• Cardiff University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Coventry University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Coventry University Featured Masters Courses
University of Reading Featured Masters Courses
Bath Spa University Featured Masters Courses
"amphibians"×
0 miles

Masters Degrees (Amphibians)

  • "amphibians" ×
  • clear all
Showing 1 to 7 of 7
Order by 
Taught at our Parkgate Road Campus in Chester, this is a research-focused Master's training course in Wildlife Behaviour and Conservation. Read more
Taught at our Parkgate Road Campus in Chester, this is a research-focused Master's training course in Wildlife Behaviour and Conservation.

Robust scientific evidence is a critical tool for conservation scientists responding to the challenges of mitigating biodiversity loss. This course focuses on developing investigative research skills while addressing applied questions in wildlife behaviour and conservation.

The course provides a strong foundation, giving you the opportunity to develop a career in academic or applied wildlife science. Our lecturers work with a diverse range of study species, including mammals, birds, fish, amphibians and invertebrates, both in the wild and ex situ. Members of the team are recognised as conservation specialists by the International Union for Conservation of Nature, and manage two European Endangered Species Programmes.

Why Study Biological Sciences: Wildlife Behaviour and Conservation with us?

Our lecturers work with a diverse range of study species, including mammals, birds, fish, amphibians and invertebrates, both in the wild and ex situ. Members of the team are recognised as conservation specialists by the International Union for Conservation of Nature, and manage two European Endangered Species Programmes.

Your project will contribute directly to one of our partnerships with national and international in situ and ex situ conservation programmes.

Your individual supervisor will guide your acquisition of professional skills and facilitate networking and engagement in your specialist field. Our proactive, diverse and expanding research community provides extensive opportunities for peer-learning and collaboration in conservation research.

What will I learn?

A compulsory wildlife research methods taught module provides advanced training in core specialisations, including project design, field techniques, statistical analysis and geographical information systems.

You will select a further taught specialist module relevant to your research project, which may include conservation genetics, wildlife behaviour or wildlife health.

The individual research project is undertaken throughout the year and is the primary focus of this course.

How will I be taught?

Teaching is delivered through lecturers, laboratory practicals, field trips and seminars supplemented by online materials such as discussion boards and analytical exercises.

You will contribute to research seminars, a journal club and tutorials.
Modules consist of 32 hours of taught activities and 168 hours of self study.

How will I be assessed?

Taught modules are assessed through coursework assignments.

The dissertation projects consists of at least 1,400 hours' study to produce a paper suitable for peer review publication.

Study Abroad Opportunities

Students apply to specific projects which change on an annual basis, but in recent years studies have studied in Ghana, Cambodia, the Philippines, across Europe and in the UK.

Postgraduate Visit Opportunities

If you are interested in this courses we have a number of opportunities to visit us and our campuses. To find out more about these options and to book a visit, please go to: https://www1.chester.ac.uk/study/postgraduate/postgraduate-visit-opportunities

Request a Prospectus

If you would like to know more about the University please request a prospectus at: http://prospectus.chester.ac.uk/form.php

Read less
This research area has grown enormously over the last decade and now embodies a number of disciplines. At Nottingham we adopt an integrated approach in which several strategies are developed to address particular problems in Cell Biology. Read more
This research area has grown enormously over the last decade and now embodies a number of disciplines. At Nottingham we adopt an integrated approach in which several strategies are developed to address particular problems in Cell Biology. Projects are available to study how the unlimited potential of primordial germ cells is governed at a molecular level during development in representative species such as amphibians and mice. Within the cell important processes are governed by the structures and dynamics of numerous macromolecules. Projects are offered to directly visualize macromolecular behaviour with a view to elucidating cellular function. These studies examine protein-protein, protein-membrane and receptor-mediated interactions within cells using state-of-the-art imaging systems.

APPLICATION PROCEDURE

After identifying which Masters you wish to pursue please complete an on-line application form
http://www.nottingham.ac.uk/pgstudy/apply/apply-online.aspx
Mark clearly on this form your choice of course title, give a brief outline of your proposed research and follow the automated prompts to provide documentation. Once the School has your application and accompanying documents (eg referees reports, transcripts/certificates) your application will be matched to an appropriate academic supervisor and considered for an offer of admission.

COURSE STRUCTURE
The MRes degree course consists of two elements:
160 credits of assessed work. The assessed work will normally be based entirely on a research project and will be the equivalent of around 10 ½ months full-time research work. AND
20 credits of non-assessed generic training. Credits can be accumulated from any of the courses offered by the Graduate School. http://www.nottingham.ac.uk/gradschool/research-training/index.phtml The generic courses should be chosen by the student in consultation with the supervisor(s).

