• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of York Featured Masters Courses
Middlesex University Featured Masters Courses
University of Birmingham Featured Masters Courses
University of Greenwich Featured Masters Courses
University of Leeds Featured Masters Courses
Cardiff University Featured Masters Courses
"alternative" AND "energy…×
0 miles

Masters Degrees (Alternative Energy)

  • "alternative" AND "energy" ×
  • clear all
Showing 1 to 15 of 119
Order by 
The Renewable Energy programme was created to allow BEng graduates to achieve the educational requirements to become a Chartered Engineer under the Engineering Council’s UK-SPEC scheme. Read more
The Renewable Energy programme was created to allow BEng graduates to achieve the educational requirements to become a Chartered Engineer under the Engineering Council’s UK-SPEC scheme. The course is currently accredited by the Chartered Institute of Building Services Engineers (CIBSE) and the Energy Institute as suitable for further learning towards Chartered Status for engineering graduates. This accreditation has international acceptance under the Washington Accord. Please note that the programme is only suitable as further learning in conjunction with an accredited BEng programme.

Visit the website: http://www.ulster.ac.uk/course/msc-renewable-energy-and-energy-management-pt-el

How to apply: https://www.ulster.ac.uk/apply/how-to-apply#pg

Course detail

- Description -

The aim of the course is straightforward, in that it is designed to meet a need for engineers and energy professionals to deliver energy conscious and environmentally sustainable solutions for use by the public, industry, services and government.
It seeks to provide an opportunity for graduates and professionals to acquire knowledge of renewable energy and energy management, and to develop skills appropriate to its practice. To achieve this it seeks to increase capacity for understanding the theoretical concepts and socio-economic principles and techniques upon which renewable energy technologies and energy management strategies are founded. To this end, the course is designed to produce graduates who have an in-depth knowledge and understanding of the scientific, technological issues concerning energy systems.
The programme seeks to develop graduates who will have the knowledge, insight and skills to lead programmes of change, new design or retrofit solutions that require the deployment of either or both energy efficiency measures and renewable energy technologies.
The eight taught modules are designed to give students a broad expertise in the ever expanding range of Renewable Energy technologies combined with the more fundamental requirements demanded by Energy Management.
Graduates are expected to achieve skills in identifying, developing, analysing and critically appraising solutions and to apply those skills in a professional manner. The students who progress to the MSc from the PgD will also be expected to demonstrate a comprehensive understanding of techniques applicable to their own research, combined with the management of an independent investigation in an area related to energy technology, with the aim of producing graduates with the capability to pursue a career in research and development through independence, self motivation and initiative.

Why Choose Ulster University ?

1. Over 92% of our graduates are in work or further study six months after graduation.
2. We are a top UK university for providing courses with a period of work placement.
3. Our teaching and the learning experience we deliver are rated at the highest level by the Quality Assurance Agency.
4. We recruit international students from more than 100 different countries.
5. More than 4,000 students from over 50 countries have successfully completed eLearning courses at Ulster University.

Flexible payment

To help spread the cost of your studies, tuition fees can be paid back in monthly instalments while you learn. If you study for a one-year, full-time master’s, you can pay your fees up-front, in one lump sum, or in either five* or ten* equal monthly payments. If you study for a master’s on a part-time basis (e.g. over three years), you can pay each year’s fees up-front or in five or ten equal monthly payments each year. This flexibility allows you to spread the payment of your fees over each academic year. Find out more by visiting https://www.ulster.ac.uk/apply/fees-and-finance/postgraduate

https://www.ulster.ac.uk/apply/fees-and-finance/postgraduate

Scholarships

A comprehensive range of financial scholarships, awards and prizes are available to undergraduate, postgraduate and research students. Scholarships recognise the many ways in which our students are outstanding in their subject. Individuals may be able to apply directly or may automatically be nominated for awards. Visit the website: https://www.ulster.ac.uk/apply/fees-and-finance/scholarships

English Language Tuition

CELT offers courses and consultations in English language and study skills to Ulster University students of all subjects, levels and nationalities. Students and researchers for whom English is an additional language can access free CELT support throughout the academic year: https://www.ulster.ac.uk/international/english-language-support

Read less
The Renewable Energy programme was created to allow BEng graduates to achieve the educational requirements to become a Chartered Engineer under the Engineering Council’s UK-SPEC scheme. Read more
The Renewable Energy programme was created to allow BEng graduates to achieve the educational requirements to become a Chartered Engineer under the Engineering Council’s UK-SPEC scheme. The course is currently accredited by the Chartered Institute of Building Services Engineers (CIBSE) and the Energy Institute as suitable for further learning towards Chartered Status for engineering graduates. This accreditation has international acceptance under the Washington Accord. Please note that the programme is only suitable as further learning in conjunction with an accredited BEng programme.

Visit the website: http://www.ulster.ac.uk/course/msc-renewable-energy-and-energy-management-pt-el

How to apply: https://www.ulster.ac.uk/apply/how-to-apply#pg

Course detail

- Description -

The aim of the course is straightforward, in that it is designed to meet a need for engineers and energy professionals to deliver energy conscious and environmentally sustainable solutions for use by the public, industry, services and government.
It seeks to provide an opportunity for graduates and professionals to acquire knowledge of renewable energy and energy management, and to develop skills appropriate to its practice. To achieve this it seeks to increase capacity for understanding the theoretical concepts and socio-economic principles and techniques upon which renewable energy technologies and energy management strategies are founded. To this end, the course is designed to produce graduates who have an in-depth knowledge and understanding of the scientific, technological issues concerning energy systems.
The programme seeks to develop graduates who will have the knowledge, insight and skills to lead programmes of change, new design or retrofit solutions that require the deployment of either or both energy efficiency measures and renewable energy technologies.
The eight taught modules are designed to give students a broad expertise in the ever expanding range of Renewable Energy technologies combined with the more fundamental requirements demanded by Energy Management.
Graduates are expected to achieve skills in identifying, developing, analysing and critically appraising solutions and to apply those skills in a professional manner. The students who progress to the MSc from the PgD will also be expected to demonstrate a comprehensive understanding of techniques applicable to their own research, combined with the management of an independent investigation in an area related to energy technology, with the aim of producing graduates with the capability to pursue a career in research and development through independence, self motivation and initiative.

Why Choose Ulster University ?

1. Over 92% of our graduates are in work or further study six months after graduation.
2. We are a top UK university for providing courses with a period of work placement.
3. Our teaching and the learning experience we deliver are rated at the highest level by the Quality Assurance Agency.
4. We recruit international students from more than 100 different countries.
5. More than 4,000 students from over 50 countries have successfully completed eLearning courses at Ulster University.

