• University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Aberystwyth University Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University College London Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
University of Leeds Featured Masters Courses
"aircraft" AND "maintenan…×
0 miles

Masters Degrees (Aircraft Maintenance Management)

We have 19 Masters Degrees (Aircraft Maintenance Management)

  • "aircraft" AND "maintenance" AND "management" ×
  • clear all
Showing 1 to 15 of 19
Order by 
With the MSc Aircraft Maintenance Management you can align, develop or transform your career. Study across several locations on this industry-accredited global programme. Read more
With the MSc Aircraft Maintenance Management you can align, develop or transform your career. Study across several locations on this industry-accredited global programme.

Who is it for?

This programme is for those who have been working within the aircraft maintenance industry (for at least two years). Current students include engineers, maintenance staff, the majority have a license/professional education. We also welcome students with a military background. This Aircraft Maintenance Management MSc programme is tailored towards those working who cannot attend regular university schedules.

This course is compatible with The MoD's Enhanced Learning Credits Administration Service (ELCAS) - an initiative to promote lifelong learning amongst members of the UK Armed Forces. If you are/have been a member of the UK Armed Forces, you could be entitled to financial support to take this course.

Objectives

Airlines, MRO and other aviation companies are mostly led by license holders, aircraft engineers and many more. This means the demand for management knowledge is growing. Our programme gives students the opportunity to freshen their knowledge, learn the latest management techniques and build a lifelong network of peers.

With unexpected events affecting the aviation industry as well as increased competition and technological and regulatory changes, every organisation needs a core of up-to-date managers ready to succeed into leadership positions.

The programme is designed to deliver individual success. First initiated by the AJ Walters (AJW) to increase the career opportunities of aircraft engineers, today the programme is recognised as a key resource within the aircraft maintenance industry and as a benchmark for innovation.

Academic facilities

As a student you will benefit from learning within modern lecture theatres (equipped with the latest interactive AV systems) and modern IT laboratories.

A dynamic virtual learning environment (Moodle) gives you access to online assessment and communication tools as you study and you can work with specialist School facilities including:
-A flight deck and flight test course
-A320 procedure training
-Wind tunnels and micro turbines
-Optical compressors and fuel injection systems.

As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

A dissertation related to experience in the industry is required. There is a high degree of flexibility in terms of sequence and time frame to suit students working in airlines, air traffic control, air forces and other organisations.

This course gives you a recognised industry qualification, control of your own career and the ability to contribute to aircraft maintenance management. The course is very flexible and you can study while you work.

At the end of the programme you will have improved your:
-Presentation/speaking skills - through regular opportunities within each module and the project.
-Report writing and analytical skills - through coursework and the project.
-Personal management skills - through the careful use of resources to complete assignments on time.

The successful MSc graduate will have:
-A good understanding of business analysis, crisis, human motivation, and management of the aircraft maintenance industry.
-A sound understanding for the national and international regulatory and commercial business environment and the ability to prepare a sound business case.
-Knowledge of aspects of accident and incident investigation, human factors, safety risk management.
-A proven ability to research and write a substantial analytical report.

These include:
-Being able to assimilate core themes from the talks given by a number of industry speakers, some of whom may have different positions.
-Being able to write succinct and clear English.
-Preparing a valid business case for a company and, at least as important, to know when a potential case is not viable.
-Having a wider knowledge of the interfaces of any single organisation with others in the industry.
-Being able to make a short verbal presentation and to defend a project under examination.

Assessment

Each elective is assessed by two pieces of coursework, the core modules are assessed by one piece of coursework and an examination. Each module comprises:

Part I: Prior reading before the onsite module where appropriate.
Part II: Attendance at the institution (or other locations) for the module over three days.
Part III: Examinations are held at the end of the core modules.
Part IV: Coursework for assessment. Coursework is required within six weeks of the onsite module.

Modules

We explore aircraft maintenance management from a broad perspective so you will be exposed to areas as diverse as human resources, regulation, and crisis management. The academic framework has been created by the industry for the industry. This means you learn from the former British Airways human resources director in one module, and the industry’s crisis management expert in safety or the chief executive officer of a major maintenance facility in another.

The course is based on completing the Induction Workshop plus eight modules over one to five years, which are taught over three-day periods. Teaching takes place across global locations including London, Dubai and Frankfurt.

Students also take on a project/dissertation in an aircraft maintenance related subject, which is usually completed within six to twelve months. From developing new safety measures to social media marketing in the aviation world, students choose their own research focus and often use the project as a way into a new career.

Students who choose not to do the project, or are unable to complete the programme within the five years, receive a Postgraduate Certificate on successful completion of four modules, including two core modules, or a Postgraduate Diploma on successful completion of eight modules.

Core modules
-Airline Maintenance (EPM906)
-Airworthiness (EPM897)
-Airline Operational Regulatory Compliance (EPM825)

To begin your MSc, you will be required to attend the Induction Workshop (IW), which gives you a thorough introduction into Higher Education and introduces all the tools and facilities available for your MSc. You will have to write a short essay after the IW, which will be your final assessment to be accepted into City, University of London.

