• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
Cass Business School Featured Masters Courses
University of Dundee Featured Masters Courses
University of Manchester Featured Masters Courses
FindA University Ltd Featured Masters Courses
"algorithms"×
0 miles

Masters Degrees (Algorithms)

We have 238 Masters Degrees (Algorithms)

  • "algorithms" ×
  • clear all
Showing 1 to 15 of 238
Order by 
Get paid to do a Masters with the. Centre for Global Eco-Innovation. at. Lancaster University. , The Sunday Times University of the Year 2018, and. Read more

Get paid to do a Masters with the Centre for Global Eco-Innovation at Lancaster University, The Sunday Times University of the Year 2018, and The Miles Consultancy.

One year enterprise-led funded Masters by Research, Ref. No. 110

·        Get paid £15,000 tax-free

·        Have your tuition fees reduced. Your partner company pays £2,000 towards your fees, meaning UK/EU students pay £2,260, and international students pay £15,945.

·        Be part of the multi award winning Centre for Global Eco-Innovation with a cohort of 50 talented graduates working on exciting business-led R&D.

·        The Centre is based at Lancaster University, so you will gain your Masters from a Top Ten University, recognised as The Sunday Times University of the Year 2018.

·        Finish in a strong position to enter a competitive job market in the UK and overseas.

The vehicle market is changing at an unprecedented scale with new technologies, legislations and Government policy being introduced at a rate that companies and business drivers may not be able to keep track of. This could lead to poor decision making when it comes to choosing the next company car, which can have a significant impact on fuel used and emissions produced in subsequent years. With such an abundance of choice and conflicting advice the selection of a new company car is becoming increasingly complicated. 

This project offers the opportunity to gain a Masters qualification working in collaboration with Europe’s leading fuel management specialist; The Miles Consultancy (TMC). Understanding gained through this project will be in high demand as the vehicle market adapts and changes over the next 10 years. The project degree fees are sponsored, and you are paid a stipend whilst undertaking the research.

In this project you will work with academics in Lancaster University Management School and in collaboration with the company. You will use unique data, provided by TMC, on fuel spend as well as business and private mileage to identify the real-world efficiency of vehicles by matching the right technologies to the type and duration of journeys being made by individual drivers (e.g. urban / motorway / rural roads).

This project would suit a candidate with a background in Management Science and/or Maths and Statistics.

Enterprise and collaborative partners

This Masters by Research is a collaborative research project between Lancaster University with supervision by Dr. Guglielmo Lulli and Dr. Nicos Pavlidis and The Miles Consultancy.

The Miles Consultancy are a multi-award winning fuel management specialist. They deliver visibility; control and cost savings across a company’s vehicle fleet by consolidating, analysing and auditing mileage, fuel and fleet data.

Apply Here

To apply for this opportunity please email with:

·    A CV (2 pages maximum)

·    Application Form

·    Application Criteria Document

·    Reference Form

This project is part funded by the European Regional Development Fund and is subject to confirmation of funding. For further information about the Centre for Global Eco-Innovation, please see our website.

 

Deadline:           Midnight Sunday 15th July 2018

Start:                    October 2018



Read less
Goal of the pro­gramme. Computer science has a brilliant future! You could help to create new network solutions, build the future digital society, develop secure digital services, or be involved in a ground-breaking international software project. Read more

Goal of the pro­gramme

Computer science has a brilliant future! You could help to create new network solutions, build the future digital society, develop secure digital services, or be involved in a ground-breaking international software project. Perhaps you will develop algorithms for utilising genome data in medicine or optimise bus routes using positioning data. Do you wonder about all the things that can be automated? Or would you like to dig deeper and become a researcher?

In the Master’s programme in computer science you can become an expert in a wide range of fields. You will have access to the focus areas of research in computer science at the University of Helsinki: algorithms, distributed or networked systems, and software engineering. You will gain lasting professional skills for specialist, design, or managerial posts in the corporate world, or for research and doctoral education, since the Master’s programme in computer science gives you the aptitude for both independent working and multidisciplinary teamwork.

This education will give you:

  • The ability to advance your knowledge in the different areas of computer science
  • The skill to seek, assess, and analyse scientific information in your own area of expertise, and apply the methods of the field in an ethical and sustainable way
  • The ability to act as expert in the field, and to develop the practices and methods of your field in cooperation with specialists from other fields
  • Oral and written communication skills in an international work environment

The quality teaching within the computer science programme at the University of Helsinki has been highlighted repeatedly in national and international teaching assessments. The student-centred, in-depth learning gives you a solid basis for life-long learning. Studying at the leading research unit for computer science in Finland offers you constant interaction with current research and insight into the development patterns in the field.

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

In future, we will increasingly be using intelligent tools, consisting of networked hardware, software, services, and data. They will work based on intelligent, learning algorithms, data streams carried by communication protocols, and global infrastructures.