Flexible payment

To help spread the cost of your studies, tuition fees can be paid back in monthly instalments while you learn. If you study for a one-year, full-time master’s, you can pay your fees up-front, in one lump sum, or in either five* or ten* equal monthly payments. If you study for a master’s on a part-time basis (e.g. over three years), you can pay each year’s fees up-front or in five or ten equal monthly payments each year. This flexibility allows you to spread the payment of your fees over each academic year. Find out more by visiting https://www.ulster.ac.uk/apply/fees-and-finance/postgraduate

https://www.ulster.ac.uk/apply/fees-and-finance/postgraduate

Scholarships

A comprehensive range of financial scholarships, awards and prizes are available to undergraduate, postgraduate and research students. Scholarships recognise the many ways in which our students are outstanding in their subject. Individuals may be able to apply directly or may automatically be nominated for awards. Visit the website: https://www.ulster.ac.uk/apply/fees-and-finance/scholarships

English Language Tuition

CELT offers courses and consultations in English language and study skills to Ulster University students of all subjects, levels and nationalities. Students and researchers for whom English is an additional language can access free CELT support throughout the academic year: https://www.ulster.ac.uk/international/english-language-support

Read less
A flexible Masters degree designed to develop a rigorous understanding of different energy technologies, exploring the subject through a combination of academic study, discussion and hands-on practical work. Read more

Masters in Renewable Technologies

A flexible Masters degree designed to develop a rigorous understanding of different energy technologies, exploring the subject through a combination of academic study, discussion and hands-on practical work.

How is the course taught?

Taught at the Centre for Alternative Technology (CAT), which pioneered sustainability practice and theory in the UK, the MSc course examines renewable energy provision, increased energy efficiency and intelligent management of energy resources. These topics are explored within the context of the ecological, social and economic impacts and the policy drivers at international, national and local scales. Our MSc programme is taught either by distance learning or through residential blocks in one of the most innovative environmental buildings in the UK, or via a mixture of the two.

Different energy technologies are examined alongside new advances in energy storage, smart grids and meters. Computer modelling, data collection and analysis give students practical experience in effective energy management. Students can choose modules from a wide range that covers environmental assessment and renewable energy, cities and communities, energy provision, energy in buildings, and politics and economics.
 
We give our MSc students the knowledge, skills and experience needed to develop a career in the environmental sector and make an impact. The programme draws on our expert staff (https://gse.cat.org.uk/index.php/postgraduate-courses/msc-sustainability-in-energy-provision-and-demand-management/sepdm-staff-profiles) and a wide selection of academics and specialist guest lecturers – people who have made exceptional contributions to environmental thinking and action.

What qualification will you receive?

Successful completion of the programme MSc Sustainable Energy Provision and Demand Management at the Centre for Alternative Technology leads to the award of Master of Science (MSc) by UEL.

Modules include

-          Sustainability and Adaptation Concepts and Planning
-          Environmental Politics and Economics
-          Adaptation Transformation Politics and Economics
-          Cities and Communities
-          Energy Flows in Buildings – Parts A and B
-          Energy Provision (Wind)
-          Energy Provision (Solar PV)
-          Energy Provision (Renewable Energy)
-          Building Performance Assessment and Evaluation
-          Built Environment Applied Project or Built Environment Practice Based Project

Why study at CAT?

Studying at the Centre for Alternative Technology (CAT) is a truly unique experience. For the past 40 years CAT has been at the forefront of the environmental movement, pioneering low-carbon living and renewable technology. At the Graduate School of the Environment (GSE), students benefit from our extensive practical and academic knowledge, graduating with the skills needed to become leading players in the sustainability sector. Find out more about our facilities here: https://gse.cat.org.uk/index.php/postgraduate-courses/msc-sustainability-and-adaptation/sa-site-and-facilities

Hands-on learning

At CAT, hands-on learning takes place side by side with academic study. Residential on-site block learning weeks are taught at the Centre for Alternative Technology (CAT), a truly unique and inspiring learning environment. Nestled in a disused slate quarry on the edge of the Snowdonia National Park, CAT is a living laboratory for paractical, sustainable solutions. It contains some of the most innovative and renowned environmentally conscious buildings in the country, as well as one of the most diverse range of installed renewable technologies, on site water and sewage treatment, sustainably managed woodland and acres of organic gardens.

Flexibility

It is a flexible degree, taught in blocks taken either with an intensive residential stay of five or six nights at the centre, or by distance learning. MSc students are free to choose between these teaching modes for every module. There is a choice of modules, taken over one year or two – meaning the degree can be part time. It is a masters degree designed to give you the best possible experience whilst also meshing neatly with the pressures of modern professional and family life.

Immersive learning environment

Optional residential module weeks include lectures, seminars, group work and practicals. Applied work tends to dominate later in the week once we have laid the theoretical groundwork. These module weeks provide a truly immersive environment to escape daily life and apply yourself to new learning. Many eminent experts give guest lectures or hold seminars during these modules, as it is a course which seeks to draw on the expertise and learning of the whole environmental sector.

Is this the course for you?

If you would like to visit for an overnight stay during a module, where you can attend lectures and workshops and meet staff and students, please contact Shereen Soliman:

Read less
A flexible Masters degree designed to develop a rigorous understanding of different energy technologies, exploring the subject through a combination of academic study, discussion and hands-on practical work. Read more

Masters in Renewable Technologies

A flexible Masters degree designed to develop a rigorous understanding of different energy technologies, exploring the subject through a combination of academic study, discussion and hands-on practical work.

How is the course taught?

Taught at the Centre for Alternative Technology (CAT), which pioneered sustainability practice and theory in the UK, the MSc course examines renewable energy provision, increased energy efficiency and intelligent management of energy resources. These topics are explored within the context of the ecological, social and economic impacts and the policy drivers at international, national and local scales. Our MSc programme is taught either by distance learning or through residential blocks in one of the most innovative environmental buildings in the UK, or via a mixture of the two.

Different energy technologies are examined alongside new advances in energy storage, smart grids and meters. Computer modelling, data collection and analysis give students practical experience in effective energy management. Students can choose modules from a wide range that covers environmental assessment and renewable energy, cities and communities, energy provision, energy in buildings, and politics and economics.
 
We give our MSc students the knowledge, skills and experience needed to develop a career in the environmental sector and make an impact. The programme draws on our expert staff (https://gse.cat.org.uk/index.php/postgraduate-courses/msc-sustainability-in-energy-provision-and-demand-management/sepdm-staff-profiles) and a wide selection of academics and specialist guest lecturers – people who have made exceptional contributions to environmental thinking and action.

