chemical and physical principles to biological molecules in complex living systems in order to expand your understanding of the molecular basis of the processes which take place within these organisms.

Through a combination of taught courses, practical skills training and laboratory-based research, you will explore the structures, dynamics, interactions and metabolic pathways of biological molecules, from small molecules to large macromolecular complexes.

Programme structure

Teaching and learning activities include:

  • lectures
  • tutorials
  • workshops
  • presentations
  • laboratory work
  • practical skills training and a research project
  • literature and database searching
  • discussion groups and project groups
  • seminars

Students will have practical skills training and will attend problem and computer-based tutorials and workshops.

Research

Those students progressing to MSc level will carry out their own research project at the frontier of knowledge and can make a genuine contribution to the progress of original research. This also involves reviewing relevant papers, analysing data, writing a dissertation and giving a presentation.

Learning outcomes

The programme aims to develop:

  • knowledge and understanding of biochemistry and awareness of the current state of research
  • enhanced practical skills in biochemical methods
  • ability to design, perform and record experiments independently
  • analytical skills to interpret data accurately and critically
  • ability to communicate biochemical information effectively in a wide range of contexts

Career opportunities

You will enhance your career prospects by acquiring knowledge of contemporary biochemistry from world experts in the field, by being trained in advanced analytical and presentation skills, and by having independent research experience in a modern, world-class laboratory.



Read less
Summary. The programme is structured around a solid core comprised of the three main analytical techniques – Mass spectrometry, NMR spectroscopy and X-ray diffraction. Read more

Summary

The programme is structured around a solid core comprised of the three main analytical techniques – Mass spectrometry, NMR spectroscopy and X-ray diffraction. Each of these techniques contains a number of key common themes (data collection, analysis and management). Supporting modules feature further analytical techniques and serve to embed themes of GLP, facility management and enterprise into the programme.

A group analytical project develops interpersonal skills and the ability to work in a team and will be the first opportunity for students to independently fully exercise some of the components of the course taught in the first semester. The integral research project provides an opportunity to explore any of the main themes directly or as part of a collaborative synthetic/analytical investigation.

Visit our website for further information.



Read less
The Pre-Masters in Biomedical Science (Graduate Diploma in Biomedical Science) provides a discipline-specific pathway (a pre-masters year) into the taught Biomedical Blood Science masters level programme. Read more

Overview

The Pre-Masters in Biomedical Science (Graduate Diploma in Biomedical Science) provides a discipline-specific pathway (a pre-masters year) into the taught Biomedical Blood Science masters level programme. It is a one-year full-time programme designed for both home and international students, with a background in life sciences, who wish to study at postgraduate level for the MSc in Biomedical Blood Science. The programme is open to science graduates who do not meet the academic criteria for a direct entry into the MSc. The MSc in Biomedical Blood Science is accredited by the Institute of Biomedical Science (IBMS). The IBMS is the professional body of Biomedical Scientists within the United Kingdom. The IBMS aims to promote and develop the role of Biomedical Science within healthcare to deliver the best possible service for patient care and safety.

See the website https://www.keele.ac.uk/pgtcourses/biomedicalsciencegraduatediploma/

Course Aims

The overall aim is to provide the students with the academic background necessary for the masters programme and to enable them to develop and practise the subject specific academic skills required for the intensive pace of study at masters level. The course also aims to allow international students to benefit from English language support that will help them to develop their academic English language skills.

Intended learning outcomes of the programme reflect what successful students should know, understand or to be able to do by the end of the programme. Programme specific learning outcomes are provided in the Programme Specification available by request; but, to summarise, the overarching course aims are as follows:

- To provide students with core knowledge, understanding and skills relevant to Biomedical Science

- To produce skilled and motivated graduates who are suitably prepared for the MSc in Biomedical Science and for further study.

- To cultivate interest in the biosciences, particularly at the cellular and molecular level, within a caring and intellectually stimulating environment.

- To get an accurate insight into the role of Biomedical Scientists in the diagnosis, treatment and monitoring of disease.

- To develop an understanding of the analytical, clinical and diagnostic aspects of Cellular Pathology, Clinical Biochemistry, Medical Microbiology, Blood Transfusion, Clinical Immunology and Haematology pathology laboratories.

- To promote the development of a range of key skills, for use in all areas where numeracy and an objective, scientific approach to problem-solving are valued.

- To provide students with a wide range of learning activities and a diverse assessment strategy in order to fully develop their employability and academic skills, ensuring both professional and academic attainment.