ASSESSMENT
The research project will normally be assessed by a dissertation of a maximum of 30,000 to 35,000 words, or equivalent as appropriate*. The examiners may if they so wish require the student to attend a viva.
*In consultation with the supervisor it maybe possible for students to elect to do a shorter research project and take a maximum of 40 credits of assessed modules.

The School of Life Sciences will provide each postgraduate research student with a laptop for their exclusive use for the duration of their studies in the School.

SCHOLARSHIPS FOR INTERNATIONAL STUDENTS
http://www.nottingham.ac.uk/studywithus/international-applicants/scholarships-fees-and-finance/scholarships/masters-scholarships.aspx

Read less
This taught Masters degree is designed for those wishing to pursue a career in conservation management or ecological consultancy, professions which increasingly require postgraduate qualification for establishment and progression. Read more
This taught Masters degree is designed for those wishing to pursue a career in conservation management or ecological consultancy, professions which increasingly require postgraduate qualification for establishment and progression. The course puts a high emphasis on practical field experience for managing habitats, monitoring species and developing biological identification skills for plants, invertebrates and vertebrates. These activities are allied to a clear theoretical framework underpinning ecology and conservation practice. We welcome applications from recent graduates, experienced consultants, conservation workers or those seeking a career change.

What will I study?

This Conservation Management course combines the expertise of the field biologist with practical experience of managing habitats. A firm emphasis is placed on fieldwork, biological identification skills and experience of a broad range of management issues.

You will develop laboratory skills including microscopy for bryophyte and invertebrate identification and soil analysis techniques. Identification skills gained will range from plants to invertebrates, mammals, amphibians and birds.

You will learn to write in a concise scientific style, construct arguments, consider ethical issues of ecological work, analyse and interpret data and synthesise scientific literature. These skills are highly desirable in ecological consultancy and conservation research.

Ethics is also an important feature of conservation management, for instance in the collection of voucher specimens. Consideration of ethical issues is given in each module, where appropriate, alongside legal issues.

How will I study?

Fieldwork is an integral part of many modules and is used to provide a multitude of experiences across species, habitats and conservation issues. A variety of local sites are used including dunes, meadows and forests. The programme includes a residential field course. Field trip costs are included within course fees.

In small classes, lecture-style sessions and practical work are designed to develop subject-specific skills, clarify concepts, raise questions and collect data. Follow-up seminars may consider analysis, data presentation, qualitative observations, elucidation of trends, and integration with theoretical ideas.

How will I be assessed?

The course has a variety of assessment methods which are designed to develop the full range of skills and expertise relevant to the subject. These include a research thesis, scientific reports, voucher specimen collections, vegetation portfolios, field-based management plans and examinations.

Who will be teaching me?

The course is taught by a small friendly team who have considerable teaching and research experience in the area. All staff are research active which means that they keep up-to-date with current developments in their areas of interest and pass this knowledge onto their students. Staff expertise includes forest and grassland conservation, habitat restoration, sustainable management of ecosystems, remote sensing in ecology and conservation genetics.

What are my career prospects?

This MSc will equip you with the knowledge and skills required for a successful career in conservation or ecological consultancy. To date, graduates of the course have been employed by a range of non-governmental organisations (for example, Wildlife Trusts, Wildfowl and Wetlands Trust, Royal Society for the Protection of Birds (RSPB), and National Trust), governmental organisations (Natural England) and consultancies (including Atkins UK, Jacob’s Ecology, and Avian Ecology). Graduates have also progressed into conservation research, working for the Centre for Ecology and Hydrology and at various universities.

Read less
This is a full-time research-based postgraduate degree, run jointly by Imperial College London and the Natural History Museum, London. Read more
This is a full-time research-based postgraduate degree, run jointly by Imperial College London and the Natural History Museum, London.

OPEN DAY

visit the course pages for more information about the next Open Day at NHM on Wednesday 7 June 2017.

OUTLINE

Taxonomy and systematics provide the foundation for studying the great diversity of the living world. These fields are rapidly changing through new digital and molecular technologies. There is ever greater urgency for species identification and monitoring in virtually all the environmental sciences, and evolutionary ‘tree thinking’ is now applied widely in most areas of the life sciences. These courses provide in-depth training in the study of biodiversity based on the principles of phylogenetics, evolutionary biology, palaeobiology and taxonomy. The emphasis is on quantitative approaches and current methods in DNA-based phylogenetics, bioinformatics, and the use of digital collections.

LOCATION

The course is a collaboration of Imperial College London (Silwood Park) with the Natural History Museum. This provides an exciting scientific environment of two institutions at the forefront of taxonomic and evolutionary research.