Elective modules
-Airline Operations (EPM825)
-Air Transport Economics (EPM823)
-Airline Business (EPM831)
-Human Resource Management (EPM822)
-Psychology in Aviation Management (EPM966)
-Active Safety Management (EPM836)
-Airline Marketing (EPM821)
-Fleet Planning (EPM829)
-Developing a Business Plan (EPM969)
-Crisis Management (EPM828)
-Financial Accounting (EPM824)
-Sustainable Aviation (EPM975)
-Airports and Ground Handling (EPM968)
-Airline Revenue Management, Pricing and Distribution (EPM972)
-Safety Management - Tools and Methods (EPM833)
-Air Accident Investigation (EPM970)
-Leadership in Organisations (EPM971)
-Safety Risk Management (EPM973)
-Aviation Law (EPM978)
-Future Aviation (EPM980)

Dissertation - a dissertation related to experience in the industry is required. There is a high degree of flexibility in terms of sequence and time frame to suit students working in airlines, air traffic control, air forces and other organisations.

Career prospects

This is a professional programme recognised by the aviation industry and accredited by the Royal Aeronautical Society.

Airlines are increasingly expecting their managers to study the MSc from City, University of London, and our alumni network includes high-ranking individuals including safety managers, training captains, quality managers, flight safety officers, safety inspectors, safety consultants and accident investigators in civil aviation authorities, airlines and with other aircraft operators and defence forces worldwide.

Graduates may change or transform their careers as a result of the MSc.

Read less
World leading aircraft manufacturers predict the number of in-service commercial aircraft doubling to over 43,500 in the next 20 years. Read more
World leading aircraft manufacturers predict the number of in-service commercial aircraft doubling to over 43,500 in the next 20 years. Our MSc Aviation Engineering and Management course will provide you with the skills, knowledge and expertise to succeed in the aviation industry.
You’ll develop key problem-solving skills within the field of aviation including airlines, corporate aviation, general aviation, component manufacturing organisations, and related industries, and civil aviation governmental agencies.

You’ll gain an understanding of the various complexities facing aviation businesses through a breadth of industry related modules. Your studies will also cover a wide variety of tools, techniques, and research methods, and how they may be applied to research and solve real-life problems within the aviation industry.

See the website http://courses.southwales.ac.uk/courses/1878-msc-aviation-engineering-and-management

What you will study

The course consists of nine modules with a key theme throughout your studies including the ethical dimensions of decision-making and interpersonal relations. This means you can be confident that you will develop personally and professionally as part of the course, ultimately making yourself more employable. You’ll study the following modules:

- Aircraft Systems Design and Optimization (10 Credits)
This module will give you a comprehensive knowledge of the systems of the aircraft, including preliminary designing of systems primary and secondary systems, operation and maintenance concepts. You will be introduced to novel engineering design methods such as Multi Objective Design (MOD) and multi-disciplinary design optimisation. Part of the module will be delivered with the support of industrial partners and experts, which will bring real scale industrial experience and interaction with the industry.

- Aviation Sustainable Engineering
This module will explore the historical and contemporary perspectives in international aviation framework while looking at the socio-economic benefits of aviation since the Chicago Convention of 1944. You will analyse current and future design and manufacturing trends in the aerospace industry.

- Condition Monitoring and Non-Destructive Testing
This module analyses condition monitoring and non-destructive testing, giving you an appreciation for the key concepts and tools in this subject. You will evaluate the use of these tools in different situations within industry and make recommendations on necessary adjustments.

- Advanced Materials and Manufacture
You will look at a range of modern engineering materials and develop an awareness of the selection criteria for aeronautical and mechanical engineering applications. You will also look at a range of “standard” and modern manufacturing processes, methods and techniques.

- Lean Maintenance Operations & Certification
This module will help you develop and understand concepts in Six Sigma, lean maintenance, operational research, reliability centred maintenance and maintenance planning. You will evaluate and critically analyse processes within highly regulated industries.

- Safety, Health and Environmental Engineering Management
Covering the principles and implementation of the safety, health and environmental management within the workplace, you will look at key concepts in human cognition and other human factors in risk management and accident/incident investigation. You will also gain an understanding of the role of stakeholder involvement in sustainable development.

- Strategic Leadership and Management for Engineers
This module will explore a range of purposes and issues surrounding successful strategic management and leadership as well as appraising a range of leadership behaviours and processes that may inspire innovation, change and continuous transformation within different organisational areas including logistics and supply chain management.

- Research Methods for Engineers
The aim of this module is to provide you with the ability to determine the most appropriate methods to collect, analyse and interpret information relevant to an area of engineering research. To provide you with the ability to critically reflect on your own and others work.

- Individual Project
You will undertake a substantial piece of investigative research work on an appropriate engineering topic and further develop your skills in research, critical analysis and development of solutions using appropriate techniques.

Learning and teaching methods

You will be taught through a variety of lectures, tutorials and practical laboratory work.

You will have 10 contact hours per week, you will also need to devote around 30 hours per week to self-study, such as conducting research and preparing for your assessments and lectures.

Work Experience and Employment Prospects

Aerospace engineering is an area where demand exceeds supply. As a highly skilled professional in aircraft maintenance engineering, you will be well placed to gain employment in this challenging industry. The aircraft industry is truly international, so there is demand not only in the UK, but throughout the world.

Careers available after graduation include aircraft maintenance planning, engineering, materials, quality assurance or compliance, technical services, logistics, NDT, method and process technical engineering, aircraft or engine leasing, aviation sales, aviation safety, reliability and maintainability, operations and planning, airworthiness, technical support, aircraft surveying, lean maintenance, certification, production planning and control.