Within the Algorithms sub-programme, you will study effective algorithms and their application within other disciplines and in corporate life. Future IT systems will contain more and more intelligent components, the function of which will be based on complex mathematical models created automatically with the aid of machine-learning methods. The problems to be solved are computationally challenging, and the ever increasing amounts of data will create their own challenges when it comes to the efficiency of the algorithms needed.

The Networking and services sub-programme educates you to become an expert and strategic leader in the design and management of new global infrastructures. The infrastructures include Internet technologies in fixed networks and mobile environments, as well as the information and service networks built on top of them. Focus areas include the theory, data security, and trust within distributed systems, interactive systems, and the adaptability of services in a changing environment.

The Software systems sub-programme introduces you to the design and implementation of advanced software. The development of a shared software framework or platform for several software products is very demanding both technically and from the development project viewpoint. Developing such software requires technical skills, but also team- and project work, quality assurance, and communication. Within this sub-programme, you can specialise in software engineering, software technology, or information management, and study the current research questions in these areas in depth.



Read less
Our Advanced Computing MSc programme will provide you with systematic knowledge and experience of the theoretical foundations and practice of computing at an advanced level. Read more

Our Advanced Computing MSc programme will provide you with systematic knowledge and experience of the theoretical foundations and practice of computing at an advanced level. Built around modules such as Algorithm Design and Analysis, Data Structures and their Implementation in C++, and Parallel and Distributed Algorithms, and offering a broad range of optional modules, the course will enhance your abilities to solve advanced computational problems and implement algorithms.

Key benefits

  • Located in central London, giving access to major libraries and leading scientific societies, including the Chartered Institute for IT (BCS), and the Institution of Engineering and Technology (IET).
  • You will learn advanced practical techniques and implementation skills for solving complex computational problems.
  • You will develop critical awareness and appreciation of the changing role of computing in society and motivating you to pursue further professional development and research.
  • Frequent access to speakers of international repute through seminars and external lectures, enabling you to keep abreast of emerging knowledge in advanced computing and related fields.
  • The Department of Informatics has a reputation for delivering research-led teaching and project supervision from leading experts in their field.

Description

Rooted in the renowned research strengths of the Department of Informatics, this programme introduces core topics such as systems programming and algorithms before allowing you to specialise through your choice of modules. The course comprises of optional and required modules, and you will complete the course in one year, studying September to September. You must take modules totalling 180 credits to meet the requirements of the qualification, 60 of which will come from an individual project of around 15,000 words.

Course purpose

For graduates in computer science, mathematics, science or engineering with good knowledge of computer programming, this MSc will enhance your ability to solve advanced computational problems and impart skills necessary for algorithm implementation. Research for your individual project will provide valuable preparation for a career in research or industry.

Course format and assessment

Teaching

We use lectures, seminars and group tutorials to deliver most of the modules on the programme. You will also be expected to undertake a significant amount of independent study.

Assessment

The primary method of assessment for this course is a combination of written examinations, essays, coursework and individual or group projects and oral presentations. The research project and dissertation will be assessed on one 15,000-word extended piece of writing. 

Career prospects

Our graduates have continued into very successful careers in general software consultancy companies, in specialised software development companies and IT departments of large institutions (financial, telecommunications and public sector). Their jobs involve specialist programming and problem-solving as well more conventional software development, maintenance and project management roles. Some of our graduates have chosen to persue academic and industrial research in software engineering, bio-informatics, algorithms and computer networks.

Sign up for more information. Email now

Have a question about applying to King’s? Email now



Read less
Project Objectives. Develop the signal processing algorithms for classification and segmentation of Audio using Python/C++. Design a fully functional software system, which interfaces with microphones, and the end-application. Read more

Project Objectives

  • Develop the signal processing algorithms for classification and segmentation of Audio using Python/C++.
  • Design a fully functional software system, which interfaces with microphones, and the end-application.
  • Create a rich media end-application (HTML5) that utilises the system to demonstrate the effectiveness of the proposed automated approach.

Methodology proposed

Classification and segmentation of acoustic signals for rich-media applications such as video games, education and creative art technologies. This project will involve segmentation and classification of the speech and audio signals using signal-processing algorithms to find important word and phoneme time-transition boundaries as well as stationary and non-stationary acoustic regions.

Using digital signal processing algorithms (code) to determine these temporal boundaries will be extremely useful, as it will allow for the streamline production of rich-media animation applications particularly in user-generated content (UGC).

Expected outcomes: (e.g. deliverables & strategic impacts)

  • Faculty collaboration (Electronics & TV and Media) at I.T. Carlow.
  • Complete working system (algorithm code), which interfaces with a rich-media end application for demonstration purposes.
  • User trials and case studies will be conducted to refine and further develop the commercial potential of the system .
  • Significant RDI opportunities will emerge from this, technology companies, entertainment e.g. YouTube, Google and creative arts e.g. Cartoon Saloon in Kilkenny.
  • Dissemination of research findings through peer-reviewed journal publications and international conferences and workshops.