[[SYLLABUS ]]
The MRes in Biosystematics features hands-on research projects that cover the main methodological approaches of modern biosystematics. After 6 weeks of general skills training, students will ‘rotate’ through three research groups each conducting a separate 14-week project in specimen-based phylogenetics, molecular systematics/genomics, and bioinformatics. The projects may be of the student’s own design. Students attend small group tutorials, lab meetings and research seminars.

TRANSFERABLE SKILLS]

The GSLSM (Graduate School of Life Sciences and Medicine) at Imperial College London provides regular workshops covering a wide range of transferable skills, and MRes students are encouraged to undertake at least four during the year. Topics include: Applied Writing Skills, Creativity and Ideas Generation, Writing for Publication, Introduction to Regression Modelling, Introduction to Statistical Thinking.

RECENT PROJECTS

MORPHOLOGICAL

The Natural History Museum’s Dorothea Bate Collection of dwarfed deer from Crete: adaptation and proportional size reduction in comparison with larger mainland species
Cambrian lobopodians and their position as stem-group taxa
Atlas of the Caecilian World: A Geometric Morphometric perspective
Tooth crown morphology in Caecilian amphibians
Morphometrics of centipede fangs: untapping a possible new source of character data for the Scolopendromorpha
Phylogeny of the Plusiinae (Lepidoptera: Noctuidae): Exploring conflict between larvae and adults
A comparison between species delineation based on DNA sequences and genital morphometrics in beetles (Coleoptera)

MOLECULAR

Geographical distribution of endemic scavenger water beetles (Hydrophilidae) on the island of Madagascar based on DNA sequence data
Cryptic diversity within Limacina retroversa and Heliconoides inflate
Phylogenetics of pteropods of the Southern Oceans
Molecular discrimination of the European Mesocestoides species complex
A molecular phylogeny of the monkey beetles (Coleoptera: Scarabaeidae: Hopliini)
The molecular evolution of the mimetic switch locus, H, in the Mocker Swallowtail Papilio dardanus Brown, 1776
Phylogenetic and functional diversity of the Sargasso Sea Metagenome

BIOINFORMATICS

A study into the relation between body size and environmental variables in South African Lizards
Cryptic diversity and the effect of alignment parameters on tree topology in the foraminifera
Delimiting evolutionary taxonomic units within the bacteria: 16S rRNA and the GMYC model
Testing the molecular clock hypothesis and estimating divergence times for the order Coleoptera
Taxon Sampling: A Comparison of Two Approaches
Investigating species concepts in bacteria: Fitting Campylobacter and Streptococcus MLST profiles to an infinite alleles model to test population structure
Assessing the mitochondrial molecular clock: the effect of data partitioning, taxon sampling and model selection

ON COMPLETION OF THE COURSE, THE STUDENTS WILL HAVE:

• a good understanding of the state of knowledge of the field, together with relevant practical experience, in three areas of biosystematic science in which he or she has expressed an interest;
• where applicable, the ability to contribute to the formulation and development of ideas underpinning potential PhD projects in areas of interest, and to make an informed decision on the choice of potential PhD projects;
• a broad appreciation of the scientific opportunities within the NHM and Imperial College;
• knowledge of a range of specific research techniques and professional and transferable skills.

FURTHER INFORMATION

Students are encouraged to view the NHM website for further information, and to contact the course administrator if they have any queries. Visits can be arranged to the NHM to meet the course organisers informally and to be given a tour of the facilities. Applications should be made online on the Imperial College London website.

Read less
The programme includes the following profiles. This profile introduces students into the study of animal and plant development, microbiology, cell signaling pathways, cytoskeleton dynamics, cancer biology, virology and immunology. Read more
The programme includes the following profiles:

Genetics, Cell and Developmental Biology

This profile introduces students into the study of animal and plant development, microbiology, cell signaling pathways, cytoskeleton dynamics, cancer biology, virology and immunology. Courses of this profile span multiple levels of biological organization, from whole organisms down to the molecular level. Students choosing this profile not only receive up-to-date knowledge on these topics but also acquire the laboratory skills required to engage in cutting-edge research.

Environment, Biodiversity and Ecosystems

This profile allows students to gain experience in the research methods used to study the evolution and ecology of organisms found in terrestrial, freshwater and coastal ecosystems. A staff of experts teaches up-to-date knowledge on individual organisms, populations, species communities and ecosystems, backed up by their active research experience in taxonomy and phylogeny, vertebrate and invertebrate ecology, evolutionary ecology, biogeography, plant ecology, plant-animal interactions, and nature management. In addition, students are introduced into ecological research by means of practical field training and excursions in Belgium and abroad.

