• Durham University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
Cranfield University Featured Masters Courses
University of Leeds Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
Cass Business School Featured Masters Courses
Aberdeen University Featured Masters Courses
"algorithms"×
0 miles

Masters Degrees (Algorithms)

We have 221 Masters Degrees (Algorithms)

  • "algorithms" ×
  • clear all
Showing 1 to 15 of 221
Order by 
Computer science has a brilliant future! You could help to create new network solutions, build the future digital society, develop secure digital services, or be involved in a ground-breaking international software project. Read more
Computer science has a brilliant future! You could help to create new network solutions, build the future digital society, develop secure digital services, or be involved in a ground-breaking international software project. Perhaps you will develop algorithms for utilising genome data in medicine or optimise bus routes using positioning data. Do you wonder about all the things that can be automated? Or would you like to dig deeper and become a researcher?

In the Master’s programme in computer science you can become an expert in a wide range of fields. You will have access to the focus areas of research in computer science at the University of Helsinki: algorithms, distributed or networked systems, and software engineering. You will gain lasting professional skills for specialist, design, or managerial posts in the corporate world, or for research and doctoral education, since the Master’s programme in computer science gives you the aptitude for both independent working and multidisciplinary teamwork.

This education will give you:
-The ability to advance your knowledge in the different areas of computer science.
-The skill to seek, assess, and analyse scientific information in your own area of expertise, and apply the methods of the field in an ethical and sustainable way.
-The ability to act as expert in the field, and to develop the practices and methods of your field in cooperation with specialists from other fields.
-Oral and written communication skills in an international work environment.

The quality teaching within the computer science programme at the University of Helsinki has been highlighted repeatedly in national and international teaching assessments. The student-centred, in-depth learning gives you a solid basis for life-long learning. Studying at the leading research unit for computer science in Finland offers you constant interaction with current research and insight into the development patterns in the field.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

In future, we will increasingly be using intelligent tools, consisting of networked hardware, software, services, and data. They will work based on intelligent, learning algorithms, data streams carried by communication protocols, and global infrastructures.

Within the Algorithms sub-programme, you will study effective algorithms and their application within other disciplines and in corporate life. Future IT systems will contain more and more intelligent components, the function of which will be based on complex mathematical models created automatically with the aid of machine-learning methods. The problems to be solved are computationally challenging, and the ever increasing amounts of data will create their own challenges when it comes to the efficiency of the algorithms needed.

The Networking and services sub-programme educates you to become an expert and strategic leader in the design and management of new global infrastructures. The infrastructures include Internet technologies in fixed networks and mobile environments, as well as the information and service networks built on top of them. Focus areas include the theory, data security, and trust within distributed systems, interactive systems, and the adaptability of services in a changing environment.

The Software systems sub-programme introduces you to the design and implementation of advanced software. The development of a shared software framework or platform for several software products is very demanding both technically and from the development project viewpoint. Developing such software requires technical skills, but also team- and project work, quality assurance, and communication. Within this sub-programme, you can specialise in software engineering, software technology, or information management, and study the current research questions in these areas in depth.

Selection of the Major

The sub-programmes in the Master’s programme for computer science are:
-Algorithms
-Networking and services
-Software systems

You can select any of these programmes according to your preferences at the beginning of your studies. The sub-programme determines which courses you should take.

Programme Structure

The Master’s programme comprises 120 credits, which can be completed in two years, in accordance with an approved personal study plan. The degree includes:
-80 credits of advanced courses, including shared courses within the programme, courses within the programme which support the thesis topic, the Master’s thesis (Pro gradu), 30 credits.
-40 credits of other courses from your own or other programmes. The other courses can include a work-orientation period.

Career Prospects

The employment outlook within the field is excellent. Masters of computer science find varied positions within the ICT field, both as employees and entrepreneurs. The nature of the education is also geared towards giving you an aptitude for managerial posts. All the sub-programmes provide the qualifications to find employment in a wide variety of jobs.

Software-system graduates often start their careers as software developers and designers, while network graduates often start with software at the infrastructure level (such as data communications, computation, or data entry). The skills learned in the algorithms sub-programme enable you to work on challenging tasks in various fields.

As a graduate you can find employment within small or large corporations as well as organisations in the private, public, or third sector. Due to the global nature of the field, you can find employment anywhere in the world. Taking modules from other education programmes will help you apply your computer science skills in other areas. Many jobs are based on these combinations.

Thanks to its strong scientific basis, the degree is also an excellent springboard to a doctoral programme.

Internationalization

There is a very international atmosphere within the programme, as nearly a third of the students come from abroad, and the advanced courses are instructed by international researchers.

In addition, the University of Helsinki and the Faculty of Science offer you many opportunities for international activities:
-Instruction in English within other education programmes.
-International tasks within the students’ organisations or union.
-Language courses at the Language Centre of the University of Helsinki.

You can also get information and counselling about independent international experience, such as:
-Student exchange in one of the exchange locations of the faculty or university.
-Traineeships abroad.

Computer science at the University of Helsinki is a popular exchange location, especially from Germany. Some 5-10 students come annually; exchange students have come from 14 countries in recent years. The students in the department have taken exchange periods in 16 countries in the past few years.

Research Focus

There are several multidisciplinary research projects under way at the Faculty of Science, which are being carried out in cooperation with the research institutes on the science campus and with other faculties, universities, and corporations. The role of computer science within these projects is to develop the basic methods of the discipline in strategic areas and to collaborate in depth with other disciplines.

The sub-programmes within the Master’s programme cover a considerable part of the strategic focus areas of computer science research at the University of Helsinki: algorithms, data analysis and machine learning, networking and services, software systems, bioinformatics, and data science.

Computer science is part of three Finnish Academy centres of excellence: for computational inference, inversion problems, and cancer genetics. These units represent the collaboration between computer science and other disciplines.

Computer science has coordinated the long-lived Algodan centre of excellence, which has been the basis for many current research groups.

Read less
From software agents used in networking systems to embedded systems in unmanned vehicles, intelligent systems are being adopted more and more often. Read more

From software agents used in networking systems to embedded systems in unmanned vehicles, intelligent systems are being adopted more and more often. This programme will equip you with specialist knowledge in this exciting field and allow you to explore a range of topics in computer science.

Core modules will give you a foundation in topics like systems programming and algorithms, as well as the basics of machine learning and knowledge representation. You’ll also choose from optional modules focusing on topics like bio-inspired computing or text analytics, or broaden your approach with topics like mobile app development.

You’ll gain a broad perspective on intelligent systems, covering evolutionary models, statistical and symbolic machine learning algorithms, qualitative reasoning, image processing, language understanding and bio-computation as well as essential principles and practices in the design, implementation and usability of intelligent systems.

Specialist facilities

You’ll benefit from world-class facilities to support your learning. State-of-the-art visualisation labs including a powerwall, a benchtop display with tracking system, WorldViz PPT optical tracking system and Intersense InertiaCube orientation tracker are all among the specialist facilities we have within the School of Computing.

We also have Ascension Flock of Birds tracking systems, three DOF and 6DOF Phantom force feedback devices, Twin Immersion Corp CyberGloves, a cloud computing testbed, rendering cluster and labs containing both Microsoft and Linux platforms among others. It’s an exciting environment in which to gain a range of skills and experience cutting-edge technology.