Read less
The Cryptography and Data Security major subject educates future experts with strong and broad knowledge on mathematical aspects of cryptography and data security. Read more

The Cryptography and Data Security major subject educates future experts with strong and broad knowledge on mathematical aspects of cryptography and data security. The students may also complement their theoretical knowledge with the courses of the Networked Systems Security in order to obtain profound and substantial education and expertise in the networked systems security and field of technology.

Programme structure

  1. Advanced-level studies in the major subject 50 ECTS credits
  2. Language, intermediate level and optional studies 40 ECTS credits
  3. Thesis for the Master of Science degree 30 ECTS credits

Academic excellence and experience 

The Master’s Degree Programme in Information Security and Cryptography is a two-year programme. The Cryptography and Data Security major subject focuses on mathematical aspects of cryptography and data security. The covered topics include:

  • modern asymmetric and symmetric cryptosystems,
  • cryptographic protocols and
  • algorithms related to information security.

In addition to the theoretical aspects, you will also learn to apply cryptographic algorithms and protocols in real-life environments. This goal is ensured by the multi-disciplinary studies of the major. Besides mathematics courses, you will also have compulsory studies both in networked systems security and management aspects of information security.

Master's thesis and topics

In the Master’s thesis, you must prove your ability to conduct scientific research and to produce mathematical text. You need to master the research methods, knowledge of the research field and skill of scientific writing.

The goal of the Master’s thesis is to

  • train students in independent problem solving for demanding research questions
  • to train students in presentation and argumentation skills, both oral and written
  • train students in search and critical evaluation of information
  • train students in mathematical argumentation
  • develop an ability to engage in a constructive dialogue with related disciplines
  • gain insight into actual research and development work as well as the possibilities and constraints of information security methods in the application domain and in the society at large.

Examples of thesis topics:

  • Private Evaluation of Decision Tree Classifiers
  • A Study of Privacy Preserving Queries with Bloom Filters
  • Elliptic Curve Cryptosystems: Comparing Weierstrass, Hesse and Edwards Curves
  • One-way Function and Their Application in Protocols

Competence description 

In the programme, based on the newest research, you will obtain profound and substantial knowledge on the mathematical aspects of cryptography and data security as well as experience of applying the theoretical knowledge on real-life scenarios. You can also learn teamwork and acquire a unique skillset in multi-disciplinary international Capstone projects. Thus, the major offers a strong expertise for a career in fields related to information security.

As a student in this major, you will gain skills in:

  • mathematical foundations of cryptography,
  • cryptographic algorithms and protocols,
  • networked systems security,
  • multi-disciplinary security and information management and
  • teamwork.

Job options 

In both Europe and Finland, the information intensive industry has become the most important business sector. Moreover, information has become one of the most relevant products in the information society. Securing this business sector and its products is vital in the modern era.

The degrees of this programme cover different areas of information security. Based on the personally planned expertise profiles, successful careers as information security experts in the IT sector are achievable in Finland and abroad. The education also benefits from co-operation with regional companies, especially in terms of optional Capstone projects.

A personal study plan made for each student creates an individual information security expertise profile. Possible job titles are:

  • cryptography engineer,
  • network security engineer and
  • information security manager.

Career in research

The Master’s degree provides eligibility for scientific postgraduate degree studies. Postgraduate degrees are doctoral and licentiate degrees.

Graduates from the programme are eligible to apply for a position in the University of Turku Graduate School (UTUGS). The Graduate School consists of 16 doctoral programmes which cover all disciplines and doctoral candidates of the University.

Together with the doctoral programmes, the Graduate School provides systematic and high quality doctoral training. UTUGS aims to train highly qualified experts with the skills required for both professional career in research and other positions of expertise.



Read less
The field of algorithms is today an extremely important enabling technology. Web search-engines, routing in the internet, genome analysis, cryptography and image analysis are just a few examples of applications that depend critically on suitable choices of algorithms and. Read more
The field of algorithms is today an extremely important enabling technology. Web search-engines, routing in the internet, genome analysis, cryptography and image analysis are just a few examples of applications that depend critically on suitable choices of algorithms and
data structures. The focus of this MSc is on the design, analysis and engineering of algorithms, covering their use for modelling real-world problems.

Start Dates
October and January each year.

Read less
Computing and communications technologies are having a truly disruptive effect on societies and business worldwide. Mobile payments, wireless communications and the ‘Internet of Things’ are transforming the way we approach key challenges in development, security, healthcare and the environment. Read more

Computing and communications technologies are having a truly disruptive effect on societies and business worldwide. Mobile payments, wireless communications and the ‘Internet of Things’ are transforming the way we approach key challenges in development, security, healthcare and the environment.

Taught jointly by the School of Computing and the School of Electronic and Electrical Engineering, this course will give you a grasp of all layers needed for mobile communication and computation, from the physical network layer through to the applications that run on mobile devices.