- To promote the development of critical thinking, autonomous learning, independent research and communication skills to help prepare the students for the MSc in Biomedical Blood Science and for a lifetime of continued professional development.

Course Content

All the modules in this one year programme are compulsory. The programme consists of a total of 90 credits made up of one 30 credit module and four 15 credit modules. An additional English module (English for Academic Purposes) will be offered for non-native English speakers if required. This module will not form part of the overall award, but successful completion is required for progression to the Masters programme.

Modules:
- Biomedical Science and Pathology (30 credits):
The module provides the student with the knowledge and understanding of the pathobiology of human disease associated with Cellular Pathology, Clinical Immunology, Haematology, Clinical Biochemistry, Medical Microbiology and Clinical Virology. It also examines the analytical and clinical functions of three more of the major departments of a modern hospital pathology laboratory, including Haematology, Clinical Pathology, Clinical Immunology, Blood Transfusion, Clinical Biochemistry and Medical Microbiology. In addition, the module will give an accurate insight into the role of Biomedical Scientists and how they assist clinicians in the diagnosis, treatment and monitoring of disease.

- Biochemistry Research Project (non-experimental) (15 credits):
This module aims to introduce students to some of the key non-experimental research skills that are routinely used by biochemists and biomedical scientists, such as in depth literature searching, analysis of experimental data and the use of a computer as tool for both research (bioinformatics) and dissemination of information (web page construction). The student will research the literature on a specific topic, using library and web based resources and will produce a written review. In addition, the student will either process and interpret some raw experimental data provided to them.

- Advances in Medicine (15 credits):
This module will describe and promote the understanding of advances in medicine that have impacted on diagnosis, treatment, prevention of a range of diseases. It will highlight fast emerging areas of research which are striving to improve diagnosis including nanotechnology and new biochemical tests in the fields of heart disease, cancer and fertility investigations which will potentially improve patient care.

- Clinical Pathology (15 credits):
The majority of staff that contribute to the module are employees of the University Hospital of North Staffordshire (UHNS). Students will benefit from lectures and expertise in Clinical Diagnostic Pathology, Pharmacology, Biochemistry, Genetics and Inflammatory Diseases. Students will gain an insight into how patients are managed, from their very first presentation at the UHNS, from the perspective of diagnosis and treatment. The course will cover both standardised testing options and the development of new diagnostic procedures with a particular emphasis on genetic and epigenetic aspects of disease. Students will also gain an appreciation of the cost benefit of particular routes for diagnosis and treatment and the importance of identifying false positive and false negative results. Finally, the students will have the opportunity to perform their own extensive literature review of a disease-related topic that is not covered by the lectures on the course.

- Case Studies in Biomedical Science (15 credits):
This module aims to give you an understanding of the UK health trends and the factors that affect these trends. Through clinical case studies and small group tutorials, you will explore why the UK has some of the highest incidences of certain diseases and conditions in Europe and consider what factors contribute to making them some of the most common and/or rising health problems faced by this country. This will include understanding the relevant socioeconomic factors as well as understanding the bioscience of the disease process and its diagnosis and management. You will also focus on what is being done by Government and the NHS to tackle these major health problems.

- English for Academic Purposes (EAP ):
For non-native English speakers if required

Teaching & Assessment

In addition to the lecture courses and tutorials, problem based learning (PBL) using clinical scenarios is used for at least one module. Students will also be given the opportunity to undertake an independent non-experimental research project, supervised and supported by a member of staff. Web-based learning using the University’s virtual learning environment (KLE) is also used to give students easy access to a wide range of resources and research tools, and as a platform for online discussions and quizzes. Students will be given many opportunities to become familiar with word processing, spreadsheets and graphics software as well as computer-based routes to access scientific literature.

All modules are assessed within the semester in which they are taught. Most contain elements of both ‘in-course’ assessment (in the form of laboratory reports, essays, posters) and formal examination, although some are examined by ‘in-course’ assessment alone.

Additional Costs

Apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for this post graduate programme.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
This programme is designed for graduates in chemistry or closely related discipline who wish to contribute to drug development in the pharmaceutical industry. Read more
This programme is designed for graduates in chemistry or closely related discipline who wish to contribute to drug development in the pharmaceutical industry.

The programme provides training in pharmacokinetics, drug metabolism, drug synthesis, methods to identify potential drug targets and drug candidates, and methods to assess the biological activities of drug compounds.

Additional modules cover the key techniques in analytical chemistry used to support the pharmaceutical sciences.