What qualification will you receive?

Successful completion of the programme MSc Sustainable Energy Provision and Demand Management at the Centre for Alternative Technology leads to the award of Master of Science (MSc) by UEL.

Modules include

-          Sustainability and Adaptation Concepts and Planning
-          Environmental Politics and Economics
-          Adaptation Transformation Politics and Economics
-          Cities and Communities
-          Energy Flows in Buildings – Parts A and B
-          Energy Provision (Wind)
-          Energy Provision (Solar PV)
-          Energy Provision (Renewable Energy)
-          Building Performance Assessment and Evaluation
-          Built Environment Applied Project or Built Environment Practice Based Project

Why study at CAT?

Studying at the Centre for Alternative Technology (CAT) is a truly unique experience. For the past 40 years CAT has been at the forefront of the environmental movement, pioneering low-carbon living and renewable technology. At the Graduate School of the Environment (GSE), students benefit from our extensive practical and academic knowledge, graduating with the skills needed to become leading players in the sustainability sector. Find out more about our facilities here: https://gse.cat.org.uk/index.php/postgraduate-courses/msc-sustainability-and-adaptation/sa-site-and-facilities

Hands-on learning

At CAT, hands-on learning takes place side by side with academic study. Residential on-site block learning weeks are taught at the Centre for Alternative Technology (CAT), a truly unique and inspiring learning environment. Nestled in a disused slate quarry on the edge of the Snowdonia National Park, CAT is a living laboratory for paractical, sustainable solutions. It contains some of the most innovative and renowned environmentally conscious buildings in the country, as well as one of the most diverse range of installed renewable technologies, on site water and sewage treatment, sustainably managed woodland and acres of organic gardens.

Flexibility

It is a flexible degree, taught in blocks taken either with an intensive residential stay of five or six nights at the centre, or by distance learning. MSc students are free to choose between these teaching modes for every module. There is a choice of modules, taken over one year or two – meaning the degree can be part time. It is a masters degree designed to give you the best possible experience whilst also meshing neatly with the pressures of modern professional and family life.

Immersive learning environment

Optional residential module weeks include lectures, seminars, group work and practicals. Applied work tends to dominate later in the week once we have laid the theoretical groundwork. These module weeks provide a truly immersive environment to escape daily life and apply yourself to new learning. Many eminent experts give guest lectures or hold seminars during these modules, as it is a course which seeks to draw on the expertise and learning of the whole environmental sector.

Is this the course for you?

If you would like to visit for an overnight stay during a module, where you can attend lectures and workshops and meet staff and students, please contact Shereen Soliman:

Read less
Our Energy programmes allow you to specialise in areas such as bio-energy, novel geo-energy, sustainable power, fuel cell and hydrogen technologies, power electronics, drives and machines, and the sustainable development and use of key resources. Read more
Our Energy programmes allow you to specialise in areas such as bio-energy, novel geo-energy, sustainable power, fuel cell and hydrogen technologies, power electronics, drives and machines, and the sustainable development and use of key resources.

We can supervise MPhil projects in topics that relate to our main areas of research, which are:

Bio-energy

Our research spans the whole supply chain:
-Growing novel feedstocks (various biomass crops, algae etc)
-Processing feedstocks in novel ways
-Converting feedstocks into fuels and chemical feedstocks
-Developing new engines to use the products

Cockle Park Farm has an innovative anaerobic digestion facility. Work at the farm will develop, integrate and exploit technologies associated with the generation and efficient utilisation of renewable energy from land-based resources, including biomass, biofuel and agricultural residues.

We also develop novel technologies for gasification and pyrolysis. This large multidisciplinary project brings together expertise in agronomy, land use and social science with process technologists and engineers and is complemented by molecular studies on the biology of non-edible oilseeds as sources for production of biodiesel.

Novel geo-energy

New ways of obtaining clean energy from the geosphere is a vital area of research, particularly given current concerns over the limited remaining resources of fossil fuels.

Newcastle University has been awarded a Queen's Anniversary Prize for Higher Education for its world-renowned Hydrogeochemical Engineering Research and Outreach (HERO) programme. Building on this record of excellence, the Sir Joseph Swan Centre for Energy Research seeks to place the North East at the forefront of research in ground-source heat pump systems, and other larger-scale sources of essentially carbon-free geothermal energy, and developing more responsible modes of fossil fuel use.

Our fossil fuel research encompasses both the use of a novel microbial process, recently patented by Newcastle University, to convert heavy oil (and, by extension, coal) to methane, and the coupling of carbon capture and storage (CCS) to underground coal gasification (UCG) using directionally drilled boreholes. This hybrid technology (UCG-CCS) is exceptionally well suited to early development in the North East, which still has 75% of its total coal resources in place.

Sustainable power

We undertake fundamental and applied research into various aspects of power generation and energy systems, including:
-The application of alternative fuels such as hydrogen and biofuels to engines and dual fuel engines
-Domestic combined heat and power (CHP) and combined cooling, heating and power (trigeneration) systems using waste vegetable oil and/or raw inedible oils
-Biowaste methanisation
-Biomass and biowaste combustion, gasification
-Biomass co-combustion with coal in thermal power plants
-CO2 capture and storage for thermal power systems
-Trigeneration with novel energy storage systems (including the storage of electrical energy, heat and cooling energy)
-Engine and power plant emissions monitoring and reduction technology
-Novel engine configurations such as free-piston engines and the reciprocating Joule cycle engine

Fuel cell and hydrogen technologies

We are recognised as world leaders in hydrogen storage research. Our work covers the entire range of fuel cell technologies, from high-temperature hydrogen cells to low-temperature microbial fuel cells, and addresses some of the complex challenges which are slowing the uptake and impact of fuel cell technology.

Key areas of research include:
-Biomineralisation
-Liquid organic hydrides
-Adsorption onto solid phase, nano-porous metallo-carbon complexes

Sustainable development and use of key resources

Our research in this area has resulted in the development and commercialisation of novel gasifier technology for hydrogen production and subsequent energy generation.

We have developed ways to produce alternative fuels, in particular a novel biodiesel pilot plant that has attracted an Institution of Chemical Engineers (IChemE) AspenTech Innovative Business Practice Award.

Major funding has been awarded for the development of fuel cells for commercial application and this has led to both patent activity and highly-cited research. Newcastle is a key member of the SUPERGEN Fuel Cell Consortium. Significant developments have been made in fuel cell modelling, membrane technology, anode development and catalyst and fuel cell performance improvements.

Facilities

As a postgraduate student you will be based in the Sir Joseph Swan Centre for Energy Research. Depending on your chosen area of study, you may also work with one or more of our partner schools, providing you with a unique and personally designed training and supervision programme.