You’ll gain a full understanding of the web and cloud computing infrastructure, as core modules give you a foundation in key topics like systems programming and data communications. A range of optional modules will then allow you to focus on topics that suit your interests and career plans, from cloud computing to embedded systems design and high speed web architecture.

Specialist facilities

You’ll benefit from world-class facilities to support your learning. State-of-the-art visualisation labs including a powerwall, a benchtop display with tracking system, WorldViz PPT optical tracking system and Intersense InertiaCube orientation tracker are all among the specialist facilities we have within the School of Computing.

We also have Ascension Flock of Birds tracking systems, three DOF and 6DOF Phantom force feedback devices, Twin Immersion Corp CyberGloves, a cloud computing testbed, rendering cluster and labs containing both Microsoft and Linux platforms among others. It’s an exciting environment in which to gain a range of skills and experience cutting-edge technology.

Course content

You’ll take two core modules in Semester 1 that introduce you to fundamental topics like systems programming and network security. With this foundation, you’ll be able to gain high-level specialist knowledge through your choice of optional modules taught by the School of Computing and the School of Electronic and Electrical Engineering.

The optional modules you choose will enable you to direct your studies towards topics that suit your personal interests and career ambitions such as mobile app development, digital media engineering, big data, cloud computing and embedded systems design, among others.

Over the summer months you’ll also work on your research project. This gives you the chance to work as an integral part of one of our active research groups, focusing on a specialist topic in computer science and selecting the appropriate research methods.

Course structure

Compulsory modules

  • MSc Project 60 credits
  • Data Communications and Network Security 15 credits

Optional modules

  • Distributed Systems 10 credits
  • Mobile Application Development 10 credits
  • Combinatorial Optimisation 10 credits
  • Secure Computing 10 credits
  • Graph Algorithms and Complexity Theory 10 credits
  • Functional Programming 10 credits
  • Big Data Systems 15 credits
  • Mobile Applications Development 15 credits
  • Algorithms 15 credits
  • Parallel and Concurrent Programming 15 credits
  • Cloud Computing 15 credits
  • Graph Theory: Structure and Algorithms 15 credits
  • Communication Network Design 15 credits
  • Optical Communications Networks 15 credits
  • High Speed Internet Architecture 15 credits
  • Digital Media Engineering 15 credits

For more information on typical modules, read Mobile Computing and Communication Networks MSc in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The professional project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.Most projects are experimentally based and linked with companies within the oil and gas industry to ensure the topic of research is relevant to the field whilst also addressing a real-world problem.

A proportion of projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

Career opportunities are extremely broad, covering jobs in the design of embedded software running on multi-core devices through to jobs involving the design and implementation of new mobile-applications centric systems for business. In the application of mobile computing skills, job opportunities span every area, from the automotive sector through to retail and banking.

You could launch a career in fields such as mobile app development, mobile systems architecture, project management, network consultancy. You could also work as an engineer in embedded mobile communications, network security or research and development among many others – and you’ll even be well-prepared for PhD study.

Careers support

You’ll have access to the wide range of engineering and computing careers resources held by our Employability team in our dedicated Employability Suite. You’ll have the chance to attend industry presentations book appointments with qualified careers consultants and take part in employability workshops. Our annual Engineering and Computing Careers Fairs provide further opportunities to explore your career options with some of the UK’s leading employers.

The University's Careers Centre also provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
Computer Science is one of the drivers of technological progress in all economic and social spheres. Those graduating with an M.Sc. Read more

About Computer Science

Computer Science is one of the drivers of technological progress in all economic and social spheres. Those graduating with an M.Sc. in Computer Science are specialists in at least one field of computer science who have wide-ranging science-based methodological expertise.
Graduates are able to define, autonomously and comprehensively, computer science problems and their applications, structure them and build abstract models. Moreover, they are able to define and implement solutions that are at the state of the art of technology and science.

Features

– A broad, international and relevant selection of courses
– As a student, you will work on cutting-edge research projects
– Individual guidance in small learning groups
– Excellent enterprise relations maintained by the chairs and institutes
– Numerous partnerships with universities throughout the world, including a double degree programme with the Institut national des sciences appliquées de Lyon (INSA)