Core study areas include research methods, pharmacokinetics and drug metabolism, drug targets, drug design and drug synthesis, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include separation techniques, mass spectrometry and associated techniques, innovations in analytical science and medicinal chemistry.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/pharmaceutical-science-medicinal-chemistry/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Pharmacokinetics and Drug Metabolism
- Drug Targets, Drug Design and Drug Synthesis

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Separation Techniques
- Mass Spectrometry and Associated Techniques

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

Careers in a variety of industries, particularly the pharmaceutical and related industries, including drug metabolism, medicinal chemistry (organic synthesis), drug screening (action / toxicity), patents and product registration; also as preliminary study for a PhD.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/pharmaceutical-science-medicinal-chemistry/

Read less
​Professionally accredited by the Institute of Biomedical Science (IBMS), the course aims to provide a high quality and professionally relevant postgraduate programme focussing on the theoretical knowledge and the practice of Biomedical Science. Read more

Course Overview

​Professionally accredited by the Institute of Biomedical Science (IBMS), the course aims to provide a high quality and professionally relevant postgraduate programme focussing on the theoretical knowledge and the practice of Biomedical Science.

Your personal and professional understanding of Biomedical Science will be enhanced through an academically coherent programme of directed and self-directed learning. This will empower you to engage in and critically evaluate relevant contemporary issues through the application and theoretical analysis of practical laboratory based activities and research at Postgraduate level.

See the website https://www.cardiffmet.ac.uk/health/courses/Pages/Biomedical-Science---MSc.aspx

​Course Content​​

The programme will emphasise the development of analytical and critical skills and on problem identification and analysis within a Biomedical Sciences context. You will be taught by a team of experienced academics, researchers and professionally qualified staff. A number of the teaching team are also HCPC registered Biomedical Scientists.

Core modules are as follows:
- Molecular Biology
- Immunology
- ​Analytical and Diagnostic Techniques
- Research Methods in Biomedical Sciences

Option modules include:
- Medical Biochemistry and Advanced Topics in Medical Biochemistry
- Immunohaematology and Advanced Topics in Immunhaematology
- Medical Microbiology and Advanced Topics in Medical Microbiology and Infection
- Cellular and Molecular Pathology and Advanced Topics in Cellular and Molecular Pathology

Please note there is no guarantee that all modules will be offered every year. Provision is subject to student numbers and viability. An additional three modules are required for the research dissertation.

If you are admitted to the Master's scheme but subsequently are unable or not permitted to progress, you may, depending upon the number of credits attained at the time of exit, qualify for one of the following awards:
- Postgraduate Certificate (PgC): No fewer than 60 credits
- Postgraduate Diploma (PgD): No fewer than 120 credits
- Master of Science (MSc): No fewer than 180 credits

Candidature for the MSc is five years for part-time students i.e. the course must be completed and dissertation submitted within five years of registering.

Learning & Teaching​

​A variety of teaching strategies are employed to reflect the following:
- the requirements of the particular topic
- the existence of background experience within the group
- the level and type of study required at level 7

Lectures are the most prevalent teaching method for the introduction to module material, where the major function is to provide a basic framework, to generate interest in the subject concerned and to explain complex points. Lectures are complemented by tutorial sessions designed to encourage a more detailed examination of issues. Students are issued, in their module handbook, with a programme schedule of topics to be covered in lectures and supporting tutorials for all subjects, along with lists of references to guide their supplementary reading. The VLE will also host supporting materials.

Tutorials and related small group work is an important part of teaching and learning. It encourages the depth of discussion and application appropriate to higher degree work. The major aim is to develop skills related to thinking, discussion and presentation of information. It helps to develop analytical and critical appraisal skills.

Practical Work/Demonstration sessions in certain modules, such as Analytical and Diagnostic Techniques, Molecular Biology and the Dissertation, complement and extend the theoretical aspects of study and help to develop the students' skills of investigation, analysis, critical evaluation and reflection.

Case Studies are used throughout the programme as a means of encouraging students to apply their theoretical knowledge of biomedical science to real patients and thus take a holistic view of diagnostic medicine. Real cases are used and students are encouraged to integrate knowledge from a number of modules and to reflect on the possible outcomes
In addition to the contact hours per modules (approx. 40 hours per 20 credit module) the student will be expected to undertake a certain number of student led hours (approx. 160 per 20 credit module) to achieve an overall 200 hours of student effort per 20 credit module.