Assessment methods

You will be continually assessed coursework or a mixture of coursework and exams. The dissertation allows you to research a specific aviation engineering topic, to illustrate your depth of knowledge, critical awareness and problem-solving skills. The dissertation has three elements of assessment: a thesis, a poster presentation, and a viva voce examination.

Facilities

The aerospace industry has become increasingly competitive and in recognising this, the University has recently invested £1.8m into its aerospace facilities.

Facilities available to our students have been fully approved by the Civil Aviation Authority (CAA). With access to an EASA-approved suite of practical training facilities, our students can use a range of industry-standard facilities.

Our Aerospace Centre is home to a Jetstream 31 Twin Turboprop aircraft, assembled with Honeywell TPE331 Engines and Rockwell-Collins Proline II Avionics. It has a 19-passenger configuration.

The EASA-approved suite contains training and practical workshops and laboratories. Each area contains the tools and equipment required to facilitate the instruction of either mechanical or avionic practical tasks as required by the CAA.

Students use the TQ two-shaft gas turbine rig to investigate the inner workings of a gas turbine engine by collecting real data and subsequently analysing them for engine performance.

Our sub-sonic wind tunnel is used for basic aerodynamic instruction, testing and demonstrations on various aerofoil shapes and configurations.

The single-seater, full motion, three axes Merlin MP521 flight simulator can be programmed for several aircraft types that include the Airbus A320 and the Cessna 150.

Read less
With the MSc Air Transport Management you can align, develop or transform your career. Study across several locations on this industry-accredited global programme. Read more
With the MSc Air Transport Management you can align, develop or transform your career. Study across several locations on this industry-accredited global programme.

Who is it for?

This programme is for those who have been working within the aviation industry (for at least two years). Current students include pilots, air traffic controllers, maintenance staff, engineers and the majority have a license/professional education. We also welcome students with a military background. This Air Transport Management MSc programme is tailored towards those working who cannot attend regular university schedules.

This course is compatible with The MoD's Enhanced Learning Credits Administration Service (ELCAS) - an initiative to promote lifelong learning amongst members of the UK Armed Forces. If you are/have been a member of the UK Armed Forces, you could be entitled to financial support to take this course.

Objectives

Airlines, airports and other aviation companies are mostly led by license holders, pilots, aircraft engineers, air traffic controllers, dispatchers and many more. This means the demand for management knowledge is growing. Our programme gives students the opportunity to freshen their knowledge, learn the latest management techniques and build a lifelong network of peers.

With unexpected events affecting the aviation industry as well as increased competition and technological and regulatory changes, every organisation needs a core of up-to-date managers ready to succeed into leadership positions. The programme is designed to deliver individual success. First initiated by the Honourable Company of Airline Pilots (HCAP) to increase the career opportunities of aircrew, today the programme is recognised as a key resource within the aviation industry and as a benchmark for innovation.

Academic facilities

As a student you will benefit from learning within modern lecture theatres (equipped with the latest interactive AV systems) and modern IT laboratories.

A dynamic virtual learning environment (Moodle) gives you access to online assessment and communication tools as you study and you can work with specialist School facilities including:
-A flight deck and flight test course
-A320 procedure training
-Wind tunnels and micro turbines
-Optical compressors and fuel injection systems.

As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

You will be taught by industry professionals and leaders in their field of expertise including the former British Airways human resources director in one module, and the industry’s crisis management expert in safety or the chief executive officer of a major maintenance facility in another.

Teaching takes place across global locations including London, Dubai and Frankfurt. Each module, including the Induction Workshop, is taught over a three day period.

This programme gives you a recognised industry qualification, control of your own career and the ability to contribute to air transport management. The programme is very flexible and you can study while you work.

At the end of the programme you will have improved your:
-Presentation/speaking skills - through regular opportunities within each module and the project.
-Report writing and analytical skills - through coursework and the project.
-Personal management skills - through the careful use of resources to complete assignments on time.

The successful MSc graduate will have:
-A good understanding of business analysis, finance, human motivation, and management of the air transport industry.
-A sound understanding for the national and international regulatory and commercial business environment and the ability to prepare a sound business case.
-Knowledge of aspects of fleet planning, route management, engineering and air traffic management issues.
-A proven ability to research and write a substantial analytical report.

These include:
-Being able to assimilate core themes from the talks given by a number of industry speakers, some of whom may have different positions.
-Being able to write succinct and clear English.
-Preparing a valid business case for a company and, at least as important, to know when a potential case is not viable.
-Having a wider knowledge of the interfaces of any single organisation with others in the industry.
-Being able to make a short verbal presentation and to defend a project under examination.

Assessment

Each elective is assessed by two pieces of coursework, the core modules are assessed by one piece of coursework and an examination. Each module comprises:
-Part I: Prior reading before the module where appropriate.
-Part II: Attendance at City (or other locations) for the module over three days.
-Part III: Examinations are held on the third day of the core modules.
-Part IV: Coursework is due within six weeks from the last day of the module.

Modules

We explore air transport management from a broad perspective so you will be exposed to areas as diverse as human resources, regulation, and crisis management. The academic framework has been created by the industry for the industry. There is a high degree of flexibility in terms of sequence and time frame to suit students working in airlines, air traffic control, air forces and other organisations.

Students also take on a project/dissertation in an air transport related subject, which is usually completed within six to twelve months. From developing new safety measures to social media marketing in the aviation world, students choose their own research focus and often use the project as a way into a new career. Students who choose note to do the project, or are unable to complete the programme with the five years can receive a Postgraduate Certificate pending Programme Director approval.