Syllabus

The programme offers the following five focus modules:
1) Algorithms and Mathematical Modelling
2) Programming and Software Systems
3) Information and Communication Systems
4) Intelligent Technical Systems
5) IT Security and Reliability
1) Algorithms and Mathematical Modelling: This module teaches you about determinstic and stochastic algorithms, their implementation, evaluation and optimisation. You will acquire advanced knowledge of computer-based mathematical methods – particularly in the areas of algorithmic algebra and computational stochastics – as well as developing an in-depth expertise in mathematical modelling and complexity analysis of discrete and continuous problems.
2) Programming and Software Systems: This module imparts modern methods for constructing large-scale software systems, as well as creating and using software authoring, analysis and optimisation tools. In this module you will consolidate your knowledge of the various programming paradigms and languages, the structure of language processing systems, and learn to deal with parallelism in program procedures.
3) Information and Communication Systems: In this module you will study the interactions of the classic computer science areas of information systems and computer networks. This focus area represents an answer to the problem of increasing volume and complexity of worldwide information distribution and networks, and for the growing requirements on quality and performance of computer communication. Additionally, you will learn to transfer database results to multimedia data.
4) Intelligent Technical Systems: In this module you are acquainted with digital image and signal processing, embedded systems and applications of intelligent technical systems in industrial and assistance systems, which are necessary for production automation and process control, traffic control, medical and building technology. You will learn to develop complex applications using computer systems and deal with topics such as image reconstruction, camera calibration, sensor data fusion and optical measurement technology.
5) IT Security and Reliability: This module group is concerned with security and reliability of IT systems, e.g. in hardware circuitry and communication protocols, as well as complex, networked application systems. To ensure the secure operation of these systems you will learn design methodology, secure architectures and technical implementation of the underlying components.

Language requirements

Unless English is your native language or the language of your secondary or undergraduate education, you should provide an English language certificate at level B2 CEFR, e.g. TOEFL with a minimum score of 567 PBT, 87 iBT or ITP 543 (silver); IELTS starting from 5.5; or an equivalent language certificate.

To facilitate daily life in Germany, it would be beneficial for you to have German language skills at level A1 CEFR (beginner’s level). If you do not have any German skills when starting out on the programme, you will complete a compulsory beginner’s German course during your first year of study.

Read less
The objective of this programme of study is to prepare professionals able to deal with complex systems using sophisticated mathematical tools, yet with an engineering attitude. Read more

Mission and goals

The objective of this programme of study is to prepare professionals able to deal with complex systems using sophisticated mathematical tools, yet with an engineering attitude. It harmonises a solid scientific background with a command of advanced methodologies and technologies. The programme is characterised by a continuous synergy between Applied Mathematics and Engineering disciplines- The students may choose among three specialisations:
- Computational Science and Engineering
- Applied Statistics
- Quantitative Finance

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/mathematical-engineering/

Career opportunities

The professional opportunities offered by this course are rather ample and varied: engineering consultancy companies that deal with complex computational problems; manufacturing or civil engineering companies where analyses based on the use of advanced mathematical tools are needed; banks, insurance companies and financial institutions making use of quantitative finance for risk analysis or forecast; companies that require statistical interpretation and the processing of complex data, or the simulation of different scenarios; public and private research institutes and laboratories.

Eligible students

Students holding a Bachelor degree in Mathematical Engineering, or in a related area with a solid background in the core disciplines of the programme, i.e. Applied Mathematics, Computer Science, Applied Physics or other Engineering disciplines are eligible for application. In particular, eligible students' past studies must include courses in different areas of Engineering (among Informatics, Economics & Business Organization, Electrotechnics, Automation, Electronics, Applied Physics, Civil Engineering) for at least 25% of the overall courses, as well as courses in different areas of Mathematics (Mathematical Analysis, Linear Algebra, Geometry, Probability, Statistics, Numerical Analysis, Optimization) for at least 33% of the overall courses.
The following tracks are available:
1. Computational Science and Engineering
2. Applied Statistics
3. Quantitative Finance

Eligible students must clearly specify the track they are applying for in their motivation letter.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Mathematical_Engineering.pdf
The Master of Science in Mathematical Engineering (MSME) aims to form an innovative and flexible professional profile, endowed with a wide spectrum of basic scientific notions and engineering principles, together with a deep knowledge of modern pure and applied mathematical techniques. MSME is characterized by a continuous synergy between Mathematics and Engineering methods, oriented to the modelling, analysis and solution of complex planning, control and management problems, and provides the students with the possibility to face problems from various scientific, financial and/or technological areas. The MSME graduates can find employment in Engineering companies specialized in handling complex computational problems, requiring a multidisciplinary knowledge; in companies manufacturing industrial goods for which design analysis based on the use of advanced mathematical procedures are required; in service societies, banks, insurance companies, finance or consultant agencies for the statistical interpretation and the simulation of complex situations related to the analysis of large number of data (e.g. management and optimization of services, data mining, information retrieval) or for handling financial products and risk management; in public and private institutions. The programme is taught in English.

Subjects

Three main tracks available:
1. Computational Science for Engineering
Real and functional analysis; algorithms and parallel programming; numerical and theoretical analysis for partial differential equations; fluid mechanics; computational fluid dynamics advanced programming techniques for scientific computing;

2. Statistics
Real and functional analysis; algorithms and parallel programming; stochastic dynamical models; applied statistics, model identification and data analysis; Bayesian statistics

3. Mathematical Finance
Real and functional analysis; algorithms and parallel programming; stochastic differential equations; mathematical finance; financial engineering; model identification and data analysis.