- Academic Support
Students are supported at each stage of learning and assessment. The Programme Director is responsible for overall academic management of the programme and support for the student. Module Leaders are responsible for academic guidance and support for each module offered and for academic feedback on student progress. The Project Manager is responsible for all the process regarding the project work and the dissertation. Personal tutorials will be arranged with your Personal tutor throughout the programme, and if you are experiencing any difficulties with your study for example problems with coursework or preparation for examinations, then there will always be a member of staff - the Programme Director, Module Leader or personal tutor available to assist you.

Assessment

It is recognised that assessment is a necessary part of an evaluation of a student's suitability for an award and involves testing and developing the higher-level cognitive skills of analysis, synthesis and evaluation. For this reason, assessment is designed to measure the extent to which the student is able to satisfy the intended learning outcome of each module. The learning outcomes are assessed within the modules through a variety of methods including:
- unseen examinations
- essays
- practical based laboratory exercises
- laboratory reports
- case studies
- poster presentation
- case study presentation
- abstract writing and journal article reviews

Time limited examinations are seen as an end of module check on student academic attainment in certain modules where a detailed understanding of contemporary scientific thinking, often research lead, is deemed to be an essential currency.

In addition, assignments are used either in addition to or as an alternative to written examinations in certain modules where they best reflect breadth of understanding.

The assessment schedule for the taught modules will be supplied by the programme director at the beginning of the programme. The module leader will supply the assessment titles and guidelines/criteria to undertake the assignments and provide feedback to the students.

Employability & Careers​

The course will prepare you for the next stage of your career, whether pursuing further research, or professional study, or entering employment in the field of Biomedical Science. The course will also enhance the career prospects of those aspiring to middle and senior management positions within the NHS Pathology Service and the commercial sector.

Find information on Scholarships here https://www.cardiffmet.ac.uk/scholarships

Find out how to apply here https://www.cardiffmet.ac.uk/howtoapply

Read less
The School of Life Science has developed an extremely active and successful undergraduate, Biomedical Science programme. We have embraced specialists working in local NHS Trusts to develop outstanding, collaborative relationships covering key diagnostic and clinical specialties. Read more

Overview

The School of Life Science has developed an extremely active and successful undergraduate, Biomedical Science programme. We have embraced specialists working in local NHS Trusts to develop outstanding, collaborative relationships covering key diagnostic and clinical specialties. Not only do students benefit from the inclusion of such specialist practitioners onto our teaching programmes, but could also be offered highly competitive research opportunities working within the hospital itself.

This MSc programme builds on this wealth of experience and best practice to enable well-qualified students to develop their scientific training and employability skills within a Biomedical context. The need for innovation and a multidisciplinary approach to Biomedical Science has never been more important. The teaching strategies embedded within this programme embrace these principles in its pursuit of Clinical Biochemistry, Medical Immunology and Haematology.

IBMS Accreditation

This programme is accredited by the Institute of Biomedical Science (IBMS) as the professional body of Biomedical Scientists within the United Kingdom. The IBMS aims to promote and develop the role of Biomedical Science within healthcare to deliver he best possible service for patient care and safety.

Accreditation is a process of peer review and recognition by the profession of the achievement of quality standards for delivering Masters level programmes.

Individuals awarded a Masters degree accredited by the Institute are eligible for the title of Chartered Scientist and the designation CSci if they meet the other eligibility criteria of corporate membership and active engagement in Continued Professional Development. A Masters level qualification is also one of the entry criteria for the Institute’s Higher Specialist Examination and award of the Higher Specialist Diploma, a pre-requisite for the membership grade of Fellowship and designation FIBMS.

The aim of IBMS accreditation is to ensure that, through a spirit of partnership between the Institute and the University, a good quality degree is achieved that prepares the student for employment in circumstances requiring sound judgement, critical thinking, personal responsibility and initiative in complex and unpredictable professional environments.

The Institute lists 10 advantages of IBMS accreditation:
1. Advances professional practice to benefit healthcare services and professions related to biomedical science.

2. Develops specific knowledge and competence that underpins biomedical science.

3. Provides expertise to support development of appropriate education and training.

4. Ensures curriculum content is both current and anticipatory of future change.

5. Facilitates peer recognition of education and best practice and the dissemination of information through education and employer networks.

6. Ensures qualification is fit for purpose.

7. Recognises the achievement of a benchmark standard of education.

8. The degree award provides access to professional body membership as a Chartered Scientist and for entry to the Higher Specialist Diploma examination.