Course content

Core modules in Semester 1 will lay the foundations of the programme by giving you an understanding of the key topics of algorithms and systems programming, as well as the basic principles of automated reasoning, machine learning and how computers can be made to represent knowledge.

From there you’ll have the chance to tailor your studies to suit your own preferences. You’ll choose from a wide range of optional modules on diverse topics such as image analysis, cloud computing, graph theory and developing mobile apps.

Over the summer months you’ll also work on your research project. This gives you the chance to work as an integral part of one of our active research groups, focusing on a specialist topic in computer science and selecting the appropriate research methods.

Want to find out more about your modules?

Take a look at the Advanced Computer Science (Intelligent Systems) module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • MSc Project 60 credits
  • Bio-Inspired Computing 15 credits
  • Knowledge Representation and Reasoning 15 credits
  • Image Analysis 15 credits

Optional modules

  • Distributed Systems 10 credits
  • Mobile Application Development 10 credits
  • Machine Learning 10 credits
  • Intelligent Systems and Robotics 20 credits
  • User Adaptive Intelligent Systems 10 credits
  • Data Mining and Text Analytics 10 credits
  • Combinatorial Optimisation 10 credits
  • Graph Algorithms and Complexity Theory 10 credits
  • Big Data Systems 15 credits
  • Data Science 15 credits
  • Algorithms 15 credits
  • Parallel and Concurrent Programming 15 credits
  • Cloud Computing 15 credits
  • Semantic Technologies and Applications 15 credits
  • Scheduling 15 credits
  • Scientific Computation 15 credits
  • Graph Theory: Structure and Algorithms 15 credits

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The professional project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects for MSc Advanced Computer Science (Intelligent Systems) students have included:

  • Object-based attention in a biologically inspired network for artificial vision
  • Advanced GIS functionality for animal habitat analysis
  • Codebook construction for feature selection
  • Learning to imitate human actions

A proportion of projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

Computing is an essential component of nearly every daily activity, from the collection, transformation, analysis and dissemination of information in business, through to smart systems embedded in commodity devices, the image processing used in medical diagnosis and the middleware that underpins distributed technologies like cloud computing and the semantic web.

This programme will give you the practical skills to gain entry into many areas of applied computing, working as application developers, system designers and evaluators; but further, links between the taught modules and our research provide our students with added strengths in artificial intelligence, intelligent systems, distributed systems, and the analysis of complex data. As a result, you’ll be well prepared for a range of careers, as well as further research at PhD level.

Graduates have found success in a wide range of careers working as business analysts, software engineers, wed designers and developers, systems engineers, information analysts and app developers. Others have pursued roles in consultancy, finance, marketing and education, or set up their own businesses.



Read less
Explore advanced topics in computer science with this wide-ranging programme, which will equip you with the understanding and practical skills to succeed in a variety of careers. Read more

Explore advanced topics in computer science with this wide-ranging programme, which will equip you with the understanding and practical skills to succeed in a variety of careers.

Rooted in the established research strengths of the School of Computing, the programme will introduce topics like systems programming and algorithms before allowing you to specialise through your choice of modules.

You could look at emerging approaches to human interaction with computational systems, novel architectures such as clouds, or the rigorous engineering needed to develop cutting-edge applications such as large-scale data mining and social networks.

Building on your existing knowledge of computer science, you’ll develop the theoretical and practical skills required to design and implement larger, more complex systems using state-of-the-art technologies. You’ll even have the chance to work as an integral member of one of our research groups when you develop your main project.

Specialist facilities

You’ll benefit from world-class facilities to support your learning. State-of-the-art visualisation labs including a powerwall, a benchtop display with tracking system, WorldViz PPT optical tracking system and Intersense InertiaCube orientation tracker are all among the specialist facilities we have within the School of Computing.

We also have Ascension Flock of Birds tracking systems, three DOF and 6DOF Phantom force feedback devices, Twin Immersion Corp CyberGloves, a cloud computing testbed, rendering cluster and labs containing both Microsoft and Linux platforms among others. It’s an exciting environment in which to gain a range of skills and experience cutting-edge technology. 

Course content

Core modules in Semester 1 will lay the foundations of the programme by giving you an understanding of the key topics of algorithms and systems programming.

From there you’ll have the chance to tailor your studies to suit your own preferences. You’ll choose from a wide range of optional modules on diverse topics such as cloud computing, image analysis, machine learning, semantic technologies and developing mobile apps.

Over the summer months you’ll also work on your research project. This gives you the chance to work as an integral part of one of our active research groups, focusing on a specialist topic in computer science and selecting the appropriate research methods.

Want to find out more about your modules?

Take a look at the Advanced Computer Science module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • MSc Project 60 credits

Optional modules

  • Web Services and Web Data 10 credits
  • Distributed Systems 10 credits
  • Mobile Application Development 10 credits
  • Machine Learning 10 credits
  • Information Visualization 10 credits
  • User Adaptive Intelligent Systems 10 credits
  • Data Mining and Text Analytics 10 credits
  • Combinatorial Optimisation 10 credits
  • Secure Computing 10 credits
  • Graph Algorithms and Complexity Theory 10 credits
  • Big Data Systems 15 credits
  • Data Science 15 credits
  • Bio-Inspired Computing 15 credits
  • Knowledge Representation and Reasoning 15 credits
  • Algorithms 15 credits
  • Parallel and Concurrent Programming 15 credits
  • Foundations of Modelling and Rendering 15 credits
  • Games Engines and Workflow 15 credits
  • Geometric Processing 15 credits
  • High-Performance Graphics 15 credits
  • Animation and Simulation 15 credits
  • Data Mining and Text Analytics 15 credits
  • Cloud Computing 15 credits
  • Semantic Technologies and Applications 15 credits
  • Image Analysis 15 credits
  • Scheduling 15 credits
  • Scientific Computation 15 credits
  • Graph Theory: Structure and Algorithms 15 credits

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The professional project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects for MSc Advanced Computer Science students have included:

  • iPad interaction for wall-sized displays
  • Modelling the effects of feature-based attention in the visual cortex
  • Relevance and trust in social computing for decision making
  • Energy-efficient cloud computing
  • Smart personal assistant - Ontology-enriched access to digital repositories

A proportion of projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

Computing is an essential component of nearly every daily activity, from the collection, transformation, analysis and dissemination of information in business, through to smart systems embedded in commodity devices, the image processing used in medical diagnosis and the middleware that underpins distributed technologies like cloud computing and the semantic web.

This programme will give you the practical skills to gain entry into many areas of applied computing, working as application developers, system designers and evaluators; but further, links between the taught modules and our research provide our students with added strengths in artificial intelligence, intelligent systems, distributed systems, and the analysis of complex data. As a result, you’ll be well prepared for a range of careers, as well as further research at PhD level.

Graduates have found success in a wide range of careers working as business analysts, software engineers, wed designers and developers, systems engineers, information analysts and app developers. Others have pursued roles in consultancy, finance, marketing and education, or set up their own businesses.