In the motivation letter the student must clearly specify the track he/she is applying for.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/mathematical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/mathematical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This MSc programme focuses on the development of sophisticated computer graphics applications and on the development of tools commonly used in the creation of content for these applications. Read more
This MSc programme focuses on the development of sophisticated computer graphics applications and on the development of tools commonly used in the creation of content for these applications. It provides students with opportunity to develop important skills necessary for employment in this sector. They will use their expertise to, for example, develop interactive graphical scenes and deploy up to date techniques to implement real-time and offline visual effects.

Course Overview

This programme will equip students with skills at a high academic level and also crucially enable them to practically implement their knowledge because of the ‘hands-on’ emphasis of the programme.

The main themes of the programme are:
-Current and emerging algorithms and techniques used in film visual effects and games programming
-Approaches used to generate off-line visual effects
-Approaches used to generate real-time interactive games

The first theme develops in the student the necessary skills required to implement algorithms and techniques used to generate realistic scenes. These concepts will be explored in detail.

The second theme addresses the need for students to identify, evaluate and implement suitable methods to solve specific problems related to creating off-line visual effects.

The third theme recognises the need to solve these problems using approaches optimised for real-time computer games development and develops in the student the requisite skills.

Modules

-Animation Systems Development (20 credits)
-Artificial Intelligence for Games & VFX (20 credits)
-GPU Shader Development (20 credits)
-Leadership and Management (20 credits)
-Research Methods and Data Analysis (20 credits)
-Visual Simulation (20 credits)
-Major Project (60 credits)

Key Features

Applicants for this programme will have an interest in computer graphics and Computer Generated Imagery (CGI). The main themes of the programme are current and emerging algorithms and techniques used in film visual effects and games programming, approaches used to generate off-line visual effects and approaches used to generate real-time interactive games. This also includes the development/enhancement of tools used in the CGI and animation industry. Graduates will be concerned with the discipline of developing software and applications using high level programming languages. They will also be experienced in creating custom animated scenes using the powerful scripting languages of industry standard applications such as Maya and Houdini software. Graduates will have an advanced understanding of computer graphics, GPU shader development, and visual simulation methods making use of modern artificial intelligence and simulation techniques. Graduated are likely to find employment either within the film VFX industry, computer games or traditional software engineering sectors.

Assessment

An Honours Degree (2.2 or above) or advanced qualification in Computer Science or cognate discipline from a UK University or recognised overseas institution, or industrial experience in Computer Networking and an Honours Degree.

Where English is not your first language, we ask that you hold an Academic IELTS test with a score of at least 6.0 (no element less than 5.5) or TOEFL with a minimum score of 550 (213 for computer based test).

Career Opportunities

It is expected that graduates would seek positions such as:
-Software Engineers
-Senior Software Engineers
-App Developers
-CGI Special Effects Programmers
-Games Programmers
-Lead Programmers
-Render Manager
-VFX Programmer
-VFX Technical Directors

Read less
From software agents used in networking systems to embedded systems in unmanned vehicles, intelligent systems are being adopted more and more often. Read more

From software agents used in networking systems to embedded systems in unmanned vehicles, intelligent systems are being adopted more and more often. This programme will equip you with specialist knowledge in this exciting field and allow you to explore a range of topics in computer science.

Core modules will give you a foundation in topics like systems programming and algorithms, as well as the basics of machine learning and knowledge representation. You’ll also choose from optional modules focusing on topics like bio-inspired computing or text analytics, or broaden your approach with topics like mobile app development.

You’ll gain a broad perspective on intelligent systems, covering evolutionary models, statistical and symbolic machine learning algorithms, qualitative reasoning, image processing, language understanding and bio-computation as well as essential principles and practices in the design, implementation and usability of intelligent systems.

Specialist facilities

You’ll benefit from world-class facilities to support your learning. State-of-the-art visualisation labs including a powerwall, a benchtop display with tracking system, WorldViz PPT optical tracking system and Intersense InertiaCube orientation tracker are all among the specialist facilities we have within the School of Computing.

We also have Ascension Flock of Birds tracking systems, three DOF and 6DOF Phantom force feedback devices, Twin Immersion Corp CyberGloves, a cloud computing testbed, rendering cluster and labs containing both Microsoft and Linux platforms among others. It’s an exciting environment in which to gain a range of skills and experience cutting-edge technology.




Read less
About the programme. In addition to being a science in its own right, mathematics plays a fundamental role in the quantitative areas of practically all other academic disciplines, particularly in the natural sciences, engineering, business administration, economics, medicine and psychology. Read more

About the programme

In addition to being a science in its own right, mathematics plays a fundamental role in the quantitative areas of practically all other academic disciplines, particularly in the natural sciences, engineering, business administration, economics, medicine and psychology. Mathematical results permeate nearly all facets of life and are a necessary prerequisite for the vast majority of modern technologies – and as our IT systems become increasingly powerful, we are able to mathematically handle enormous amounts of data and solve ever more complex problems.