We cover the full spectrum of a Master of Science education, adding Management modules for the future career in aviation. The dissertation at the end of the MSc programme gives each student the opportunity to demonstrate the new research and project management qualifications achieved through the programme.

The programme is based on the successful completion of the Induction Workshop which acts as an entry pathway to the MSc. The MSc consists of three core modules and 5 electives plus the project/dissertation. Each module is taught over a three day period across global locations including London, Dubai and Frankfurt.

The dissertation at the end of the MSc programme gives each student the opportunity to demonstrate the new research and project management qualifications achieved through the programme.

Students who choose not to do the project, or are unable to complete the programme within the five years, receive a Postgraduate Certificate on successful completion of four modules, including two core modules, or a Postgraduate Diploma on successful completion of eight modules. Core modules for the Air Transport MSc are airline business, airline operations and air transport economics.

Core modules
-Airline Operations (EPM825)
-Air Transport Economics (EPM823)
-Airline Business (EPM831)

To begin your MSc, you will be required to attend the Induction Workshop (IW), which gives you a thorough introduction into Higher Education and introduces all the tools and facilities available for your MSc. You will have to write a short essay after the IW, which will be your final assessment to be accepted into City, University of London.

Elective modules - you will choose five elective modules. Each elective module is worth 15 credits.
-Active Safety Management (EPM836)
-Crisis Management (EPM828)
-Safety Risk Management (EPM973)
-Human Resource Management (EPM822)
-Psychology in Aviation Management (EPM966)
-Marketing (EPM821)
-Airline Operational Regulatory Compliance (EPM825)
-Airline Fleet Planning (EPM829)
-Developing a Business Plan (EPM969)
-Financial Accounting (EPM824)
-Sustainable Aviation (EPM975)
-Airports and Ground Handling (EPM968)
-Airworthiness (EPM897)
-Airline Maintenance (EPM906)
-Airline Revenue Management and Finance (EPM972)
-Safety Management - Tools and Methods (EPM833)
-Air Accident Investigation (EPM970)
-Leadership in Organisations (EPM971)
-Aviation Law (EPM978)
-Future Aviation Challenges - from Unmanned to Spaceflight Vehicles (EPM980)
-Reviews of Quality, Safety and Aviation Business Functions (EPM976)

Dissertation - A dissertation related to experience in the industry is required. There is a high degree of flexibility in terms of sequence and time frame to suit students working in airlines, air traffic control, air forces and other organisations.

Career prospects

This is a professional programme recognised by the aviation industry and accredited by the Royal Aeronautical Society. Airlines are increasingly expecting their managers to study the MSc from City, University of London, and our alumni network includes high-ranking individuals including the chief operating officer of Oman Air, the chief executive officer of Jet Time, the Safety Manager of Lufthansa, the Air Safety Director of ICAO and the vice president of Emirates Airbus Fleet.

Graduates may change or transform their careers as a result of the MSc. An RAF air traffic controller immediately moved into a senior training position at Eurocontrol in Brussels after completing the programme.

Read less
With the MSc Air Safety Management you can align, develop or transform your career. Study across several locations on this industry-accredited global programme. Read more
With the MSc Air Safety Management you can align, develop or transform your career. Study across several locations on this industry-accredited global programme.

Who is it for?

This programme is for those who have been working within the aviation industry (for at least two years), and have a primary interest in its safety. Current students include pilots, air traffic controllers, maintenance staff, engineers and the majority have a license/professional education. We also welcome students with a military background. This Air Safety Management MSc programme is tailored towards those working who cannot attend regular university schedules.

This course is compatible with The MoD's Enhanced Learning Credits Administration Service (ELCAS) - an initiative to promote lifelong learning amongst members of the UK Armed Forces. If you are/have been a member of the UK Armed Forces, you could be entitled to financial support to take this course.

Objectives

Airlines, airports and other aviation companies are mostly led by license holders, safety officers, pilots, aircraft engineers, air traffic controllers, dispatchers and many more. This means the demand for management knowledge is growing. Our programme gives students the opportunity to freshen their knowledge, learn the latest management techniques and build a lifelong network of peers.

With unexpected events affecting the aviation industry as well as increased competition and technological and regulatory changes, every organisation needs a core of up-to-date safety and risk managers ready to succeed into leadership positions.

The programme is designed to deliver individual success. First initiated by the Honourable Company of Airline Pilots (HCAP) to increase the career opportunities of aircrew, today the programme is recognised as a key resource within the aviation safety industry and as a benchmark for innovation.

Academic facilities

As a student you will benefit from learning within modern lecture theatres (equipped with the latest interactive AV systems) and modern IT laboratories.

A dynamic virtual learning environment (Moodle) gives you access to online assessment and communication tools as you study and you can work with specialist School facilities including:
-A flight deck and flight test course
-A320 procedure training
-Wind tunnels and micro turbines
-Optical compressors and fuel injection systems.

As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

A dissertation related to experience in the industry is required. There is a high degree of flexibility in terms of sequence and time frame to suit students working in airlines, air traffic control, air forces and other organisations.

This course gives you a recognised industry qualification, control of your own career and the ability to contribute to air safety management. The course is very flexible and you can study while you work.