Read less
Developments in cloud computing technology are transforming the way we live and work. This programme will equip you with specialist knowledge in this fast-growing field and allow you to explore a range of advanced topics in computer science. Read more

Developments in cloud computing technology are transforming the way we live and work. This programme will equip you with specialist knowledge in this fast-growing field and allow you to explore a range of advanced topics in computer science.

You’ll gain a foundation in topics like systems programming and algorithms, as well as specialist modules in advanced distributed systems – especially cloud techniques, technologies and applications.

Building on your existing knowledge of computer science, you’ll also choose from optional modules in topics across computer science. You could look at emerging approaches to human interaction with computational systems, data mining and functional programming among others.

The programme will give you the theoretical and practical skills required to design and implement larger, more complex systems using state-of-the-art technologies. You’ll even have the chance to work as an integral member of one of our research groups when you develop your main project.

Specialist facilities

You’ll benefit from world-class facilities to support your learning. State-of-the-art visualisation labs including a powerwall, a benchtop display with tracking system, WorldViz PPT optical tracking system and Intersense InertiaCube orientation tracker are all among the specialist facilities we have within the School of Computing.

We also have Ascension Flock of Birds tracking systems, three DOF and 6DOF Phantom force feedback devices, Twin Immersion Corp CyberGloves, a cloud computing testbed, rendering cluster and labs containing both Microsoft and Linux platforms among others. It’s an exciting environment in which to gain a range of skills and experience cutting-edge technology.

Course content

Core modules in Semester 1 will lay the foundations of the programme by giving you an understanding of the key topics of algorithms and systems programming. Throughout the year you’ll also take modules developing your understanding of cloud computing itself, from designing the high-level framework of a distributed system to big data and the “internet of things”.

From there you’ll have the chance to tailor your studies to suit your own preferences. You’ll choose from a wide range of optional modules on diverse topics such as image analysis, machine learning, semantic technologies and developing mobile apps.

Over the summer months you’ll also work on your research project. This gives you the chance to work as an integral part of one of our active research groups, focusing on a specialist topic in computer science and selecting the appropriate research methods.

Want to find out more about your modules?

Take a look at the Advanced Computer Science (Cloud Computing) module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • MSc Project 60 credits
  • Cloud Computing 15 credits

Optional modules

  • Web Services and Web Data 10 credits
  • Distributed Systems 10 credits
  • Mobile Application Development 10 credits
  • Machine Learning 10 credits
  • Information Visualization 10 credits
  • Data Mining and Text Analytics 10 credits
  • Combinatorial Optimisation 10 credits
  • Secure Computing 10 credits
  • Graph Algorithms and Complexity Theory 10 credits
  • Big Data Systems 15 credits
  • Data Science 15 credits
  • Bio-Inspired Computing 15 credits
  • Knowledge Representation and Reasoning 15 credits
  • Algorithms 15 credits
  • Parallel and Concurrent Programming 15 credits
  • Data Mining and Text Analytics 15 credits
  • Semantic Technologies and Applications 15 credits
  • Image Analysis 15 credits
  • Scheduling 15 credits
  • Scientific Computation 15 credits
  • Graph Theory: Structure and Algorithms 15 credits

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The professional project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects for MSc Advanced Computer Science (Cloud Computing) students have included:

  • Intelligent services to support sensemaking
  • Google cloud data analysis
  • Hadoop for large image management
  • Evaluating web service agreement in a cloud environment

A proportion of projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

Computing is an essential component of nearly every daily activity, from the collection, transformation, analysis and dissemination of information in business, through to smart systems embedded in commodity devices, the image processing used in medical diagnosis and the middleware that underpins distributed technologies like cloud computing and the semantic web.

This programme will give you the practical skills to gain entry into many areas of applied computing, working as application developers, system designers and evaluators; but further, links between the taught modules and our research provide our students with added strengths in artificial intelligence, intelligent systems, distributed systems, and the analysis of complex data. As a result, you’ll be well prepared for a range of careers, as well as further research at PhD level.

Graduates have found success in a wide range of careers working as business analysts, software engineers, wed designers and developers, systems engineers, information analysts and app developers. Others have pursued roles in consultancy, finance, marketing and education, or set up their own businesses.



Read less
Big data is becoming more and more important in fields from science to marketing, engineering medicine and government. This programme will equip you with specialist knowledge in this exciting field and allow you to explore a range of advanced topics in computer science. Read more

Big data is becoming more and more important in fields from science to marketing, engineering medicine and government. This programme will equip you with specialist knowledge in this exciting field and allow you to explore a range of advanced topics in computer science.

You’ll gain a foundation in topics like systems programming and algorithms, as well as the basics of machine learning and knowledge representation. You’ll also choose from optional modules focusing on topics like image analysis or text analytics, or broaden your approach with topics like cloud computing.

As one of the few schools with expertise covering text, symbolic and scientific/numerical data analysis, we can provide a breadth of expertise to equip you with a variety of skills – and you’ll work as an integral member of one of our research groups when you develop your main project. We also have close links with the Leeds Institute for Data Analytics which is at the forefront of big data research.

Specialist facilities

You’ll benefit from world-class facilities to support your learning. State-of-the-art visualisation labs including a powerwall, a benchtop display with tracking system, WorldViz PPT optical tracking system and Intersense InertiaCube orientation tracker are all among the specialist facilities we have within the School of Computing.

We also have Ascension Flock of Birds tracking systems, three DOF and 6DOF Phantom force feedback devices, Twin Immersion Corp CyberGloves, a cloud computing testbed, rendering cluster and labs containing both Microsoft and Linux platforms among others. It’s an exciting environment in which to gain a range of skills and experience cutting-edge technology.

Course content

Core modules in Semester 1 will lay the foundations of the programme by giving you an understanding of the key topics of algorithms and systems programming, as well as the basic principles of automated reasoning, machine learning and how computers can be made to represent knowledge.

From there you’ll have the chance to tailor your studies to suit your own preferences. You’ll choose from a wide range of optional modules on diverse topics such as image analysis, cloud computing, semantic technologies and developing mobile apps.

Over the summer months you’ll also work on your research project. This gives you the chance to work as an integral part of one of our active research groups, focusing on a specialist topic in computer science and selecting the appropriate research methods.

Want to find out more about your modules?

Take a look at the Advanced Computer Science (Data Analytics) module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Machine Learning 10 credits
  • Big Data Systems 15 credits
  • Data Science 15 credits
  • MSc Project 60 credits

Optional modules

  • Web Services and Web Data 10 credits
  • Distributed Systems 10 credits
  • Mobile Application Development 10 credits
  • Information Visualization 10 credits
  • User Adaptive Intelligent Systems 10 credits
  • Data Mining and Text Analytics 10 credits
  • Combinatorial Optimisation 10 credits
  • Secure Computing 10 credits
  • Graph Algorithms and Complexity Theory 10 credits
  • Bio-Inspired Computing 15 credits
  • Knowledge Representation and Reasoning 15 credits
  • Algorithms 15 credits
  • Parallel and Concurrent Programming 15 credits
  • Data Mining and Text Analytics 15 credits
  • Cloud Computing 15 credits
  • Semantic Technologies and Applications 15 credits
  • Image Analysis 15 credits
  • Scheduling 15 credits
  • Scientific Computation 15 credits
  • Graph Theory: Structure and Algorithms 15 credits

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The professional project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects for MSc Advanced Computer Science students have included:

  • Text mining of e-health patient records
  • Java-based visualization on ultra-high resolution displays
  • Data mining of sports performance data
  • Contour topology
  • Efficient computation for simulating tumour growths

A proportion of projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

Computing is an essential component of nearly every daily activity, from the collection, transformation, analysis and dissemination of information in business, through to smart systems embedded in commodity devices, the image processing used in medical diagnosis and the middleware that underpins distributed technologies like cloud computing and the semantic web.