Special emphasis is placed on developing students' ability to formalise given problems in a way that facilitates algorithmic processing as well as enabling them to choose or develop, and subsequently apply, suitable algorithms to solve problems in an appropriate manner. The degree programme is theoretical in its orientation, with strongly application-oriented components. Studying this programme, you can gain advanced knowledge in the mathematical areas of Cryptography, Computer Algebra, Algorithmic Algebra and Geometry, Image and Signals Processing, Statistics and Stochastic Simulation, Dynamical Systems and Control Theory as well as expert knowledge in Computer Science fields such as Data Management, Machine Learning and Data Mining.

Furthermore, you will have the chance to learn how to apply your knowledge to tackle problems in areas as diverse as Marketing, Predictive Analytics, Computational Finance, Digital Humanities, IT Security and Robotics.

Programme syllabus

The core modules consist of two mathematics seminars and the presentation of your master's thesis.The compulsory elective modules are divided into eight module groups:

1)   Algebra, Geometry and Cryptography

This module group imparts advanced results in the areas of algebra and geometry, which constitute the fundament for algorithmic calculations, particularly in cryptography but also in many other mathematical areas.

2)   Mathematical Logic and Discrete Mathematics

The theoretical possibilities and limitations of algorithm-based solutions are treated in this module group.

3)   Analysis, Numerics and Approximation Theory

Methods from the fields of mathematical analysis, applied harmonic analysis and approximation theory for modelling and approximating continuous and discrete data and systems as well as efficient numerical implementation and evaluation of these methods are the scope of this module group.

4) Dynamical Systems and Optimisation

Dynamical systems theory deals with the description of change over time. This module group is concerned with methods used for the modelling, analysis, optimisation and design of dynamical systems, as well as the numerical implementation of such techniques.

5) Stochastics, Statistics

This module group deals with methods for modelling and analysing complex random phenomena as well as the construction, analysis and optimisation of stochastic algorithms and techniques used in statistical data analysis.

6) Data Analysis and Data Management and Programming

This module group examines the core methods used in computer science for the analysis of data of heterogeneous modalities (e.g. multimedia data, social networks and sensor data) and for the realisation of data analysis systems.

7) Applications

In this module group, you will practise applying the mathematical methods learned in module groups 1 to 6 to real-world applications such as Marketing, Predictive Analytics and Computational Finance.

8) Key Competencies and Language Training

In this module group, you will choose seminars that develop your non-subject-specific skills, such as public speaking and academic writing and other soft skills; you may also undertake internships. This serves to complement your technical expertise gained during your degree studies and helps to prepare you for your professional life after university.



Read less
The Master of Science in Computer Science provides you with a comprehensive background in. algorithms, computational theory, computer architecture, operating systems, compiler design and software based systems. Read more

The Master of Science in Computer Science provides you with a comprehensive background in:

  • algorithms, computational theory, computer architecture, operating systems, compiler design and software based systems
  • theory and design of modern high-level programming languages and applications in development of systems software
  • design and analysis of efficient algorithms
  • advanced topics in computer architecture, illustrated by case studies from classic to modern processors, including large-scale computer systems
  • topics specific to your area of specialization, such as software engineering, computer security, networks, computer graphics, databases, information security, and artificial intelligence

Our 30-credit curriculum also offers a thesis option in which you’ll take six credits relating to thesis courses. This allows you to gain specialization in areas that make you better qualified for specific research and development opportunities.

Our Entrepreneurship and Technology Innovation Center in Old Westbury offers you the opportunity to join research projects in areas such as cybersecurity, health care, and energy. This may lead to your work getting published in peer-reviewed journals and presented at major conferences. You can also join us at the annual Cybersecurity Conference at our Manhattan campus, where we welcome experts from academic, business, and government worldwide.



Read less
This is fundamental and classical programme , but together the programme integrates the latest scientific and technological achievements and focuses on the development of high level competencies. Read more

This is fundamental and classical programme , but together the programme integrates the latest scientific and technological achievements and focuses on the development of high level competencies:

  • In development of products of mechanical nature – the specialists are able to evaluate, model, simulate develop and optimize mechanical systems;
  • In carrying out research – the specialists are able to solve non completely defined problems, summarizing and integrating knowledge and information from the field of mechanical engineering and other fields or areas;
  • To do the work of a manager – the specialists are able to lead teams of different field professionals, manage activities of the team.

Why @KTU?

Modern and well equipped laboratories

Studies and research are carried out in modern laboratories of Measurements Actuators, Robotics, Biomechatronics, Dynamics, Piezomechanics, Holography and Optical Measurements, 3D Prototyping, Materials Static Testing.

Close collaboration with international companies

Faculty closely works with many international and local industrial partners: Festo, Hi-Steel, Mars Lietuva, Baltec CNC Technologies, etc.

Master+

Master+ model offers either to masterpiece in the specialisation or to strengthen managerial/interdisciplinary skills by choosing individual set of competencies required for career.