At the end of the programme you will have improved your:
-Presentation/speaking skills - through regular opportunities within each module and the project.
-Report writing and analytical skills - through coursework and the project.
-Personal management skills - through the careful use of resources to complete assignments on time.

The successful MSc graduate will have:
-A good understanding of business analysis, crisis, human motivation, and management of the air safety industry.
-A sound understanding for the national and international regulatory and commercial business environment and the ability to prepare a sound business case.
-Knowledge of aspects of accident and incident investigation, human factors, safety risk management.
-A proven ability to research and write a substantial analytical report.

These include:
-Being able to assimilate core themes from the talks given by a number of industry speakers, some of whom may have different positions.
-Being able to write succinct and clear English.
-Preparing a valid business case for a company and, at least as important, to know when a potential case is not viable.
-Having a wider knowledge of the interfaces of any single organisation with others in the industry.
-Being able to make a short verbal presentation and to defend a project under examination.

Modules

We explore air safety management from a broad perspective so you will be exposed to areas as diverse as human resources, regulation, and crisis management. The academic framework has been created by the industry for the industry. This means you learn from the former British Airways human resources director in one module, and the industry's crisis management expert in safety or the chief executive officer of a major maintenance facility in another.

The course is based on completing the Induction Workshop plus eight modules over one to five years, which are taught over three-day periods. Teaching takes place across global locations including London, Dubai and Frankfurt. Students also take on a project/dissertation in an air transport related subject, which is usually completed within six to twelve months. From developing new safety measures to social media marketing in the aviation world, students choose their own research focus and often use the project as a way into a new career.

Students who choose not to do the project, or are unable to complete the programme within the five years, receive a Postgraduate Certificate on successful completion of four modules, including two core modules, or a Postgraduate Diploma on successful completion of eight modules.

Core modules
-Active Safety Management (EPM836)
-Crisis Management (EPM828)
-Safety Risk Management (EPM973)

To begin your MSc, you will be required to attend the Induction Workshop (IW), which gives you a thorough introduction into Higher Education and introduces all the tools and facilities available for your MSc. You will have to write a short essay after the IW, which will be your final assessment to be accepted into City, University of London.

Elective modules
-Airline Operations (EPM825)
-Air Transport Economics (EPM823)
-Airline Business (EPM831)
-Human Resource Management (EPM822)
-Psychology in Aviation Management (EPM966)
-Airline Marketing (EPM821)
-Airline Operational Regulatory Compliance (EPM825)
-Fleet Planning (EPM829)
-Developing a Business Plan (EPM969)
-Financial Accounting (EPM824)
-Sustainable Aviation (EPM975)
-Airports and Ground Handling (EPM968)
-Airworthiness (EPM897)
-Airline Maintenance (EPM906)
-Airline Revenue Management, Pricing and Distribution (EPM972)
-Safety Management - Tools and Methods (EPM833)
-Air Accident Investigation (EPM970)
-Leadership in Organisations (EPM971)
-Aviation Law (EPM978)
-Future Aviation (EPM980)

Dissertation - a dissertation related to experience in the industry is required. There is a high degree of flexibility in terms of sequence and time frame to suit students working in airlines, air traffic control, air forces and other organisations.

Career prospects

This is a professional programme recognised by the aviation industry and accredited by the Royal Aeronautical Society.

Airlines are increasingly expecting their managers to study the MSc from City, University of London, and our alumni network includes high-ranking individuals including safety managers, training captains, quality managers, flight safety officers, safety inspectors, safety consultants and accident investigators in civil aviation authorities, airlines and with other aircraft operators and defence forces worldwide.

Graduates may change or transform their careers as a result of the MSc.

Read less
The programme provides a preparation particularly focused on issues of design, operation and maintenance of aircraft and their on-board systems. Read more

Mission and goals

The programme provides a preparation particularly focused on issues of design, operation and maintenance of aircraft and their on-board systems. The objective is to prepare highly culturally and professionally qualified technicians able to carry out and manage activities related to research and design in the fields of aerodynamics, materials, lightweight structures, aircraft systems and aerospace propulsion in national and international contexts, both in autonomy or in cooperation.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

Career opportunities

The graduate finds employment in aeronautical and space industries; in public and private bodies for experimentation in the aerospace field; in aircraft fleet management and maintenance companies; in air-traffic control agencies; in the airforce; in industries producing machinery and equipment in which aerodynamics and lightweight structures play a significant role.
Aeronautical engineers are particularly sought after in related fields. In fact, they may be involved in the design of terrestrial or nautical vehicles or large buildings or bridges or even in the design of power plants. Graduates are also in demand in the lightweight constructions industry, in the motor industry in the areas of monitoring the mechanical behaviour of structures subject to stress.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Aeronautical_Engineering.pdf
This programme aims at providing the students with specific skills in design, operation and maintenance of aircrafts and their on-board systems. The objective is to prepare culturally and professionally highly qualified technicians able to carry out and manage activities related to research and design in the fields of aerodynamics, materials, lightweight structures, aircraft systems and aerospace propulsion. Graduates can find employment in national and international contexts in aeronautical and space industries, public and private bodies for experimentation in the aerospace field, aircraft fleet management and maintenance companies, air-traffic control agencies, or in the air force. The track in Rotary wing is taught in English, while the other tracks are partially available in English.