This programme will give you the practical skills to gain entry into many areas of applied computing, working as application developers, system designers and evaluators; but further, links between the taught modules and our research provide our students with added strengths in artificial intelligence, intelligent systems, distributed systems, and the analysis of complex data. As a result, you’ll be well prepared for a range of careers, as well as further research at PhD level.

Graduates have found success in a wide range of careers working as business analysts, software engineers, wed designers and developers, systems engineers, information analysts and app developers. Others have pursued roles in consultancy, finance, marketing and education, or set up their own businesses.



Read less
This interdisciplinary Masters degree provides you with a broad background in some mainstream and modern aspects of mathematics and computer science. Read more

This interdisciplinary Masters degree provides you with a broad background in some mainstream and modern aspects of mathematics and computer science. You’ll be introduced to sophisticated techniques at the forefront of both disciplines.

The programme combines teaching and research from the School of Mathematics and the School of Computing. Based on the Schools’ complementary research strengths the programme follows two main strands:

  • Algorithms and complexity theory
  • Numerical methods and parallel computing

You’ll have the choice to specialise in one of these strands, gaining specialist knowledge and skills that will prepare you for a wide range of careers. You’ll also develop your research skills when you complete your dissertation.

If you do not meet the full academic entry requirements then you may wish to consider the Graduate Diploma in Mathematics. This course is aimed at students who would like to study for a mathematics related MSc course but do not currently meet the entry requirements. Upon completion of the Graduate Diploma, students who meet the required performance level will be eligible for entry onto a number of related MSc courses, in the following academic year.

Course content

It is expected that you will specialise in one of two areas during the course, although this is not essential.

The two strands are:

Algorithms and complexity theory and connections to logic and combinatorics

This concerns the efficiency of algorithms for solving computational problems, and identifies hierarchies of computational difficulty. This subject has applications in many areas, such as distributed computing, algorithmic tools to manage transport infrastructure, health informatics, artificial intelligence, and computational biology.

Numerical methods and parallel computing

Many problems, in mathematics, physics, astrophysics and biology cannot be solved using analytical techniques and require the application of numerical algorithms for progress. The development and optimisation of these algorithms coupled to the recent increase in computing power via the availability of massively parallel machines has led to great advances in many fields of computational mathematics. This subject has applications in many areas, such as combustion, lubrication, atmospheric dispersion, river and harbour flows, and many more.

For information on typical modules, read Mathematics and Computer Science MSc in the course catalogue

Learning and teaching

Teaching is carried out through a mixture of lectures and smaller group activities such as workshops. Most modules are assessed by a mix of coursework and written examinations. There is also the opportunity to complete a summer project which is individually supervised by a member of staff.

Assessment

The taught course is primarily assessed by end-of-semester examinations with a small component of continuous assessment. The semester three project is assessed by a written dissertation and a short oral presentation.

Career opportunities

Each of these areas offers many career options, and the MSc will provide you with both technical and transferrable skills, for example, conducting an extended and independent research project. It will also offer you excellent preparation for doctoral research in these or related subjects. On completion of the degree you can progress onto a wide range of opportunities including:

  • PhD in Mathematics, or in Computer Science
  • Careers in Computing and Industries which require algorithmic tools (transport infrastructure, health informatics, computational biology, artificial intelligence, companies developing the internet (e.g. search engines).
  • Many other careers (e.g. in Finance) where a mathematics background is valued.

In collaboration with both industrial and academic partners, our research has resulted in computational techniques, and software, that has been widely applied. Our industry links are extensive and include companies such as Google, Yahoo, Akamai, Microsoft, and Tracsis, as well as the NHS.

Careers support

We encourage you to prepare for your career from day one. That’s one of the reasons Leeds graduates are so sought after by employers.

The Careers Centre and staff in your faculty provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
This highly focused MSc explores some of the mathematics behind modern secure information and communications systems, specialising in mathematics relevant for public key cryptography, coding theory and information theory. Read more
This highly focused MSc explores some of the mathematics behind modern secure information and communications systems, specialising in mathematics relevant for public key cryptography, coding theory and information theory. During the course critical awareness of problems in information transmission, data compression and cryptography is raised, and the mathematical techniques which are commonly used to solve these problems are explored.

The Mathematics Department at Royal Holloway is well known for its expertise in information security and cryptography and our academic staff include several leading researchers in these areas. Students on the programme have the opportunity to carry out their dissertation projects in cutting-edge research areas and to be supervised by experts.

The transferable skills gained during the MSc will open up a range of career options as well as provide a solid foundation for advanced research at PhD level.

See the website https://www.royalholloway.ac.uk/mathematics/coursefinder/mscmathematicsofcryptographyandcommunications(msc).aspx

Why choose this course?

- You will be provided with a solid mathematical foundation and a knowledge and understanding of the subjects of cryptography and communications preparing you for research or professional employment in this area.

- The mathematical foundations needed for applications in communication theory and cryptography are covered including Algebra, Combinatorics Complexity Theory/Algorithms and Number Theory.

- You will have the opportunity to carry out your dissertation project in a cutting-edge research area; our dissertation supervisors are experts in their fields who publish regularly in internationally competitive journals and there are several joint projects with industrial partners and Royal Holloway staff.

- After completing the course former students have a good foundation for the next step of their career both inside and outside academia.

Department research and industry highlights

The members of the Mathematics Department cover a range of research areas. There are particularly strong groups in information security, number theory, quantum theory, group theory and combinatorics. The Information Security Group has particularly strong links to industry.

Course content and structure

You will study eight courses as well as complete a main project under the supervision of a member of staff.

Core courses:
Advanced Cipher Systems
Mathematical and security properties of both symmetric key cipher systems and public key cryptography are discussed as well as methods for obtaining confidentiality and authentication.

Channels
In this unit, you will investigate the problems of data compression and information transmission in both noiseless and noisy environments.

Theory of Error-Correcting Codes
The aim of this unit is to provide you with an introduction to the theory of error-correcting codes employing the methods of elementary enumeration, linear algebra and finite fields.

Public Key Cryptography
This course introduces some of the mathematical ideas essential for an understanding of public key cryptography, such as discrete logarithms, lattices and elliptic curves. Several important public key cryptosystems are studied, such as RSA, Rabin, ElGamal Encryption, Schnorr signatures; and modern notions of security and attack models for public key cryptosystems are discussed.

Main project
The main project (dissertation) accounts for 25% of the assessment of the course and you will conduct this under the supervision of a member of academic staff.