You have access to:
-A modern open-plan office environment
-A full range of chemical engineering, electrical engineering, mechanical engineering and marine engineering laboratories
-Dedicated desk and PC facilities for each student within the research centre or partner schools

Read less
This programme takes a multi-disciplinary approach to sustainable solutions for future energy needs, with an in-depth knowledge of the new emerging alternative technologies. Read more
This programme takes a multi-disciplinary approach to sustainable solutions for future energy needs, with an in-depth knowledge of the new emerging alternative technologies. It will prepare you for immediate contribution to the renewable energy sector, entering public, environmental, industry and commercial industries.

Why Renewable Energy and Environmental Modelling at Dundee?

Climate change is possibly the most significant threat that humanity has ever faced. A new generation of scientists, engineers and policy-makers will need to be equipped with skills to enable them to make informed decisions on all aspects of this important and rapidly developing subject.

Our Masters degree in Renewable Energy and Environmental Modelling is designed to produce graduates with a broad and balanced skills base.

We provide the opportunity for you to go on field trips and external conferences as a part of your coursework, and you will have the option of undertaking either an industry-based or research-related project.

What's great about this course at Dundee?

The Dundee MSc is intended to interact with the renewables industry on many levels, enabling frequent networking opportunities during the year. The conference-style modules also allow delegates from industry to attend and enhance their skills in an informal and friendly setting. Graduates from this degree will be able to make an immediate contribution to the renewable energy sector.

Dundee University Centre for Renewable Energy (DUCRE)

DUCRE brings together a wide range of scientists with strong interests in renewable energy and evironmental issues. Staff and students in the Centre are engaged in a wide range of diverse renewable energy and environmental research. Projects range from electric vehicle technologies, to wind, solar, and hydro technologies, and from energy policy issues to Third World environmental development analysis.

Who should study this course?

The MSc in Renewable Energy and Environmental Modelling suits students and professionals from diverse backgrounds, including scientists, engineers, environmentalists, and policy-makers.

The programme has been designed to appeal to graduates with first degrees in the physical sciences, engineering, environmental science and related subjects. However, all applications will be assessed on their merits, regardless of background, and any relevant experience will also be taken into consideration.

The start date is September each year, and lasts for 12 months.

How you will be taught

This course utilizes conference-style teaching - delivered in one week intensive bursts.

The taught element will be delivered using a lively mix of lectures, seminars, peer-based problem-solving, practical sessions and site visits.

What you will study

Modules cover environmental physics, law and policy, renewable energy technologies, environmental monitoring, and the hydrogen economy.

You will study/take part in:

Foundation in renewable energy
Energy regulation law and security of supply
Hydrogen economy (incorporating fuel cells)
Physical concepts: A primer in energy, electromagnetism & electronic materials
Renewables technologies: In depth investigation of existing & emerging technologies, supply & demand issues, conservation & architectural issues
Environmental modelling: hydrology, carbon cycling, wind, wave & solar modelling
Field trips
Project

How you will be assessed

Students are assessed on written and practical work, formal presentations and a project dissertation.

Careers

Graduates from this programme will be able to make an immediate contribution to the renewable energy sector and make informed decisions that will have an impact on the development of national programmes to meet future targets.

Each graduate will have a firm grasp of the predominant and emerging technologies, and will be able to set these in context using a range of environmental monitoring techniques.

"The MSc provided a good base to research renewable technologies and understand how they fit into the energy mix and government policy. After graduation, I am now employed as Chief Technical Officer at Scottish Renewables."
David Cameron, class of 2008

Read less
The MPhil in Nuclear Energy, provided by the Department in collaboration with the Cambridge Nuclear Energy Centre, is a one year full-time nuclear technology and business masters for engineers, mathematicians and scientists who wish to make a difference to the problems of climate change and energy security by developing nuclear power generation. Read more
The MPhil in Nuclear Energy, provided by the Department in collaboration with the Cambridge Nuclear Energy Centre, is a one year full-time nuclear technology and business masters for engineers, mathematicians and scientists who wish to make a difference to the problems of climate change and energy security by developing nuclear power generation. The combination of nuclear technology with nuclear policy and business makes the course highly relevant to the challenges of 21st century energy needs, whether in the UK or in countries across the globe.

The MPhil is part of the University of Cambridge's Strategic Energy Initiative in response to the prospect of a nuclear renaissance in the UK and around the world. The aim is to provide a masters-level degree course in Nuclear Energy which will combined nuclear science and technology topics with business, management and policy teaching. Students will be equipped with the skills and information essential to responsible leadership of the international global nuclear industry.

The course recognises that, though the prospects for nuclear energy are now better than they have been for twenty years, the nuclear sector is situated within in a wider market for energy technologies, and has no special right to be developed. The political, economic and social contexts for nuclear power are as important as the technical merits of the designs of reactors and systems. The course therefore has a multi-disciplinary emphasis, aiming to be true to the reality of policy-making and business decision-making.

This course is for students who have a good degree in Engineering or related science subject and who wish to gain the knowledge and skills to build a career in the nuclear and energy sectors. Secondary career paths might include nuclear proliferation prevention, radiological protection, nuclear governance, nuclear medicine and health physics. While the prime focus of the course is to equip students for roles in industry, there is a path towards research through preparation for a PhD programme. The modular open architecture of the course allows students to tailor the degree to suit their background, needs and preferences.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/egegmpmne

Course detail

The course will equip its graduates with a wide range of skills and knowledge, enabling them to fully engage in the nuclear sector.

Graduates will have developed a knowledge and understanding of nuclear technology, policy, safety and allied business. They will have received a thorough technical grounding in nuclear power generation, beginning with fundamental concepts and extending to a range of specialist topics. They will also be equipped with an appreciation of the wider social, political and environmental contexts of electricity generation in the 21st century, with a firm grounding in considering issues such as climate change, energy policy and public acceptability.

The programme will cultivate intellectual skills allowing graduates to engage with the business, policy and technical issues that the development and deployment of nuclear energy poses. These include skills in the modelling, simulation and experimental evaluation of nuclear energy systems; critically evaluating and finding alternative solutions to technical problems; applying professional engineering judgment to balance technological, environmental, ethical, economic and public policy considerations; working within an organisation to manage change effectively and respond to changing demand; understanding business practice in the areas of technology management, transfer and exploitation.

The programme will also develop transferable skills enabling graduates to work and progress in teams within and across the nuclear sector, including the management of time and information, the preparation of formal reports in a variety of styles, the deployment of critical reasoning and independent thinking.

Finally, graduates will have research experience having planned, executed, and evaluated an original investigative piece of work through a major dissertation.