9. Strengthens links between the professional body, education providers employers and students.

10. Provides eligibility for the Higher Education Institution (HEI) to become a member of HUCBMS (Heads of University Centres of Biomedical Science)

See the website https://www.keele.ac.uk/pgtcourses/biomedicalbloodscience/

Course Aims

The main aim of the programme is to provide multidisciplinary, Masters Level postgraduate training in Biomedical Blood Science. This will involve building on existing, undergraduate knowledge in basic science and applying it to clinical, diagnostic and research applications relevant to Clinical Biochemistry, Medical Immunology and Haematology.

Intended learning outcomes of the programme reflect what successful students should know, understand or to be able to do by the end of the programme. Programme specific learning outcomes are provided in the Programme Specification available by request, but to summarise the overarching course, aims are as follows:

- To develop students’ knowledge and understanding of different theoretical perspectives, methodological approaches, research interests and practical applications within Blood Science

- To explore and explicitly critique the clinical, diagnostic and research implications within the fields of Clinical Biochemistry,

- Medical Immunology and Haematology, and to place this in the context of a clinical laboratory, fully considering the potential implications for patients, health workers and research alike

- To develop a critical awareness of Biomedical ethics and to fully integrate these issues into project management including grant application and business planning

- To support student autonomy and innovation by providing opportunities for students to demonstrate originality in developing or applying their own ideas

- To direct students to integrate a complex knowledge base in the scrutiny and accomplishment of professional problem-solving scenarios and project development

- To enable student acquirement of advanced laboratory practical competencies and high level analytical skills

- To promote and sustain communities of practice that allow students to share best practice, encourage a multidisciplinary approach to problem-solving and to develop extensive communication skills, particularly their ability to convey complex, underpinning knowledge alongside their personal conclusions and rationale to specialist and nonspecialist listeners

- To provide students with a wide range of learning activities and a diverse assessment strategy in order to fully develop their employability and academic skills, ensuring both professional and academic attainment

Course Content

This one year programme is structured so that all taught sessions are delivered in just two days of the working week. Full-time students are expected to engage in independent study for the remaining 3 days per week. Consolidating taught sessions in this way allows greater flexibility for part-time students who will be expected to attend one day a week for two academic years, reducing potential impact in terms of workforce planning for employers and direct contact for students with needs outside of their academic responsibilities.

Semester 1 will focus on two main areas, the first being Biomedical ethics, grant application and laboratory competencies. The second area focuses on the clinical and diagnostic implications of Blood Science for patients and health workers, with the major emphasis being on Clinical Biochemistry.

Semester 2 will also focus on two main themes; firstly, business planning methodological approaches, analytical reasoning and research. Secondly, the clinical and diagnostic implications of Blood Science for patients and health workers, with the major emphasis being on Haematology and Immunology.

Compulsory Modules (each 15 credits) consist of:
- Biomedical Ethics & Grant Proposal
- Project Management & Business Planning
- Advanced Laboratory Techniques*
- Research Methodologies *
- Case Studies in Blood Science I
- Case Studies in Blood Science II
- Clinical Pathology I
- Clinical Pathology II

*Students who have attained the IBMS Specialist Diploma and are successfully enrolling with accredited prior certified learning are exempt from these two modules.

Dissertation – Biomedical Blood Science Research Project (60 credits)

This research project and final dissertation of 20,000 words is an excellent opportunity for students to undertake laboratory based research in their chosen topic and should provide an opportunity for them to demonstrate their understanding of the field via applications in Biomedical Science. Biomedical Science practitioners are expected to complete the laboratory and data collection aspects of this module in conjunction with their employers.

Requirements for an Award:
In order to obtain the Masters degree, students are required to satisfactorily accrue 180 M Level credits. Students who exit having accrued 60 or 120 M Level credits excluding the ‘Dissertation – Biomedical Blood Science Research Project’ are eligible to be awarded the Postgraduate Certificate (PgC) and Postgraduate Diploma (PgD) respectively

Teaching and Learning Methods

This programme places just as much emphasis on developing the way in which students approach, integrate and apply new knowledge and problem-solving as it is with the acquisition of higher level information. As such, particular emphasis is placed on developing critical thinking, innovation, reflective writing, autonomous learning and communication skills to prepare candidates for a lifetime of continued professional development.

The teaching and learning methods employed throughout this programme reflect these principles. For example, there is greater emphasis on looking at the subject from a patient-orientated, case study driven perspective through problem-based learning (PBL) that encourages students to think laterally, joining up different pieces of information and developing a more holistic level of understanding.

Assessment

The rich and varied assessment strategy adopted by this programme ensure student development of employability
and academic skills, providing an opportunity to demonstrate both professional and academic attainment. Assessment design is
largely driven by a number of key principles which include: promotion of independent learning, student autonomy, responsibility for personal learning and development of innovation and originality within one’s chosen area of interest. Note that not all modules culminate in a final examination.