Subjects

Specializations available:
- Aerodynamics
- Flight mechanics and systems
- Propulsion
- Structures
- Rotary-wing aircraft

Mandatory courses are:
- Aerodynamics
- Flight Dynamics
- Aerospace Structures
- Dynamics and control of aerospace structures

Other courses:
- Fundamentals of Aeroelasticity
- Nonlinear analysis of aerospace structures
- Fundamentals of Thermochemical propulsion
- Management of aerospace projects
- Gasdynamics
- Aircraft instrumentation & integrated systems
- Aircraft Design
- Heat transfer and thermal analysis
- Numerical modeling of differential problems
- Rotorcraft design
- Aircraft engines
- Airport and air traffic management
- Aerospace materials
- Communication skills
- Thesis

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Today’s military aviation platforms are complex systems and it is essential, therefore, that they are deployed and maintained in such a way as to ensure their continued airworthiness and the safety of the crew operating them. Read more

Course Description

Today’s military aviation platforms are complex systems and it is essential, therefore, that they are deployed and maintained in such a way as to ensure their continued airworthiness and the safety of the crew operating them. To achieve this requires engineers to be cognisant of a broad range of aerospace engineering, airworthiness and safety disciplines.

The MSc in Military Aerospace and Airworthiness has been designed to address these needs by providing a course aimed specifically at employees in the MoD, the Armed Forces and the international defence industry. It provides practicing engineers with the knowledge and skills to enable them to work more effectively in aerospace engineering, airworthiness, and safety. The course structure allows students to continue in full-time employment whilst they are studying.

Cranfield University has been at the forefront of postgraduate education in aeronautics and engineering for over 60 years, so you can be sure that your qualification will be valued and respected by employers.

Overview

The MSc distinguishes itself from similar courses offered by leading UK Universities by offering one focussed specifically on the Military context and offers unique subject areas unavailable elsewhere. You will be taught by staff, primarily from Cranfield Defence and Security at Shrivenham, and the School of Engineering at Cranfield, Bedfordshire, many of them world leaders in their field. Visiting lecturers include experts from industry, research establishments, and the MoD. The course draws students from the UK and Western Europe giving an eclectic mix to the classroom environment. Maximum number of places: 25 per year.

Course overview

The course is delivered on a part-time basis. It contains five compulsory modules:
- Airworthiness of Military Aircraft
- Aviation Safety Management
- Fixed-Wing Aeromechanics
- Propulsion Systems
- Safety Assessment of Aircraft Systems

which together provide an overarching introduction to the subject of military aerospace and airworthiness and impart the essential knowledge required by all students on the course.

Students choose one further module to complete the PgCert or a further seven modules to complete the PgDip (MSc taught phase). This provides students with the flexibility to tailor their studies to account for prior educational and work experience and the current and future needs of their employment role.

The modules taken in the taught phase of the MSc (the PgDip) provide students with the knowledge and skills necessary to complete a research-based project, which forms the final part of the Masters award.

Modules

Core:
- Study Skills (non-assessed)
- Airworthiness of Military Aircraft
- Aviation Safety Management
- Fixed-Wing Aeromechanics
- Fundamentals of Aeronautical Engineering Top-up (FAE qualified students only)
- Propulsion Systems
- Safety Assessment of Aircraft Systems
- Research Project (MSc only)

Elective:
- Aircraft Accident Investigation and Response
- Aircraft Fatigue and Damage Tolerance
- Aircraft Survivability
- Air Transport Engineering - Maintenance Operations
- Design Durability and Integrity of Composite Aircraft Structures
- Fundamentals of Aircraft Engine Control
- Guided Weapons
- Human Factors in Aircraft Maintenance
- Introduction to Aircraft Structural Crashworthiness
- Introduction to Human Factors
- Mechanical Integrity of Gas Turbines
- Military Aircraft Systems
- Military Avionics -STA Communications and Navigation
- Practical Reliability
- Rotary-Wing Aeromechanics

Individual Project

The individual research project would focus on a topical subject area covered by the taught phase of the course. The subject of the project can be chosen to match the research needs of the sponsor and/or the interests of the individual student and students are encouraged to utilise their employment resources to place the project in context. Lecturing staff on both campuses will undertake supervision of research projects.

Assessment

Specific assessment details will be dependent upon the modules chosen but will include closed-book written examinations, individual and group design exercises, technical essays, engineering calculations, computer-based assessment.
In addition, for MSc students, the assessment includes lectures and tutorials relating to research, methodologies, project planning, research ethics, plagiarism and technical writing skills, one-to-one discussion with a nominated
academic supervisor, examination of a written dissertation and viva voce examination.

Career opportunities

The course creates opportunities to develop your career at a more senior level and in achieving Incorporated or Chartered Engineer status.

For further information

On this course, please visit our course webpage http://www.cranfield.ac.uk/courses/masters/military-aerospace-and-airworthiness.html

Read less
The aircraft industry is estimated to be valued at £24bn per year to the UK economy (HM Government) with demand for passenger and freight aircraft expected to increase over the next 20 years. Read more
The aircraft industry is estimated to be valued at £24bn per year to the UK economy (HM Government) with demand for passenger and freight aircraft expected to increase over the next 20 years.

To support that demand, designers and engineers need to be equipped with the skills and knowledge to help meet it now and into the future. Our course will give you an understanding of the underlying technology of their systems, power sources and requirements, plus interfaces.

You will use state-of-the-art commercial software: CATIA V5, ABAQUS and ANSYS.