Herpetology

This unique profile addresses biology students with a passion for amphibians and reptiles. An international team of visiting scientists organizes lectures on diversity, ecology, physiology, behavior, evolution and conservation biology and prepares students for a professional career in herpetology. Ecological and herpetological field courses in European and tropical countries form an important part of this programme. As a student, you will be in a stimulating environment, with fellow students and top-experts sharing your passion. For more information, have a look at http://www.herpetology.be.

Human Ecology

This profile focuses on the interaction between humans and their natural environment. The increasing impact of the human population on ecosystems worldwide stresses the urgent need for researchers with a multidisciplinary background, that engage in developmental plans for a durable use and management of natural resources. The profile Human Ecology addresses an international audience of students and offers a course programme that, besides scientific topics, also addresses technological, socio-economical and political aspects. For more information, have a look at http://www.humanecology.be.

EMMC Tropical Biodiversity and Ecosystems

The world faces a crisis risking extinction of species through global warming. Due to impact of e.g., changes in land use and destruction of habitats, tropical rain forests, mangrove forests and coral reefs are disappearing and with them ecosystem functions, goods and services on which human populations are dependent. In order to conserve nature, to manage or even to restore tropical biodiversity and ecosystems, we must understand patterns of tropical biodiversity, study how organisms interact with their environment and how they respond to perturbations and change. Next to research, this is dealt with in this unique masters programme. http://www.tropimundo.eu

Read less
Our M.Sc program is intended for students seeking training in the biological sciences beyond the B.Sc. degree. Emphasis is on research, resulting in presentation and defense of a thesis. Read more
Our M.Sc program is intended for students seeking training in the biological sciences beyond the B.Sc. degree. Emphasis is on research, resulting in presentation and defense of a thesis. Master's students take two or more courses and deliver two departmental seminars. Outstanding students enrolled in the M.Sc. program may transfer directly into the Ph.D. program.

Outstanding Facilities

The Biology Building occupies over 6,040 square meters of office and laboratory space. We have numerous special facilities that support outstanding research across the biological sciences. For studies in cell, molecular, and developmental biology:
• Molecular biology core facility
• State-of-the-art confocal microscopy facilities
• Automated sequencers and DNA cloning technology
• Microarray technology and a bioinformatics server
• Cell culture rooms
• Laboratories that meet international standards for recombinant DNA technology procedures

For studies in ecology, evolution, environmental, and behavioural biology:
• Facilities for the care of mammals, birds, amphibians, and fishes
• Incubators and environmental walk-in chambers
• Access to research stations throughout Canada and the tropics
• Multi-passenger vans and boats
• An extensive greenhouse facility
• An experimental fish hatchery
• The Pelee Environmental Research Centre

The Department of Biological Sciences shares a close association with the Great Lakes Institute for Environmental Research (GLIER) which is housed on campus, and with the nearby Harrow Research Station of Agriculture Canada.

Read less
This is a research-focused Master's training course in Stem Cells and Regenerative Biology. It is ideal preparation for future PhD progression or early career industrial entry. Read more
This is a research-focused Master's training course in Stem Cells and Regenerative Biology. It is ideal preparation for future PhD progression or early career industrial entry.

This course focuses on developing investigative laboratory-based research skills while addressing theoretical and applicable questions in stem cells and regenerative biology. The course provides an intensive research-led environment, which will give you the opportunity to develop a career in academic or applied biomedical or biological sciences.

Why study Stem Cell and Regenerative Biology with us?

Our lecturers have specialist knowleadge and work with a diverse range of skill sets that have application in the field of stem cell research and regenerative biology.

The Faculty of Medicine, Dentistry and Life Sciences at Chester is unique in having academic staff who’s research involves a variety of relevant model organisms. As well as humans, the team researches into fundamental biology of a variety of other mammallian species, birds, fish, amphibians and invertebrates. Students undertaking the MRes are able to draw on this expertise.

In addition, Chester is an active member of the Mercia Stem Cell Alliance and the UK Mesenchymal Stem Cell research community.

What will I learn?

In the module Models of Regenerative Biology, you will attend lectures, small group teaching and practical sessions relating to:

- various model systems of regeneration, with cell culture based models and in vivo systems, e.g. planaria; responses to injury;
- regulatory factors governing tissue regeneration;
- aspects of regenerative medicine.

In the module on Stem Cells and Tissue Engineering, you will attend lectures, small group teaching and practical sessions relating to:

- how to define stem cells;
- stem cell culture and maintenance;
- the principles of tissue engineering;
- the application of stem cell and tissue engineering, e.g. in the clinic or in drug screening and development.

The individual research project is undertaken following completion of these two taught modules and is the primary focus of this course.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X