Format

The MPhil in Nuclear Energy is based in the Department of Engineering and is run in partnership with Cambridge Judge Business School and the Departments of Materials Science and Metallurgy, and Earth Sciences.

The programme consists of six compuslory courses in nuclear technology and business management, and four elective courses chosen from a broad range of technical and management courses. These elective courses enable the student to tailor the content of the programme to his career needs; they range from wholly management-oriented courses to technical courses in preparation for an engineering role or further research through a PhD. A long research project is required, with topics chosen from a list offered by members of staffed and Industry Club members, and linked to the principal areas of energy research in their respective departments and companies.

Students are also expected to attend field visits, a Distinguished Lecture Series and weekly seminars, and are able to benefit from research skills training offered by the Department.

Assessment

A large individual research project will be undertaken, which will be examined in two parts. The first part will include a report (of up to 4,000 words) and a five-minute oral presentation. The second part is assessed through the writing of a 15,000 word dissertation, including a fifteen minute oral presentation.

All students will be required to complete at least four items of coursework.

All students will take at least three written examinations, of 1.5 hours each.

Continuing

Students wishing to apply for continuation to the PhD would normally be expected to attain an overall mark of 70%.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

UK applicants are eligible to apply for scholarships of £7,000; these scholarships are funded by the MPhil's industrial partners.

To apply for a scholarship, eligible applicants must list the Nuclear Energy Scholarship in Section B(4) of the online GRADSAF form. People wishing to be considered for a scholarship must submit their application before the end of May 2016.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
Based in one of the top Economics schools in the UK and accredited by the Energy Institute, this programme draws on our longstanding expertise in the field of energy economics, benefiting from the research capabilities of the Surrey Energy Economics Research Centre. Read more
Based in one of the top Economics schools in the UK and accredited by the Energy Institute, this programme draws on our longstanding expertise in the field of energy economics, benefiting from the research capabilities of the Surrey Energy Economics Research Centre.

PROGRAMME OVERVIEW

The MSc Energy Economics and Policy programme provides a solid grounding in the economics of international oil and gas, the general principles of regulation, energy and environment policies and technology, and energy modelling.

You will gain a thorough understanding of microeconomics, macroeconomics and econometrics. Building on these foundations, the programme focusses on economic and policy issues affecting the energy sector.

Furthermore, guidance in research methodology will ensure you develop the skills required to effectively undertake thorough independent research.

Those wishing to work in research and/or policy-making in the energy area will find this programme particularly relevant.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time over two academic years. It consists of eight taught modules and a dissertation. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Microeconomics
-Macroeconomics
-Econometrics I
-Energy Economics and Technology
-Econometrics II
-Energy Regulation and Policy
-Empirical Methods in Energy Economics
-Economics of International Oil and Gas
-Research Methods and Dissertation

EDUCATIONAL AIMS OF THE PROGRAMME

The main aims of the Department’s taught courses are to:
-Enable and encourage students to develop their capacity for learning and communication within an open, scholarly, environment
-Develop an appreciation of economics, both as an intellectual discipline and as an important contributor to an understanding of the world in ways which are of practical significance
-Prepare students for a range of careers and other activities in which independent thought and analysis, as well as effective communication, can contribute to an improvement in social and economic welfare
-Enable better performing students completing an MSc programme to progress either to further postgraduate research or to a career as a professional economist
-Provide an opportunity for students to apply and demonstrate a range of skills, including the capacity for independent study, through the completion of a MSc dissertation

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-An advanced understanding of the core principles in microeconomics, macroeconomics, and econometrics (all awards)
-An understanding of the techniques which have been used in contemporary economic research (PGDip and MSc)
-An ability to select appropriately between alternative analytical techniques and research methodologies which can be used in the evaluation of energy policy (PGDip and MSc)
-Awareness of current and advanced problems and new insights in energy economics (all awards)

Intellectual / cognitive skills
-An ability to investigate complex issues in energy economics, both in theoretical problems and in practical ones where data may be complicated or unavailable
-The skills necessary to comprehend published economic research papers, and to integrate the implications of published research in their own studies

Professional practical skills
-An ability to communicate effectively in prose and numerical form to specialists and non-specialists
-The ability to formulate a plan for specific individual research which would further existing knowledge
-The ability to communicate the results of independent research in the form of a dissertation

Key / transferable skills
-General skills, such as literacy, numerical, IT and computing (all awards)
-Interpersonal skills, such as communication (all awards)

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
The MSc in Smart Grid Demand Management (See http://www.postgraduate.hw.ac.uk/prog/msc-smart-grid-demand-management/ ) has been designed to progress students with an Electrical or Mechanical Engineering background to an expert in the understanding of a smart grid. Read more

Overview

The MSc in Smart Grid Demand Management (See http://www.postgraduate.hw.ac.uk/prog/msc-smart-grid-demand-management/ ) has been designed to progress students with an Electrical or Mechanical Engineering background to an expert in the understanding of a smart grid. By following a carefully selected set of courses covering energy resources (fossil and renewable), conversion technologies, electrical power generation, energy storage technologies, demand management, and energy economics. Graduates of this programme will be confident in all aspects of this subject. With a clear focus on smart Grid and Demand Management the programme provides;
- Knowledge and understanding of advanced scientific and mathematical principles relevant to the understanding, analysis and modelling of a smart grid.
- An understanding of fundamental facts, concepts, and technologies for demand management and energy storage.
- Knowledge and skill to apply engineering principles to design a system, component or process
- An ability to undertake independent research.
- Professional attitudes to implementation of safety and concepts embodied by sustainability.
- An ability to communicate effectively
- Familiarity with the application of relevant computer tools to the profession.

All aspects of the smart grid are integrated in a dedicated smart grid modelling course, which provides the mathematical and computational skills to model a smart grid. This course is unique to this programme and will give graduates the skills they need to enhance their career prospects.

The Scottish Funding Council has made available 20 scholarships covering fees only to students with Scottish backgrounds. 5 of these places are reserved for applicants to this programme in the first instance. The remaining places are spread over all our Energy based MSc programmes. There is no separate application process for this. If you are eligible, you will be considered automatically. You will be notified through the summer if you have been selected.

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Smart Grid Demand Management MSc. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Programme content

Semester One - All courses are Mandatory
- B51ET Foundations of Energy
This course provides the foundations for the quantitative analysis of energy resources and conversion efficiencies through various technologies. It also places energy production and consumption into the wider field of environmental and socio-economic factors

- B51GE Renewable Energy Technologies
This course introduces the range of Renewable Energy resources together with established and emerging technologies. It provides the skills for a quantitative assessment of the Renewable Energy resources and the expected energy and power output from typical or specific installations.