Additional courses:
Applications of Field Theory
You will be introduced to some of the basic theory of field extensions, with special emphasis on applications in the context of finite fields.

Quantum Information Theory
‘Anybody who is not shocked by quantum theory has not understood it' (Niels Bohr). The aim of this unit is to provide you with a sufficient understanding of quantum theory in the spirit of the above quote. Many applications of the novel field of quantum information theory can be studied using undergraduate mathematics.

Network Algorithms
In this unit you will be introduced to the formal idea of an algorithm, when it is a good algorithm and techniques for constructing algorithms and checking that they work; explore connectivity and colourings of graphs, from an algorithmic perspective; and study how algebraic methods such as path algebras and cycle spaces may be used to solve network problems.

Advanced Financial Mathematics
In this unit you will investigate the validity of various linear and non-linear time series occurring in finance and extend the use of stochastic calculus to interest rate movements and credit rating;

Combinatorics
The aim of this unit is to introduce some standard techniques and concepts of combinatorics, including: methods of counting including the principle of inclusion and exclusion; generating functions; probabilistic methods; and permutations, Ramsey theory.

Computational Number Theory
You will be provided with an introduction to many major methods currently used for testing/proving primality and for the factorisation of composite integers. The course will develop the mathematical theory that underlies these methods, as well as describing the methods themselves.

Complexity Theory
Several classes of computational complexity are introduced. You will discuss how to recognise when different problems have different computational hardness, and be able to deduce cryptographic properties of related algorithms and protocols.

On completion of the course graduates will have:
- a suitable mathematical foundation for undertaking research or professional employment in cryptography and/or communications

- the appropriate background in information theory and coding theory enabling them to understand and be able to apply the theory of communication through noisy channels

- the appropriate background in algebra and number theory to develop an understanding of modern public key cryptosystems

- a critical awareness of problems in information transmission and data compression, and the mathematical techniques which are commonly used to solve these problems

- a critical awareness of problems in cryptography and the mathematical techniques which are commonly used to provide solutions to these problems

- a range of transferable skills including familiarity with a computer algebra package, experience with independent research and managing the writing of a dissertation.

Assessment

Assessment is carried out by a variety of methods including coursework, examinations and a dissertation. The examinations in May/June count for 75% of the final average and the dissertation, which has to be submitted in September, counts for the remaining 25%.

Employability & career opportunities

Our students have gone on to successful careers in a variety of industries, such as information security, IT consultancy, banking and finance, higher education and telecommunication. In recent years our graduates have entered into roles including Principal Information Security Consultant at Abbey National PLC; Senior Manager at Enterprise Risk Services, Deloitte & Touche; Global IT Security Director at Reuters; and Information Security manager at London Underground.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
This course covers a wide range of topics from both applied and applicable mathematics and is aimed at students who want to study the field in greater depth, in areas which are relevant to real life applications. Read more
This course covers a wide range of topics from both applied and applicable mathematics and is aimed at students who want to study the field in greater depth, in areas which are relevant to real life applications.

You will explore the mathematical techniques that are commonly used to solve problems in the real world, in particular in communication theory and in physics. As part of the course you will carry out an independent research investigation under the supervision of a member of staff. Popular dissertation topics chosen by students include projects in the areas of communication theory, mathematical physics, and financial mathematics.

The transferable skills gained on this course will open you up to a range of career options as well as provide a solid foundation for advanced research at PhD level.

See the website https://www.royalholloway.ac.uk/mathematics/coursefinder/mscmathematicsforapplications.aspx

Why choose this course?

- You will be provided with a solid mathematical foundation and knowledge and understanding of the subjects of cryptography and communications, preparing you for research or professional employment in this area.

- The Mathematics Department at Royal Holloway is well known for its expertise in information security and cryptography. The academics who teach on this course include several leading researchers in these areas.

- The mathematical foundations needed for applications in communication theory and cryptography are covered including Algebra, Combinatorics Complexity Theory/Algorithms and Number Theory.

- You will have the opportunity to carry out your dissertation project in a cutting-edge research area; our dissertation supervisors are experts in their fields who publish regularly in internationally competitive journals and there are several joint projects with industrial partners and Royal Holloway staff.

- After completing the course students have a good foundation for the next step of their career both inside and outside academia.

Department research and industry highlights

The members of the Mathematics Department cover a range of research areas. There are particularly strong groups in information security, number theory, quantum theory, group theory and combinatorics. The Information Security Group has particularly strong links to industry.

Course content and structure

You will study eight courses and complete a main project under the supervision of a member of staff.

Core courses:
Theory of Error-Correcting Codes
The aim of this unit is to provide you with an introduction to the theory of error-correcting codes employing the methods of elementary enumeration, linear algebra and finite fields.

Advanced Cipher Systems
Mathematical and security properties of both symmetric key cipher systems and public key cryptography are discussed, as well as methods for obtaining confidentiality and authentication.

Main project
The main project (dissertation) accounts for 25% of the assessment of the course and you will conduct this under the supervision of a member of academic staff.

Additional courses:
Applications of Field Theory
You will be introduced to some of the basic theory of field extensions, with special emphasis on applications in the context of finite fields.

Quantum Information Theory
‘Anybody who is not shocked by quantum theory has not understood it' (Niels Bohr). The aim of this unit is to provide you with a sufficient understanding of quantum theory in the spirit of the above quote. Many applications of the novel field of quantum information theory can be studied using undergraduate mathematics.

Network Algorithms
In this unit you will be introduced to the formal idea of an algorithm, when it is a good algorithm and techniques for constructing algorithms and checking that they work; explore connectivity and colourings of graphs, from an algorithmic perspective; and study how algebraic methods such as path algebras and cycle spaces may be used to solve network problems.

Advanced Financial Mathematics
In this unit you will investigate the validity of various linear and non-linear time series occurring in finance and extend the use of stochastic calculus to interest rate movements and credit rating;

Combinatorics
The aim of this unit is to introduce some standard techniques and concepts of combinatorics, including: methods of counting including the principle of inclusion and exclusion; generating functions; probabilistic methods; and permutations, Ramsey theory.

Computational Number Theory
You will be provided with an introduction to many major methods currently used for testing/proving primality and for the factorisation of composite integers. The course will develop the mathematical theory that underlies these methods, as well as describing the methods themselves.

Complexity Theory
Several classes of computational complexity are introduced. You will discuss how to recognise when different problems have different computational hardness, and be able to deduce cryptographic properties of related algorithms and protocols.

On completion of the course graduates will have:
- knowledge and understanding of: the principles of communication through noisy channels using coding theory; the principles of cryptography as a tool for securing data; and the role and limitations of mathematics in the solution of problems arising in the real world

- a high level of ability in subject-specific skills, such as algebra and number theory

- developed the capacity to synthesise information from a number of sources with critical awareness

- critically analysed the strengths and weaknesses of solutions to problems in applications of mathematics

- the ability to clearly formulate problems and express technical content and conclusions in written form

- personal skills of time management, self-motivation, flexibility and adaptability.

Assessment

Assessment is carried out by a variety of methods including coursework, examinations and a dissertation. The examinations in May/June count for 75% of the final average and the dissertation, which has to be submitted in September, counts for the remaining 25%.