MA+

Master+ is a unique model within a chosen MSc programme

The Master+ model offers either to masterpiece in the chosen discipline by choosing the Field Expert track or to strengthen the interdisciplinary skills in addition to the main discipline by choosing the Interdisciplinary Expert track providing a choice of a different competence to compliment the chosen discipline and achieve a competitive advantage in one’s career.

Students of these study programmes can choose between the path of Field Expert and Interdisciplinary Expert. Selection is made in the academic information system. Each path (competence) consists of three subjects (18 credits) allocated as follows: 1 year 1 semester (autumn) – first subject (6 credits), 1 year 2 semester (spring) – second subject (6 credits), 2 year 3 semester – third subject (6 credits). A student, who chooses a path of the Field Expert, deepens knowledge and strengthens skills in the main field of studies. The one, who chooses a path of the Interdisciplinary Expert, acquires knowledge and skills in a different area or field of studies. Competence provides a choice of alternative additional subjects.

  • Field Expert (profound knowledge and skills in the area, required for solution of scientific research tasks);
  • Interdisciplinary Expert: 
  • (fields of different knowledge and skills are combined for solution of specific tasks);

Acquisition of the competence is certified by the issue of KTU certificate and entry in the appendix to the Master’s diploma. In addition, students can acquire an international certificate (details are provided next to each competence).

Competences are implemented by KTU lecturers – experts in their area – and high level business and public sector organizations; their employees deliver lectures, submit topics for the student’s theses, placement-oriented tasks for the projects, etc.

Career

Student’s competences:

– To coordinate the activities of the teams of facilities management specialists in various companies (operating in the fields from production to designing);

– To know production processes and control possibilities and tools of engineering analysis (CAD/CAE);

– To analyse problematic areas of facilities management and adapt modern modelling software for increase of efficiency of processes;

– To design and implement development of the systems or subsystems of mechanical nature in the integral engineering systems using modern research and technological equipment and engineering analysis tools.

Student’s skills:

– Able to model the systems of strength of structures, contact, thermal conductivity and flow of liquids, assessing their dynamic properties, functional and reliability level of their components;

– Able to design and realise the processes of designing – product development using advanced competences of engineering activities;

– Able to realise modern algorithms and algorithms based on computer modelling software for facilities management.



Read less
Self-learning systems are an important and newly emerging technique in many areas of applied science such as Applied Mathematics, Engineering, Computer Science and Statistics. Read more

Self-learning systems are an important and newly emerging technique in many areas of applied science such as Applied Mathematics, Engineering, Computer Science and Statistics. In particular, self-learning systems are a disruptive approach to mathematical modelling which use differential equations at their foundation. A particular strength of this approach is that it combines numerical learning algorithms such as dynamic machine learning with differential equations to design applications that can adapt to a changing environment. This approach is new and unique because it explicitly takes into account the dynamic aspects of data and allows for fast and accurate modelling of self-learning systems. This is a new and rapidly developing area at the interface between applied mathematics and machine-learning (for example see here).

The primary aim of this course is to provide training in the use and development of modern numerical methods and self-learning software. Graduates will develop and apply new skills to real-world problems using mathematical ideas and techniques together with software tailored for complex networks and self-learning systems. While there is a strong focus on modern applications, graduates will gain in-demand skills in mathematical modelling, problem-solving, scientific computing, dynamic machine learning, complex networks and communication of mathematical ideas to a non-technical audience.

More general hands-on skills include mathematical typesetting, mathematical writing, desktop and web-based mathematical software development, and the use of computer languages and packages such as C#, R, Python and TensorFlow.

Course Practicalities

The course places great emphasis on hands-on practical skills. There is a computer laboratory allocated solely for the use of MSc students. PCs are preloaded with all the required software and tools. Teaching hours, tutorials and practical demonstrations, usually take place in the morning. The rest of the time, you are expected to do exercises, assignments and generally put in the time required to acquire key skills. For online modules, students are advised to have access to a laptop/home computer with internet connection, modern browser, word processing and spreadsheet software.

Why choose this course?

This MSc reflects a philosophy of cutting edge teaching methods and pragmatism. As well as providing you with a host of abilities which are in demand in industry, this MSc provides skills which are complementary to most scientific and engineering undergraduate courses. The MSc not only opens up new possibilities, you also gain a set of skills that sets you apart from the crowd in your original field of study. The final project is an excellent opportunity for you to showcase your abilities to future employers or to undertake a detailed study in a new area of interest. The course is extremely flexible in helping you realise your ambitions. 

Skills and Careers Information

Graduates with quantitative skills and expertise in self-learning algorithms are in high demand in industry according to the Governments Expert Group on Future Skills Needs. Demand for these skills is projected to rise over the coming years not just in Ireland but in the EU and globally. Graduates from a similar MSc have secured jobs in the following areas: banking, financial trading, consultancy, online gambling firms, software development, logistics, data analysis and with companies such as AIB, McAfee, Fexco, DeCare Systems, MpStor, the Tyndall Institute, Matchbook.com, First Derivatives and KPMG.




Read less

Show 10 15 30 per page



Cookie Policy    X