- B31GA Electrical Power Systems
This course covers the operation of interconnected electrical power systems. Such interconnected power systems combine a number of different components, generators, transmission lines, transformers and motors, which must be appreciated to understand the operation of the interconnected system.

- C21EN Environmental and Energy Economics
This course introduces students to the core concepts and methods of modern economics, and environmental and energy economics in particular.

Semester Two – All courses are Mandatory
- B31GG Smart grid modeling
This course introduces the mathematical skills to model the operation of an electricity or energy network at a statistical and dynamical level, incorporating key elements of a smart grid, including technological constraints, economic drivers and information exchange.

- B31GB Distributed Generation
This course equips students with an understanding of the role of distributed generation in electrical energy networks. It provides students with an overview of distributed generation techniques and describes the contribution of distributed generation to network security. The course introduces the economics of distributed generation and the assessment of distributed generation schemes. It introduces students to the concept of intermittent sources and their contribution to capacity in electrical power systems and provides a detailed review of the reliability, fault and stability studies of distributed generation schemes.

- B51GK Demand Management and Energy Storage
This course provides students with an overview of demand-side management and its contribution to network capacity and security. It reviews energy storage technologies and their contribution to the integration of renewable generation and the operation of large-scale electrical network. It introduces students to the methods of interfacing energy storage mechanisms to electrical networks. The course describes the contribution energy storage technology can make to transportation and industry

- B81EZ Critical Analysis and Research Preparation
This course provides research training and addresses literature review skills, project planning, data analysis and presentation with a focus to critically discuss literature, and use data to support an argument.

- B31VZ MSc Project
An individual project led by a research active member of staff or an industrial partner on a topic relevant to smart grid technology, demand management technologies or approaches or smart grid/ electricity / energy systems modelling.

English language requirements

If you are not from a UKBA recognised English speaking country, we will need to see evidence of your English language ability. If your first degree was taught in English a letter from them confirming this will be sufficient. Otherwise the minimum requirement for English language is IELTS 6.5 or equivalent, with a minimum of 5.5 in each skill.

The University offers a range English language courses (See http://www.hw.ac.uk/study/english.htm ) to help you meet the English language requirement prior to starting your masters programme:
- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)
- 3 weeks English refreshers course (for students who meet the English condition for the MSc but wish to refresh their English skills prior to starting).

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-smart-grid-demand-management/

Read less
The global challenges of climate and energy require new technologies for renewable energy sources, methods of energy storage, efficient energy use, new lightweight vehicular structures, techniques for carbon capture and storage and climate engineering. Read more
The global challenges of climate and energy require new technologies for renewable energy sources, methods of energy storage, efficient energy use, new lightweight vehicular structures, techniques for carbon capture and storage and climate engineering. This is a broad-based MSc, designed for graduates who wish to acquire skills in energy and materials science in order to participate in the emerging challenges to meet climate change targets.

Degree information

Students gain an advanced knowledge of materials science as it applies to energy and environmental technologies and research skills including information and literature retrieval, critical interpretation and analysis, and effective communication. They can benefit from modules in chemistry, physics, chemical engineering or mechanical engineering, thus offering future employers a wide-ranging skills base. Graduates will be well qualified to deal with the problems of energy decision-making and the implications for the environment.

Students undertake modules to the value of 180 credits. The programme consists of five core modules (90 credits), two optional modules (15 credits each) and a research project (60 credits). An exit-level only Postgraduate Diploma (120 credits) is available. An exit-level only Postgraduate Certificate (60 credits) is available.

Core modules - students take all of the following, totalling 90 credits, and a 60 credit research dissertation.
-Advanced Topics in Energy Science and Materials
-Microstructural Control in Materials Science
-Energy Systems and Sustainability
-Transferable Skills for Scientists
-Research Project Literature Review

Optional modules - students take 30 credits drawn from the following:
-Climate and Energy
-Materials and Nanomaterials
-Electrical Power Systems and Alternative Power Systems
-Atom and Photon Physics
-Solid State Physics
-Mastering Entrepreneurship

Dissertation/report
All MSc students undertake an independent research project which culminates in a dissertation of approximately 10,000 words, an oral presentation and a viva voce examination (60 credits).

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials, laboratory classes and research supervision. Assessment is through unseen written examination and coursework. The literature project is assessed by written dissertation and oral presentation, and the research project is assessed by a written report, an oral presentation and a viva voce examination.

Careers

The UK has committed to 80% reduction in CO2 emissions on a 1990 baseline by 2050. CERES, the organisation that represents the largest institutional investors would like to see 90% reduction by 2050. National Systems of Innovation (NSI), which includes the universities, research centres and government departments working in conjunction with industry, will need to apprehend new opportunities and change direction, diverting personnel to energy and climate issues in response to changing markets and legislation. This MSc will contribute to the supply of personnel needed for the era of sustainability.

Top career destinations for this degree:
-Process Innovation Executive, Samsung Electronics UK
-Chemical Engineer, Jing Eong Fang
-Research Intern, CECP
-PhD Nanomaterials, University of Oxford
-PhD Sugar Chemistry, Monash University

Why study this degree at UCL?

This programme is designed for graduates from a wide range of science and engineering backgrounds who wish to broaden their knowledge and skills into materials science with an emphasis on the energy and climate change issues that will drive markets over the next century. It delivers courses from five departments across three faculties depending on options and includes a self-managed research project which is intended to introduce the challenges of original scientific research in a supportive environment.

Research activities span the whole spectrum of energy-related research from the development of batteries and fuel cells to the prediction of the structure of new water-splitting catalytic materials.

Students develop experience in scientific method, techniques for reporting science and in the many generic skills required for a future career.

Read less
This Marine and Offshore Engineering Masters at Liverpool John Moores University is closely aligned with its leading marine research institute. Read more
This Marine and Offshore Engineering Masters at Liverpool John Moores University is closely aligned with its leading marine research institute. A long history of high quality teaching in this Masters subject contributes highly qualified graduates to a global growing industry.

•Complete this masters degree in one year (full time)
•Accredited by the Institution of Engineering and Technology (IET), this programme meets Chartered Engineer requirements
•The Liverpool Maritime Academy is an international centre of excellence in maritime education and professional training and education
•The programme has close industry links and is widely recognised by employers as meeting the requirements needed to succeed in the industry

This MSc degree programme will provide you with the engineering skills and techniques that you need to work as a specialist in the marine and offshore engineering field.

You will learn skills and techniques that will help you to make an immediate contribution to a company's capability and operation, and to progress into senior management positions.