Additional Costs

Apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for this post graduate programme.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
​The programme is approved by the Health and Care Professions Council (HCPC) and is accredited by the British Dietetic Association. Read more

Course Overview

​The programme is approved by the Health and Care Professions Council (HCPC) and is accredited by the British Dietetic Association. It enables nutrition graduates to study dietetics so that they can apply to the HCPC to register as a Dietitian at Postgraduate Diploma or MSc level.

The Postgraduate Diploma programme is closely aligned to the BSc (Hons) Human Nutrition and Dietetics programme and contains three compulsory placements in NHS Dietetics Departments in Wales.

Students exiting with the Postgraduate Diploma can return to undertake the dissertation on a part-time basis to gain the MSc Dietetics.

Applications for September 2016 entry open October 2015. Deadline for applications: 15th January 2016.

See the website https://www.cardiffmet.ac.uk/health/courses/Pages/Dietetics---MSc-PgD-.aspx

Entry Requirements​

Applicants should have an honours degree (1st class or 2:1) in human nutrition, or a degree that includes nutrition in the awards title, with sufficient emphasis on physiology and biochemistry (50 credits in total required, with at least 20 credits in human physiology and 20 credits in human biochemistry).

It is also preferable for candidates to have 10 credits in sociology and 10 credits in psychology, however this can be taken alongside other modules on the programme if successful.

Students should have completed their degree not more than five years before their proposed entry to this Masters.
Applicants who have a first or upper second-class honours degree in nutrition, which does not contain either sufficient biochemistry or physiology (but not both), can undertake further relevant modules at undergraduate level, prior to applying for the programme.

Applicants who do not have a degree award in nutrition (1st or 2:1) but meet the requirements for biochemistry and physiology, will need to undertake a further relevant taught course of study to at least to postgraduate diploma level prior to applying for the course.

Applicants who speak English as a second language must have adequate command of English, with an IELTS score of 7, with at least 6.5 in all elements.

​Course Content​​

During the programme students are educated to be responsive practitioners, able to adapt to the changing needs of society. The course is designed to produce critically thinking and reflective professionals who have comprehensive theoretical knowledge, along with a spirit of enquiry and an analytical and creative approach to problem solving.

The programme has two main parts; the Postgraduate Diploma and MSc.

Postgraduate Diploma in Dietetics:
This part contains the taught academic element, which is closely aligned to the BSc (Hons) Human Nutrition and Dietetics programme and three periods of practical training. On completion students can graduate with a Postgraduate Diploma in Dietetics, which leads to eligibility to apply to the HCPC to register as a Dietitian.

MSc:
Students can undertake the dissertation to obtain MSc Dietetics, which can be achieved straight after the Postgraduate Diploma element. On completion students can be awarded MSc Dietetics, which also leads to eligibility to apply to the HCPC to register as a Dietitian. Alternatively the dissertation can be taken after being awarded the Postgraduate Diploma, within 5 years of initial enrolment; this can be taken on a part-time basis.

The taught academic part of the course contains six modules at Level 7 (Masters). In addition, students study professional body modules (level 5) in order to fulfil the requirements of the Health and Care Professions Council and the British Dietetic Association curriculum guidelines.

Learning & Teaching​

​The taught element of the programme involve lectures, tutorials and practical work. Tutorials are mainly case study based where students apply the theoretical knowledge gained in lectures to problem solve case scenarios. Practical sessions are either food based, involve giving presentations or practice in consultation skills. The practicals take place in the specialist food facilities and the clinical simulation suite.

It is expected that students undertake independent reading and self-study; this is aided by the use of Moodle, the Virtual Learning Environment in use at the University.

In addition students undertake 3 periods of practical training in NHS Dietetics departments in Wales. Full preparation is given prior to the placements and students are supported and visited during the placements by Dietetic Academic staff.

All students are allocated a personal tutor who offers pastoral support and guides the student through personal development planning.

Assessment

Each module is assessed by examination and/or assignment. All the modules are externally assessed. The clinical training placements have to be successfully completed to proceed and graduate.

Employability & Careers​

Dietitians normally begin their career in the National Health Service where they progress to the main clinical grades. The opportunity exists for specialisation in various aspects of dietetics by means of post-registration education. In addition there are opportunities for dietitians to be involved in health education/promotion, education, research and journalism.