Key Course Features

-At Wrexham Glyndŵr University we are on the door step of one of the largest aircraft manufacturers in the world, Airbus, with a large number of first and second tier suppliers in the locality. Many of the academic staff have industrial experience spanning a broad range of engineering areas and working levels.
-The programmes are accredited by the Engineering Council and many students from previous years are now in jobs at top international companies such as Rolls-Royce, Raytheon, Magellan and Airbus. Aside from major manufacturers, North Wales and North West England have numerous maintenance companies, keeping the UK flying safely and efficiently. With the average life of an aircraft expected to be over 30 years, maintenance and overhaul engineers will continue to be in high demand in the future.
-The MSc in Aircraft Design is accredited by Royal Aeronautical Society (RAeS), Institute of Engineering and Technology (IET) and the Institution of Mechanical Engineers (IMechE), and provides you with the required training for registering for Chartered Engineer status.

What Will You Study?

FULL-TIME STUDY (SEPTEMBER INTAKE)
The taught element, Part One, of the programmes will be delivered in two 12 week trimesters and each trimester has a loading of 60 credits.

You will cover six taught modules which include lectures, tutorials and practical work on a weekly basis. The expected timetable per module will be a total of 200 hours, which includes 40 hours of scheduled learning and teaching hours and 160 independent study hours.

Part Two will then take a further 15 weeks having a notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

FULL-TIME MODE (JANUARY INTAKE)
For the January intake, students will study the three specialist modules first during the second trimester from January to May. The three core modules will be studied in the first trimester of the next academic year from September to January.

On successful completion of the taught element of the programme the students will progress to Part Two, MSc dissertation to be submitted in April/May.

PART-TIME MODE
The taught element, part one, of the programmes will be delivered over two academic teaching years. 80 credits or equivalent worth of modules will be delivered in the first year and 40 credits or equivalent in the second year. The part time students would join the full time delivery with lectures and tutorials/practical work during one day on a weekly basis.

The dissertation element will start in trimester 2 taking a further 30 weeks having a total notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

AREAS OF STUDY INCLUDE
-Engineering Research Methods
-Sustainable Design & Innovation
-Engineering Systems Modelling & Simulation
-Advanced Composite Materials
-Aircraft Structures
-Airframe Systems Design
-Dissertation

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Assessment and Teaching

You will be assessed throughout your course through a variety of methods including portfolios, presentations and, for certain subjects, examinations.

Career Prospects

The courses will give you the chance to advance your career to management levels. You might also consider consultancy, research and development, testing and design positions within the aeronautical industry. Airbus is a classic example of an employer excelling in this field in the north Wales region.

The Careers & Zone at Wrexham Glyndŵr University is there to help you make decisions and plan the next steps towards a bright future. From finding work or further study to working out your interests, skills and aspirations, they can provide you with the expert information, advice and guidance you need.

Read less
Discover the techniques and standards required to design components to ensure airworthiness on this dedicated course. The demands on aircraft components are extremely robust, as they must adhere to the extreme loads and stresses the vehicle is exposed to, as well as rigorous safety standards. Read more
Discover the techniques and standards required to design components to ensure airworthiness on this dedicated course.

The demands on aircraft components are extremely robust, as they must adhere to the extreme loads and stresses the vehicle is exposed to, as well as rigorous safety standards. This course will give you the opportunity to learn the required skills and techniques to design aircraft components, as well as understand the theory behind them.

Taught elements of the course include advanced materials, design and stress testing, and fluid dynamics analysis. You will have the opportunity to use state-of-the-art commercial software such as CATIA V5, ABAQUS and ANSYS.

Key Course Features

-At Wrexham Glyndŵr University we are on the door step of one of the largest aircraft manufacturers in the world, Airbus, with a large number of first and second tier suppliers in the locality. Many of the academic staff have industrial experience spanning a broad range of engineering areas and working levels.
-The course is accredited by the Engineering Council and many students from previous years are now in jobs at top international companies such as Rolls-Royce, Raytheon, Magellan and Airbus. Aside from major manufacturers, North Wales and North West England have numerous maintenance companies, keeping the UK flying safely and efficiently. With the average life of an aircraft expected to be over 30 years, maintenance and overhaul engineers will continue to be in high demand in the future.
-The MSc in Aircraft Design is accredited by Royal Aeronautical Society (RAeS), Institute of Engineering and Technology (IET) and the Institution of Mechanical Engineers (IMechE), and provides candidates the required training for registering for Chartered Engineer status.

What Will You Study?

FULL-TIME STUDY (SEPTEMBER INTAKE)
The taught element, Part One, of the programmes will be delivered in two 12 week trimesters and each trimester has a loading of 60 credits.

You will cover six taught modules which include lectures, tutorials and practical work on a weekly basis. The expected timetable per module will be a total of 200 hours, which includes 40 hours of scheduled learning and teaching hours and 160 independent study hours.

Part Two will then take a further 15 weeks having a notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

FULL-TIME MODE (JANUARY INTAKE)
For the January intake, students will study the three specialist modules first during the second trimester from January to May. The three core modules will be studied in the first trimester of the next academic year from September to January.

On successful completion of the taught element of the programme the students will progress to Part Two, MSc dissertation to be submitted in April/May.

PART-TIME MODE
The taught element, part one, of the programmes will be delivered over two academic teaching years. 80 credits or equivalent worth of modules will be delivered in the first year and 40 credits or equivalent in the second year. The part time students would join the full time delivery with lectures and tutorials/practical work during one day on a weekly basis.