This programme capitalises on the demand for highly qualified postgraduates and maintains LJMU’s longstanding reputation for meeting the needs of the maritime industry. The programme focuses on:
•safety analysis
•design engineering
•structural analysis
•maritime law and insurance
•quality systems
•alternative energy systems

LJMU’s expanding and internationally acclaimed marine and offshore engineering research underpins the programme, ensuring the curriculum reflects contemporary practice and thinking within the sector.

The course combines substantial marine modules with mechanical engineering options to produce a bespoke skills learning set. Our highly qualified and respected academic team combine specialist knowledge with relevant industrial experience.

This combination of academic and professional expertise helps ensure that graduates are well equipped to meet the opportunities and challenges of this exciting sector.

Please see guidance below on core and option modules for further information on what you will study.
Level 7
Maritime and offshore safety analysis
Offshore engineering
Marine design engineering
Research skills
MSc project
Advanced materials
Finite element analysis
Computational fluid dynamics
Operations research
Alternative energy systems
Project management
Engineering design using Solidworks
Engineering analysis using Solidworks
Modelling with Matlab and Simulink
Programming for engineering
LabVIEW

Further guidance on modules

The information listed in the section entitled ‘What you will study’ is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal Academic Framework review, so may be subject to change. Students will be required to undertake modules that the University designates as core and will have a choice of designated option modules. Additionally, option modules may be offered subject to meeting minimum student numbers.


Academic Framework reviews are conducted by LJMU from time to time to ensure that academic standards continue to be maintained. A review is currently in progress and will be operational for the academic year 2016/2017. Final details of this programme’s designated core and option modules will be made available on LJMU’s website as soon as possible and prior to formal enrolment for the academic year 2016/2017.

Please email if you require further guidance or clarification.

Read less
The world faces major challenges in meeting the current and future demand for sustainable and secure energy supply and use. Read more
The world faces major challenges in meeting the current and future demand for sustainable and secure energy supply and use. The one-year MPhil programme in Energy Technologies is designed for graduates who want to help tackle these problems by developing practical engineering solutions, and who want to learn more about the fundamental science and the technologies involved in energy utilization, electricity generation, energy efficiency, and alternative energy.

Energy is a huge topic, of very significant current scientific, technological, environmental, political and financial interest. The complexity and rapid change associated with energy technologies necessitates engineers with a very good grasp of the fundamentals, with exposure and good understanding of all main energy sources and technologies, but also with specialization in a few areas. This is the prevailing philosophy behind this MPhil, fully consistent with the prevailing philosophy and structure of the University of Cambridge Engineering Department as a whole.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/egegmpmet

Course detail

The educational target of the MPhil in Energy Technologies is to communicate the breadth of energy technologies and the underpinning science. The objectives of the course are:

1. To teach the fundamental sciences behind technologies involved in energy utilization, electricity generation, energy efficiency, and alternative energy.

2. To develop graduates with an overall view of energy engineering, while offering specialization in a selected area through a research project.

3. To prepare students for potential future PhD research.

Learning Outcomes

Students will be expected to have developed fundamental knwoledge on primary and secondary energy sources, on energy transformation, and on energy utilisation technologies. They will also have developed proficiencies in project management, in research skills, in team work, and in advanced calculation methods concerning energy technologies.

Graduates from this MPhil will be excellent candidates for doctoral study (at Cambridge and elsewhere) and for employment in a wide variety of jobs (for example: in industrial Research and Development departments; in policy-making bodies; in the utilities industry; in the manufacturing sector; in energy equipment manufacturing).

Format

The course is centred around taught courses in core areas, covering basic revision and skills needed (such as Communication and Organisational Skills, Mathematical and Computational Skills, Review of Basic Energy Concepts, and Research Topics), various energy technologies (such as Clean Fossil Fuels, Solar, Biofuels, Wind etc), and energy efficiency and systems level approaches.

Elective courses may be chosen from a broad range, which includes topics such as Turbulence, Acoustics, Turbomachinery, Nuclear Power Engineering, Solar Panels, and Energy Efficiency in Buildings. Elective courses are delivered mainly by the Department of Engineering with input from the Department of Chemical Engineering and other departments in Cambridge.

Research projects are chosen from a list offered by members of staff and are linked to the principal areas of energy research in the respective departments.

Students can expect to receive reports at least termly on the Cambridge Graduate Supervision Reporting System. They will receive comments on items of coursework, and will have access to a University supervisor for their dissertation. All students will also have personal access to the Course Director and the other staff delivering the course.

Assessment

Students taking 12 elective modules will write a short thesis (up to 10,000 words). Students taking 10 elective modules will write a long thesis (up to 20,000 words). In both cases, 10% of the marks will be assigned through a pre-submission presentation, and 10% of the marks will be assigned through a post-submission presentation.

Students will take 5 core modules, and then either 5 elective modules (and a long thesis) or 7 elective modules (and a short thesis). All core modules are examined purely by coursework. Some of the elective modules are also examined wholly or partly by coursework.

Some of the elective modules are examined wholly or partly by written examination.

At the discretion of the Examiners, candidates may be required to take an additional oral examination on the work submitted during the course, and on the general field of knowledge within which it falls.

Continuing

Students wishing to apply for continuation to the PhD would normally be expected to attain an overall mark of 70%.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
Effective use of renewable energy and improvements in the efficiency of power generation facilities will enable better energy management in the future and help reduce environmental impact. Read more

Why take this course?

Effective use of renewable energy and improvements in the efficiency of power generation facilities will enable better energy management in the future and help reduce environmental impact. This course responds to an urgent need for specialists in energy and power systems management, as well as a growing skills shortage of people with core knowledge in this field.

The course provides relevant, up-to-date skills that will equip both graduates and working professionals in the advanced concepts of sustainable electrical power and energy generation. It offers skills for operation, control, design, regulation and management of power systems and networks of the future. You will also receive training in and understanding of energy production, delivery, consumption and efficiency.

What will I experience?

On this course you will:

Benefit from experts in the industry who will deliver part of the course as visiting lecturers, bringing professional expertise and industry-relevant material
Be encouraged to reach a level of competence and professionalism where you can effectively integrate your technical and non-technical knowledge to solve a range of problems of a complex nature
Learn in a challenging and stimulating study environment
Develop a range of key skills by means of opportunities provided in the study units
Being an MSc course, you are encouraged and expected to be able to reach a level of competence and professionalism where you can effectively integrate your technical and non-technical knowledge to solve a range of problems of a complex nature.

What opportunities might it lead to?

The course will help to maximise your career potential in this field and equips you to work as an engineer, at an advanced level, in the fields of energy and power systems management.