Employability & career opportunities

Our students have gone on to successful careers in a variety of industries, such as information security, IT consultancy, banking and finance, higher education and telecommunication. In recent years our graduates have entered into roles including Principal Information Security Consultant at Abbey National PLC; Senior Manager at Enterprise Risk Services, Deloitte & Touche; Global IT Security Director at Reuters; and Information Security Manager at London Underground.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
The programme is for students with computer science, mathematics, science or engineering backgrounds and good knowledge of computer programming. Read more
The programme is for students with computer science, mathematics, science or engineering backgrounds and good knowledge of computer programming. To improve ability to solve advanced computational problems by providing a thorough knowledge of data structures, design, quantitative analysis of algorithms and algorithmic applications and impart skills necessary for algorithm implementation within the overall context of software development.

Key benefits

- Unrivalled location in the heart of London giving access to major libraries and leading scientific societies, including the BCS Chartered Institute for IT, and the Institution of Engineering and Technology (IET).

- Equips graduates with practical techniques and implementation skills for solving advanced computational problems.

- Develops critical awareness and appreciation of the changing role of computing in society, motivating graduates to pursue continuing professinoal development and further research.

- Access to speakers of international repute through seminars and external lectures, enabling students to keep abreast of emerging knowledge in advanced computing and related fields.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/advanced-computing-msc.aspx

Course detail

- Description

This programme provides students with systematic knowledge and experience of the theoretical foundations and practice of computing at an advanced level. It is built around taught core modules such as Algorithm Design and Analysis, Data Structures and their Implementation in C++, Parallel and Distributed Algorithms, which are complemented by a wide range of optional modules for multimedia, optimisation, string processing and the web. The final part of the programme is an individual project which is closely linked with the Department's research activities.

- Course purpose

For graduates in computer science, mathematics, science or engineering with good knowledge of computer programming, this MSc will enhance your ability to solve advanced computational problems and impart skills necessary for algorithm implementation. Research for your individual project will provide valuable preparation for a career in research or industry.

- Course format and assessment

Lectures; tutorials; seminars; laboratory sessions; optional career planning workshops. Assessed through: coursework; written examinations; final project report.

- Compulsory modules:

- Algorithm Design & Analysis
- Data Structures & their Implementation in C++
- Parallel & Distributed Algorithms.

Career prospects

Via the Department’s Careers Programme, students are able to network with top employers and obtain advice on how to enhance career prospects. Our graduates have gone on to have very successful careers in general software consultancy companies, in specialised software development companies and in IT departments of large institutions (financial, telecommunications and public sector). Their jobs involve specialist programming and problem solving as well more conventional software development, maintenance and project management roles. Our graduates have also entered into academic and industrial research in software engineering, bioinformatics, algorithms and computer networks.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

Read less
The field of algorithms is today an extremely important enabling technology. Web search-engines, routing in the internet, genome analysis, cryptography and image analysis are just a few examples of applications that depend critically on suitable choices of algorithms and. Read more
The field of algorithms is today an extremely important enabling technology. Web search-engines, routing in the internet, genome analysis, cryptography and image analysis are just a few examples of applications that depend critically on suitable choices of algorithms and
data structures. The focus of this MSc is on the design, analysis and engineering of algorithms, covering their use for modelling real-world problems.

Start Dates
October and January each year.

Read less
Computing and communications technologies are having a truly disruptive effect on societies and business worldwide. Mobile payments, wireless communications and the ‘Internet of Things’ are transforming the way we approach key challenges in development, security, healthcare and the environment. Read more

Computing and communications technologies are having a truly disruptive effect on societies and business worldwide. Mobile payments, wireless communications and the ‘Internet of Things’ are transforming the way we approach key challenges in development, security, healthcare and the environment.

Taught jointly by the School of Computing and the School of Electronic and Electrical Engineering, this course will give you a grasp of all layers needed for mobile communication and computation, from the physical network layer through to the applications that run on mobile devices.

You’ll gain a full understanding of the web and cloud computing infrastructure, as core modules give you a foundation in key topics like systems programming and data communications. A range of optional modules will then allow you to focus on topics that suit your interests and career plans, from cloud computing to embedded systems design and high speed web architecture.

Specialist facilities

You’ll benefit from world-class facilities to support your learning. State-of-the-art visualisation labs including a powerwall, a benchtop display with tracking system, WorldViz PPT optical tracking system and Intersense InertiaCube orientation tracker are all among the specialist facilities we have within the School of Computing.

We also have Ascension Flock of Birds tracking systems, three DOF and 6DOF Phantom force feedback devices, Twin Immersion Corp CyberGloves, a cloud computing testbed, rendering cluster and labs containing both Microsoft and Linux platforms among others. It’s an exciting environment in which to gain a range of skills and experience cutting-edge technology.

Course content

You’ll take two core modules in Semester 1 that introduce you to fundamental topics like systems programming and network security. With this foundation, you’ll be able to gain high-level specialist knowledge through your choice of optional modules taught by the School of Computing and the School of Electronic and Electrical Engineering.

The optional modules you choose will enable you to direct your studies towards topics that suit your personal interests and career ambitions such as mobile app development, digital media engineering, big data, cloud computing and embedded systems design, among others.

Over the summer months you’ll also work on your research project. This gives you the chance to work as an integral part of one of our active research groups, focusing on a specialist topic in computer science and selecting the appropriate research methods.

Course structure

Compulsory modules

  • MSc Project 60 credits
  • Data Communications and Network Security 15 credits

Optional modules

  • Distributed Systems 10 credits
  • Mobile Application Development 10 credits
  • Combinatorial Optimisation 10 credits
  • Secure Computing 10 credits
  • Graph Algorithms and Complexity Theory 10 credits
  • Functional Programming 10 credits
  • Big Data Systems 15 credits
  • Mobile Applications Development 15 credits
  • Algorithms 15 credits
  • Parallel and Concurrent Programming 15 credits
  • Cloud Computing 15 credits
  • Graph Theory: Structure and Algorithms 15 credits
  • Communication Network Design 15 credits
  • Optical Communications Networks 15 credits
  • High Speed Internet Architecture 15 credits
  • Digital Media Engineering 15 credits

For more information on typical modules, read Mobile Computing and Communication Networks MSc in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The professional project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.Most projects are experimentally based and linked with companies within the oil and gas industry to ensure the topic of research is relevant to the field whilst also addressing a real-world problem.

A proportion of projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

Career opportunities are extremely broad, covering jobs in the design of embedded software running on multi-core devices through to jobs involving the design and implementation of new mobile-applications centric systems for business. In the application of mobile computing skills, job opportunities span every area, from the automotive sector through to retail and banking.

You could launch a career in fields such as mobile app development, mobile systems architecture, project management, network consultancy. You could also work as an engineer in embedded mobile communications, network security or research and development among many others – and you’ll even be well-prepared for PhD study.

Careers support

You’ll have access to the wide range of engineering and computing careers resources held by our Employability team in our dedicated Employability Suite. You’ll have the chance to attend industry presentations book appointments with qualified careers consultants and take part in employability workshops. Our annual Engineering and Computing Careers Fairs provide further opportunities to explore your career options with some of the UK’s leading employers.