Find out how to apply here https://www.cardiffmet.ac.uk/howtoapply

Read less
The MSc Pharmaceutical Sciences programme was developed in response to the need for enhanced skills by employees within pharmaceutical research, development or manufacturing. Read more

The MSc Pharmaceutical Sciences programme was developed in response to the need for enhanced skills by employees within pharmaceutical research, development or manufacturing.

The programme will generate graduates with in-depth theoretical knowledge and extensive laboratory skills, allowing students to be involved in many disciplines of pharmaceutical sciences from drug discovery and medicinal chemistry through to product development and manufacture and including pharmaceutical analysis, quality control and quality assurance.

Teaching and learning methods

Delivery on this programme involves a series of lectures, seminars, workshops and lab-based exercises. Many of the lectures on this programme are delivered by leading industrial experts. Problem-based learning and case studies will provide students with experience of team-working that simulates an industrial setting. Students will develop team-working, critical thinking and analytical problem solving abilities which are important in the modern pharmaceutical industry.

Research project

The main part of the programme is a research project that runs over the whole academic year and gives students the opportunity to work with modern research equipment to carry out novel research. Project work will help students enhance practical skills, analytical thinking, time management, communication skills and independence.

Outcomes

The aims of the programme are to:

  • Acquire a sound core knowledge base together with knowledge of a specialist area of pharmaceutical sciences to support current and future developments of pharmaceutical and related sciences
  • Enhance students' critical, analytical, practical and communication skills relevant to the modern, multidisciplinary pharmaceutical industry
  • Develop research skills in terms of: planning, conducting, evaluating and reporting the results of investigations
  • Gain the knowledge and skills necessary to solve a range of pharmaceutical drug development and processing problems
  • Enable students to use and develop advanced theories and develop novel concepts to explain pharmaceutical development and processing data.

Visit the website http://www.gre.ac.uk/pg/engsci/mps

What you'll study

Full time

Students are required to study the following compulsory courses:

Colloids and Structured Materials in Formulations (30 credits)

Drug Discovery and Medicinal Chemistry (30 credits)

English Language Support (for Postgraduate students in the Faculty)

Analytical Methods and QA/QC Principles (30 credits)

MSc Pharmaceutical Sciences Research Project (60 credits)

Modern Pharmaceutical Technologies and Process Engineering (30 credits)

Part time

- Year 1:

Students are required to study the following compulsory courses:

English Language Support (for Postgraduate students in the Faculty)

Analytical Methods and QA/QC Principles (30 credits)

Modern Pharmaceutical Technologies and Process Engineering (30 credits)

- Year 2:

Students are required to study the following compulsory courses.

Colloids and Structured Materials in Formulations (30 credits)

Drug Discovery and Medicinal Chemistry (30 credits)

MSc Pharmaceutical Sciences Research Project (60 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:

- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)

- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

Students are assessed through examinations, coursework and a dissertation.

Career options

Graduates from this programme can pursue careers in the NHS, the pharmaceutical industry or industries manufacturing other health care products.

Find out how to apply here - https://www.gre.ac.uk/study/apply



Read less
Sunderland is ranked sixth in the UK for pharmacy and pharmacology, according to The Guardian University Guide 2013. This Masters is one of the few in the UK that covers biopharmaceuticals as well as pharmaceuticals. Read more
Sunderland is ranked sixth in the UK for pharmacy and pharmacology, according to The Guardian University Guide 2013.

Course overview

This Masters is one of the few in the UK that covers biopharmaceuticals as well as pharmaceuticals. The course covers drug delivery systems for large molecules such as proteins, genes and anticancer drugs that offer innovative ways to improve the health and wellbeing of our society.

The course also covers advanced formulations and delivery of small drug molecules. There is a focus on nanotechnology, dosage forms, pharmacokinetics and statistical methods used in data analysis.

Our supportive tutors will guide the development of rigorous approaches to research including sound methodologies, good manufacturing practice, high laboratory standards and effective communication of results.

Your Masters research project will be supervised by an expert in the relevant field, possibly in collaboration with a pharmaceutical company or research institution.

This course is particularly relevant if you plan to undertake a PhD in the area of pharmaceutical sciences, biopharmaceuticals or drug delivery. It is also suitable if you are considering, or already involved in, a career in pharmaceutical-related industries, hospitals or research institutions.

Pharmacy is a particular area of strength at the University of Sunderland. We have worked with GlaxoSmithKline for over 20 years and Pfizer has funded research projects at Sunderland for over 10 years.