Module Details

You will study several key topics and complete a four-month individual project in which you apply your knowledge to a significant, in-depth piece of analysis or design. Projects are tailored to your individual interests and may take place in our own laboratories or, by agreement, in industry. Experts from Industry (STS Nuclear) deliver part of the course as visiting lecturers, bringing professional expertise and industry-relevant material to the programme.

Here are the units you will study:

Power Systems Technology: This unit provides an in-depth overview of contemporary electrical power systems. It covers the elements of electrical power systems including generation, transmission and distribution in the mixed energy source paradigm.

Electrical Machines and drives: Provides an in-depth overview of the operational principles and physical design of DC and AC electrical machines as well as broad understanding of concepts of power electronics and power electronic converters, so that you can describe their application and selection criteria. You will develop an understanding of the issues present in converter design, including the impact of physical layout and heat dissipation.

Energy Systems: Focuses on the techniques and principles of operation of thermodynamics and combustion systems, as well as the provision and management of energy. It also focuses on power generation and combined systems, BioMass processers application of heat and fluid transfer.

Renewable and Alternative Energy: Provides an in-depth coverage of the principles of renewable and alternative energy systems: Winds, Solar, BioMass, Geothermal, Fuel Cells, Hydrogen Technologies and Nuclear Energy.

Nuclear Technology: A study of nuclear engineering including the theory of atomic and nuclear physics, methods and benefits of generating electricity from nuclear power plants, and the effects of ionising radiation. The nuclear fuel cycle and the associated environmental impacts are also considered. The development of international guidance on nuclear and radiological safety and a comparison of national regulatory structures are analysed. The importance of safety cultures, safety behaviours and safety cases is a key element throughout this module.

Energy Management: The unit is specifically designed to provide the students with the basic of economical analysis and evaluation of energy projects and asset management as well as risk and hazard assessment, comprising legislation, hazard identification and quantification, quantified risk analyses, methods of elimination/mitigation, economic appraisal of integrated renewable, and petroleum projects; with numerous pertinent case studies.

Programme Assessment

You will be taught through a mixture of lectures, seminars, tutorials (personal and academic), laboratory sessions and project work. The course has a strong practical emphasis and you will spend a significant amount of time in our Energy, Power systems and Electronic laboratories.

A range of assessment methods encourages a deeper understanding of engineering and allows you to develop your skills. Here’s how we assess your work:

Written examinations
Coursework
Laboratory-based project work
A major individual project/dissertation

Student Destinations

This course is designed to respond to a growing skills shortage of people with core knowledge in energy and power systems management. It is an excellent preparation for a successful career in this ever expanding and dynamic field.

On successful completion of the course, you will have gained the skills and knowledge that will make you attractive to a wide variety of employers with interests ranging from overall system design to the more detailed development of subsystems. You will acquire the ability to critically evaluate methodologies, analytical procedures and research methods in energy and power systems management and in the use of state-of-the-art computational tools, the design of sustainable electrical power systems and networks and regulatory frameworks. For practicing engineers with professional business experience, the course is an opportunity to update your knowledge of current design practice and also to familiarise themselves with developments in codes and methods of analysis.

Read less
The Institute for Energy Systems (IES) is a world-leading centre of research in marine and renewable energy, and is home to international expertise covering energy and climate change, machines and power-electronic interfaces and power system operation and control. Read more

Research profile

The Institute for Energy Systems (IES) is a world-leading centre of research in marine and renewable energy, and is home to international expertise covering energy and climate change, machines and power-electronic interfaces and power system operation and control.

Academic expertise includes:

resource modelling
hydrodynamics
aerodynamics,
computational fluid dynamics
thermodynamics
electromagnetics
power electronics
control
power systems analysis
life-cycle analysis

Collaborations

The Institute also hosts the EPSRC-funded UK Centre for Marine Energy Research, and is founder and chair of the Ocean Energy Group within the European Energy Research Alliance.

In addition to traditional PhD training opportunities, IES leads the innovative IDCORE Engineering Doctoral Centre in Offshore Renewable Energy and the very well-established and successful MSc in Sustainable Energy Systems.

The Institute is a partner in the EPSRC funded CDT in Wind and Marine led by Strathclyde University. It also co-hosts the UK Energy Research Centre and collaborates in a Joint Research Institute in Energy with Heriot-Watt University.

Training and support

Students are strongly encouraged and trained to present their research at conferences and in journal papers during the course of their PhD.

Students are also encouraged to attend transferable skills courses provided by the University and to participate in external courses provided by organisations such as the Engineering and Physical Sciences Research Council (EPSRC).

PhD candidates pursue their research projects under continuous guidance, resulting in a thesis that makes an original contribution to knowledge. You will be linked to two academic supervisors, and one industrial supervisor if the project is industrially sponsored.

Facilities

IES has excellent experimental facilities for both marine and electrical power. The Institute hosts the unique FloWave Ocean Energy Research Facility, which is the world’s most sophisticated large marine energy test laboratory.

Research opportunities

We offer a comprehensive range of exciting research opportunities through a choice of postgraduate research degrees: MSc by Research, MPhil and PhD.

Masters by Research

An MSc by Research is based on a research project tailored to a candidate’s interests. It lasts one year full time or two years part time. The project can be a shorter alternative to an MPhil or PhD, or a precursor to either – including the option of an MSc project expanding into MPhil or doctorate work as it evolves. It can also be a mechanism for industry to collaborate with the School.

Read less
Build on your current credentials in the field of energy and environmental engineering, or take the first step into this vital industry. Read more
Build on your current credentials in the field of energy and environmental engineering, or take the first step into this vital industry.

Energy and the environment are increasingly taking their place as a major issue in today’s world.

The course emphasises renewable energy techniques and theories, while also addressing the scientific background associated with sustainable construction and renewable and alternative energies.

See the website http://www.napier.ac.uk/en/Courses/MSc-Energy-and-Environmental-Engineering-Postgraduate-FullTime

What you'll learn

As well as advanced engineering principles and practices, you’ll learn to effectively manage projects and develop your research skills. You’ll be given practical experience in applying these principles to the investigation and development of renewable energy sources, such as solar and wind energy.

The course is accredited by both the Institution of Engineering and Technology (IET) and the Energy Institute, UK. Combined with a suitable accredited undergraduate degree, the MSc degree would then satisfy the academic requirements of the UK Engineering Council for Chartered Engineer (CEng) status.

Modules

• Sustainability energy technologies
• Solar energy: technology
• Modelling and analysis
• Sustainable building design
• Research skills and project Management
• Control engineering
• Distributed generation systems
• MSc project

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

Career opportunities:
• energy production
• engineering consultancies
• research
• building services
• environmental engineering design

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X