The University's Careers Centre also provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
Computer Science is one of the drivers of technological progress in all economic and social spheres. Those graduating with an M.Sc. Read more

About Computer Science

Computer Science is one of the drivers of technological progress in all economic and social spheres. Those graduating with an M.Sc. in Computer Science are specialists in at least one field of computer science who have wide-ranging science-based methodological expertise.
Graduates are able to define, autonomously and comprehensively, computer science problems and their applications, structure them and build abstract models. Moreover, they are able to define and implement solutions that are at the state of the art of technology and science.

Features

– A broad, international and relevant selection of courses
– As a student, you will work on cutting-edge research projects
– Individual guidance in small learning groups
– Excellent enterprise relations maintained by the chairs and institutes
– Numerous partnerships with universities throughout the world, including a double degree programme with the Institut national des sciences appliquées de Lyon (INSA)

Syllabus

The programme offers the following five focus modules:
1) Algorithms and Mathematical Modelling
2) Programming and Software Systems
3) Information and Communication Systems
4) Intelligent Technical Systems
5) IT Security and Reliability
1) Algorithms and Mathematical Modelling: This module teaches you about determinstic and stochastic algorithms, their implementation, evaluation and optimisation. You will acquire advanced knowledge of computer-based mathematical methods – particularly in the areas of algorithmic algebra and computational stochastics – as well as developing an in-depth expertise in mathematical modelling and complexity analysis of discrete and continuous problems.
2) Programming and Software Systems: This module imparts modern methods for constructing large-scale software systems, as well as creating and using software authoring, analysis and optimisation tools. In this module you will consolidate your knowledge of the various programming paradigms and languages, the structure of language processing systems, and learn to deal with parallelism in program procedures.
3) Information and Communication Systems: In this module you will study the interactions of the classic computer science areas of information systems and computer networks. This focus area represents an answer to the problem of increasing volume and complexity of worldwide information distribution and networks, and for the growing requirements on quality and performance of computer communication. Additionally, you will learn to transfer database results to multimedia data.
4) Intelligent Technical Systems: In this module you are acquainted with digital image and signal processing, embedded systems and applications of intelligent technical systems in industrial and assistance systems, which are necessary for production automation and process control, traffic control, medical and building technology. You will learn to develop complex applications using computer systems and deal with topics such as image reconstruction, camera calibration, sensor data fusion and optical measurement technology.
5) IT Security and Reliability: This module group is concerned with security and reliability of IT systems, e.g. in hardware circuitry and communication protocols, as well as complex, networked application systems. To ensure the secure operation of these systems you will learn design methodology, secure architectures and technical implementation of the underlying components.

Language requirements

Unless English is your native language or the language of your secondary or undergraduate education, you should provide an English language certificate at level B2 CEFR, e.g. TOEFL with a minimum score of 567 PBT, 87 iBT or ITP 543 (silver); IELTS starting from 5.5; or an equivalent language certificate.

To facilitate daily life in Germany, it would be beneficial for you to have German language skills at level A1 CEFR (beginner’s level). If you do not have any German skills when starting out on the programme, you will complete a compulsory beginner’s German course during your first year of study.

Read less
The objective of this programme of study is to prepare professionals able to deal with complex systems using sophisticated mathematical tools, yet with an engineering attitude. Read more

Mission and goals

The objective of this programme of study is to prepare professionals able to deal with complex systems using sophisticated mathematical tools, yet with an engineering attitude. It harmonises a solid scientific background with a command of advanced methodologies and technologies. The programme is characterised by a continuous synergy between Applied Mathematics and Engineering disciplines- The students may choose among three specialisations:
- Computational Science and Engineering
- Applied Statistics
- Quantitative Finance

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/mathematical-engineering/

Career opportunities

The professional opportunities offered by this course are rather ample and varied: engineering consultancy companies that deal with complex computational problems; manufacturing or civil engineering companies where analyses based on the use of advanced mathematical tools are needed; banks, insurance companies and financial institutions making use of quantitative finance for risk analysis or forecast; companies that require statistical interpretation and the processing of complex data, or the simulation of different scenarios; public and private research institutes and laboratories.

Eligible students

Students holding a Bachelor degree in Mathematical Engineering, or in a related area with a solid background in the core disciplines of the programme, i.e. Applied Mathematics, Computer Science, Applied Physics or other Engineering disciplines are eligible for application. In particular, eligible students' past studies must include courses in different areas of Engineering (among Informatics, Economics & Business Organization, Electrotechnics, Automation, Electronics, Applied Physics, Civil Engineering) for at least 25% of the overall courses, as well as courses in different areas of Mathematics (Mathematical Analysis, Linear Algebra, Geometry, Probability, Statistics, Numerical Analysis, Optimization) for at least 33% of the overall courses.
The following tracks are available:
1. Computational Science and Engineering
2. Applied Statistics
3. Quantitative Finance

Eligible students must clearly specify the track they are applying for in their motivation letter.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Mathematical_Engineering.pdf
The Master of Science in Mathematical Engineering (MSME) aims to form an innovative and flexible professional profile, endowed with a wide spectrum of basic scientific notions and engineering principles, together with a deep knowledge of modern pure and applied mathematical techniques. MSME is characterized by a continuous synergy between Mathematics and Engineering methods, oriented to the modelling, analysis and solution of complex planning, control and management problems, and provides the students with the possibility to face problems from various scientific, financial and/or technological areas. The MSME graduates can find employment in Engineering companies specialized in handling complex computational problems, requiring a multidisciplinary knowledge; in companies manufacturing industrial goods for which design analysis based on the use of advanced mathematical procedures are required; in service societies, banks, insurance companies, finance or consultant agencies for the statistical interpretation and the simulation of complex situations related to the analysis of large number of data (e.g. management and optimization of services, data mining, information retrieval) or for handling financial products and risk management; in public and private institutions. The programme is taught in English.

Subjects

Three main tracks available:
1. Computational Science for Engineering
Real and functional analysis; algorithms and parallel programming; numerical and theoretical analysis for partial differential equations; fluid mechanics; computational fluid dynamics advanced programming techniques for scientific computing;

2. Statistics
Real and functional analysis; algorithms and parallel programming; stochastic dynamical models; applied statistics, model identification and data analysis; Bayesian statistics

3. Mathematical Finance
Real and functional analysis; algorithms and parallel programming; stochastic differential equations; mathematical finance; financial engineering; model identification and data analysis.

In the motivation letter the student must clearly specify the track he/she is applying for.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/mathematical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/mathematical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This programme is an advanced computer science course that also introduces core management theories and skills to an audience of scientists and engineers who already possess a good foundation in programming. Read more
This programme is an advanced computer science course that also introduces core management theories and skills to an audience of scientists and engineers who already possess a good foundation in programming. It will improve your ability to solve advanced computational problems by gaining knowledge of data structures, design quantitative analysis of algorithms and their applications and implementation.

Key benefits

• Unrivalled location in the heart of London giving access to major libraries and leading scientific societies, including the BCS Chartered Institute for IT, and the Institution of Engineering and Technology (IET).