Course content

The course mixes taught elements with independent research and self-directed study. There is flexibility to pursue personal interests in considerable depth, with guidance and inspiration from Sunderland's supportive tutors. Modules on this course include:
-Dosage Forms and Pharmacokinetics (20 Credits)
-Delivering Gene and Therapeutic Proteins (20 Credits)
-Essential Research and Study Skills (20 Credits)
-Research Manipulation (20 Credits)
-Nanotechnology (20 Credits)
-Bioinformatics (20 Credits)
-Research Project (60 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, seminars, problem-based learning, laboratory work, group work and visits to relevant companies. We also welcome guest speakers from the pharmaceutical industry who deliver guest lectures and seminars.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working. Assessment methods include written examinations, online tests and coursework, which includes oral and poster presentations.

Facilities & location

Sunderland's exceptional facilities include state-of-the-art equipment for pharmaceutics, synthetic, analytical and medicinal chemistry and pharmacology.

Facilities for Chemistry
We’ve recently spent £1 million on our new state-of-the-art analytical equipment. The analytical suite contains equipment which is industry-standard for modern clinical and pharmaceutical laboratories. Our state-of-the-art spectroscopic facility allows us to investigate the structures of new molecules and potential medicinal substances. We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LCNMR/MS) platforms; this is an exceptional facility for a university. We also have low and high-resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment.

Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures. You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography and Gas Chromatography for separating unknown chemical mixtures.

Facilities for Pharmaceutics and Pharmacology
Our highly technical apparatus will help you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects. In addition to equipment for standard pharmacopoeial tests, such as dissolution testing, friability and disintegration, we also have highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

We also have equipment for wet granulation, spray drying, capsule filling, tablet making, powder mixing inhalation, film coating and freeze drying.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical sciences, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles. Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PsycINF, which includes information about the psychological aspects of medicine, psychiatry, nursing, sociology, pharmacology and physiology
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Employment & careers

On completing this course you will be equipped with the skills and understanding needed for Research & Development roles with employers such as:
-Pharmaceutical and biopharmaceutical companies
-Medical research institutes
-Hospitals

Salaries for senior pharmacologists range from £35,000 to around £80,000. Clinical laboratory scientists earn an average of £36,000. A Masters degree will also enhance opportunities in academic roles or further study towards a PhD.

Read less
The PgDip/MSc Forensic Science concentrates on practices, procedures and analytical techniques used within forensic science, and how they are applied in support of the investigation of crime and the criminal justice system as a whole. Read more
The PgDip/MSc Forensic Science concentrates on practices, procedures and analytical techniques used within forensic science, and how they are applied in support of the investigation of crime and the criminal justice system as a whole.

Course details

This course is accredited by The Chartered Society of Forensic Sciences.On completing this course you will be able to demonstrate an in-depth knowledge of forensic science and how scientific methods are applied to the investigation of crime. You benefit from our links with practitioners and other professional organisations relevant to the field of forensic science. Key members of staff are former forensic scientists or crime scene scientists with considerable operational experience.Expect to carry out analytical and practical work in the University’s on-campus forensic facilities including specialist analytical laboratories, crime scene house laboratory and forensic chemistry and biology laboratories. Watch a short video and hear what Matthew Grima, a former student, says about this course.

Professional accreditation

The Forensic Science Society This course has been accredited and commended by the Chartered Society of Forensic Sciences - the international professional body for forensic science.

What you study

For the PgDip award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete the 120 credits of taught modules and a 60-credit master's research project.

PgDip and MSc core modules
-Advanced Analytical Techniques
-Forensic Biology
-Forensic Chemistry
-Forensic Investigative Strategy
-Legal Issues and Evidence Reporting
-Research Methods and Proposal

MSc only
-Research Project

Modules offered may vary.

Teaching

The course provides a number of contact teaching and assessment hours (through lectures, tutorials, projects, assignments and laboratory work).

You are also expected to spend time on your own (this is called self-study time), to review lecture notes, prepare course work assignments, work on projects and revise for assessments.

As an example, each 20-credit module typically has around 200 hours of learning time.

On this programme you complete a project related to professional practice. This, along with the involvement of practitioners and academics in the delivery of these courses, ensures that they are relevant to the requirements of the criminal justice system.

Modules are assessed by in-course assignments, including a courtroom-based expert witness assessment and end exams.

Career opportunities

Employment opportunities exist in the field of forensic science and forensic investigation with forensic science providers and law enforcement agencies. Other roles include scientific investigation where the application of science in a legal or regulatory context is important.

This MSc programme has been accredited and commended by the Chartered Society of Forensic Sciences, the international professional body for forensic science.

Read less

Show 10 15 30 per page



Cookie Policy    X