• Equips graduates with practical techniques and implementation skills for solving advanced computational problems.

• Develops critical awareness and appreciation of the changing role of computing in society, motivating graduates to pursue continuing professinoal development and further research.

• Access to speakers of international repute through seminars and external lectures, enabling students to keep abreast of emerging knowledge in advanced computing and related fields.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/advanced-computing-with-management-msc.aspx

Course detail

- Description

This programme provides students with systematic knowledge and experience of the theoretical foundations and practice of computing at an advanced level. It is built around taught core modules such as Algorithm Design and Analysis, Data Structures and their Implementation in C++, Parallel and Distributed Algorithms, which are complemented by a wide range of optional modules for multimedia, optimisation, string processing and the web. The programme also prepares students to take on certain, more senior roles in industry that require specialist management knowledge and problem solving skills related to Advanced Computing. The final part of the programme is an individual project which is closely linked with the Department's research activities.

- Course purpose

For graduates in computer science, mathematics, science or engineering with good knowledge of computer programming, this MSc will enhance your ability to solve advanced computational problems and impart skills necessary for algorithm implementation within the context of software development and with core management theories. Research for your individual project will provide valuable preparation for a career in research or industry.

- Course format and assessment

Lectures; tutorials; seminars; laboratory sessions; optional career planning workshops. Assessed through: coursework; written examinations; final project report.

Career prospects

Via the Department’s Careers Programme, students are able to network with top employers and obtain advice on how to enhance career prospects. Our graduates have gone on to have very successful careers in general software consultancy companies, in specialised software development companies and in IT departments of large institutions (financial, telecommunications and public sector). Their jobs involve specialist programming and problem solving as well more conventional software development, maintenance and project management roles. Our graduates have also entered into academic and industrial research in software engineering, bioinformatics, algorithms and computer networks.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

Read less
Data science combines computer science and statistics to solve exciting data-intensive problems in industry and in many fields of science. Read more
Data science combines computer science and statistics to solve exciting data-intensive problems in industry and in many fields of science. Data scientists help organisations make sense of their data. As data is collected and analysed in all areas of society, demand for professional data scientists is high and will grow higher. The emerging Internet of Things, for instance, will produce a whole new range of problems and opportunities in data analysis.

In the Data Science master’s programme, you will gain a solid understanding of the methods used in data science. You will learn not only to apply data science: you will acquire insight into how and why methods work so you will be able to construct solutions to new challenges in data science. In the Data Science master’s programme, you will also be able to work on problems specific to a scientific discipline and to combine domain knowledge with the latest data analysis methods and tools. The teachers of the programme are themselves active data science researchers, and the programme is heavily based on first-hand research experience.

Upon graduating from the Data Science MSc programme, you will have solid knowledge of the central concepts, theories, and research methods of data science as well as applied skills. In particular, you will be able to:
-Understand the general computational and probabilistic principles underlying modern machine learning and data mining algorithms.
-Apply various computational and statistical methods to analyse scientific and business data.
-Assess the suitability of each method for the purpose of data collection and use.
-Implement state-of-the-art machine learning solutions efficiently using high-performance computing platforms.
-Undertake creative work, making systematic use of investigation or experimentation, to discover new knowledge.
-Report results in a clear and understandable manner.
-Analyse scientific and industrial data to devise new applications and support decision making.

The MSc programme is offered jointly by the Department of Computer Science, the Department of Mathematics and Statistics, and the Department of Physics, with support from the Helsinki Institute for Information Technology (HIIT) and the Helsinki Institute of Physics (HIP), all located on the Kumpula Science campus. In your applied data science studies you can also include multidisciplinary studies from other master's programmes, such as digital humanities, and natural and medical sciences.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The Data Science MSc programme combines elements from computer science and mathematical sciences to provide you with skills in topics such as machine learning, distributed systems and statistical methods. You might also find that knowledge in a particular scientific field is useful for your future career. You can obtain this through minor studies in the MSc programme, or it might already be part of your bachelor-level degree.

Studies in the Data Science MSc programme include both theoretical and practical components, including a variety of study methods (lectures, exercises, projects, seminars; done both individually and in groups). Especially in applied data science, we also use problem-based learning methods, so that you can address real-world issues. You will also practise academic skills such as scientific writing and oral presentation throughout your studies. You are encouraged to include an internship in your degree in order to obtain practical experience in the field.

Minor studies give you a wider perspective of Data Science. Your minor subject can be an application area of Data Science (such as physics or the humanities), a discipline that supports application of Data Science (such as language technology), or a methodological subject needed for the development of new Data Science methods and models (such as computer science, statistics, or mathematics).

Selection of the Major

You can specialise either in the core areas of data science -- algorithms, infrastructure and statistics -- or in its applications. This means that you can focus on the development of new models and methods in data science, supported by the data science research carried out at the University of Helsinki; or you can become a data science specialist in an application field by incorporating studies in another subject. In addition to mainstream data science topics, the programme offers two largely unique opportunities for specialisation: the data science computing environment and infrastructure, and data science in natural sciences, especially physics.

Programme Structure

You should be able to complete the MSc Programme in Data Science of 120 credits (ECTS) in two years of full-time study. The programme consists of:
-Common core studies of basic data science courses.
-Several modules on specific topics within data science algorithms, data science infrastructures and statistical data science, and on data science tools.
-Seminars and colloquia.
-Courses on academic skills and tools.
-Possibly an internship in a research group or company.
-Studies in an application domain.
-Master’s thesis (30 credits).

Career Prospects

Industry and science are flooded with data and are struggling to make sense of it. There is urgent demand for individuals trained to analyse data, including massive and heterogeneous data. For this reason, the opportunities are expected to grow dramatically. The interdisciplinary Data Science MSc programme will train you to work in data-intensive areas of industry and science, with the skills and knowledge needed to construct solutions to complex data analysis problems.

If you are focusing on the core areas of data science, you will typically find employment as a researcher or consultant, sometimes after taking a PhD in Computer Science or Statistics to deepen your knowledge of the field and research methods. If your focus is on the use of data science for specific applications, you will typically find work in industry or in other fields of science such as physics, digital humanities, biology or medicine.

Internationalization

The Data Science MSc is an international programme, with students from around the world and an international research environment. All of the departments taking part in the programme are internationally recognised for their research and a significant fraction of the teaching and research staff come from abroad.

The departments participate in international student exchange programmes and offer you the chance to include international experience as part of your degree. Data Science itself is an international field, so once you graduate you can apply for jobs in any country.

In the programme, all courses are in English. Although the Helsinki area is quite cosmopolitan and English is widely spoken, you can also take courses to learn Finnish at the University of Helsinki Language Centre. The Language Centre also offers an extensive programme of foreign language courses for those interested in learning other languages.

Research Focus

The MSc programme in Data Science is offered jointly by three departments and two research institutes. Their research covers a wide spectrum of the many aspects of data science. At a very general level, the focal areas are:
-Machine learning and data mining
-Distributed computation and computational infrastructures
-Statistical modelling and analysis
-Studies in the programme are tightly connected to research carried out in the participating departments and institutes.

Read less

Show 10 15 30 per page



Cookie Policy    X