The dissertation element will start in trimester 2 taking a further 30 weeks having a total notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

AREAS OF STUDY INCLUDE
-Engineering Research Methods
-Sustainable Design & Innovation
-Engineering Systems Modelling & Simulation
-Advanced Composite Materials
-Aircraft Structures
-Advanced Manufacturing Technology
-Dissertation

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Assessment and Teaching

You will be assessed throughout your course through a variety of methods including portfolios, presentations and, for certain subjects, examinations.

Career Prospects

The courses will give you the chance to advance your career to management levels. You might also consider consultancy, research and development, testing and design positions within the aeronautical industry. Airbus is a classic example of an employer excelling in this field in the north Wales region.

The Careers & Zone at Wrexham Glyndŵr University is there to help you make decisions and plan the next steps towards a bright future. From finding work or further study to working out your interests, skills and aspirations, they can provide you with the expert information, advice and guidance you need.

Read less
With increasing traffic density of civil aircraft, and the need for increased military precision in conflicts around the world, safer aircraft operations require more sophisticated avionic systems. Read more
With increasing traffic density of civil aircraft, and the need for increased military precision in conflicts around the world, safer aircraft operations require more sophisticated avionic systems.

This specialist option of the MSc Aerospace Vehicle Design (http://www.cranfield.ac.uk/courses/taught/aerospace-vehicle-design) provides you with an understanding of avionic systems design, analysis, development, test and airframe integration.

Who is it for?

This course is suitable for students with a background in aeronautical or mechanical engineering or those with relevant industrial experience. It provides a taught engineering programme with a focus on the technical, business and management aspects of aircraft design in the civil and military aerospace sectors.

Why this course?

The Avionic Systems Design option aims to provide an understanding of avionic systems design, analysis, development, test and airframe integration. This includes a detailed look at robust and fault-tolerant flight control, advanced 4D flight management and RNP navigation, self-separation and collision avoidance and advanced digital data communications systems, as well as pilot-friendly and intelligent cockpit displays and situation awareness.

We have been at the forefront of postgraduate education in aerospace engineering since 1946. Aerospace Vehicle Design at Cranfield University was one of the original foundation courses of the College of Aeronautics. Graduates of this course are eligible to join the Cranfield College of Aeronautics Alumni Association (CCAAA), an active community which hold a number of networking and social events throughout the year.

Cranfield University is well located for students from all over the world, and offers a range of library and support facilities to support your studies. This enables students from all over the world to complete this qualification whilst balancing work/life commitments.

Informed by Industry

The course has an Industrial Advisory Committee with senior members from major UK aerospace companies, government bodies, and the military services. The committee meets twice a year to review and advise on course content, acquisition skills and other attributes are desirable from graduates of the course. Panel members include:

- BAE Systems
- Airbus
- Royal Air Force
- Department for Business, Enterprise and Regulatory Reform
- Royal Australian Air Force
- Messier-Dowty
- Department of National Defence and the Canadian Armed Forces.

We also arrange visits to sites such as BAE Systems, Thales, GKN and RAF bases which specialise in the maintenance of military aircraft. This allows you to get up close to the aircraft and components to help with ideas for the group project

Accreditation

Royal Aeronautical Society (RAeS) - http://aerosociety.com/
Institution of Mechanical Engineers (IMechE) - http://www.imeche.org/

Course details

This option is comprised of 14 compulsory modules and a minimum of 60 hours of optional modules, selected from a list of 10 options. You are also required to complete a group design project and an individual research project. Delivered via a combination of structured lectures, industry guest lectures, computer based workshops and private study.

A unique feature of the course is that we have four external examiners; two from industry who assess the group design project and two from academia who assess the individual research project.

Group project

The extensive group design project is a distinctive and unique feature of this course. This teamwork project takes place over six months, usually between October and March; and recreates a virtual industrial environment bringing together students with various experience levels and different nationalities into one integrated design team.

You will be given responsibility for the detailed design of a significant part of the aircraft, for example, forward fuselage, fuel system, or navigation system. The project will progress from the conceptual phase through to the preliminary and detail design phases. You are required to run project meetings, produce engineering drawings and detailed analyses of their design. Problem solving and project coordination must be undertaken on a team and individual basis. At the end of the project, groups are required to report and present findings to a panel of 200 senior engineers from industry.

This element of the course is both real and engaging, and places the student group in a professional role as aerospace design engineers. Students testify that working as an integrated team on real problems is invaluable and prepares them well for careers in a highly competitive industry.

Watch past presentation YouTube videos to give you a taster of our innovative and exciting group projects:

- Blended Wing Body Aircraft - https://www.youtube.com/watch?v=UfD0CIAscOI
- A9 Dragonfly Box Wing Aircraft - https://www.youtube.com/watch?v=C4LQzXBJInw
- MRT7 Tanker Aircraft - https://www.youtube.com/watch?v=bNfQM2ELXvg
- A-13 Voyager - https://www.youtube.com/watch?v=LS6Wq7lpmDw
- SL-12 Vimana - https://www.youtube.com/watch?v=HjEEazsVtSc

Individual project

The individual research project aims to provide the training necessary for you to apply knowledge from the taught element to research, and takes place over six months. The project may be theoretical and/or experimental and drawn from a range of topics related to the course and suggested by teaching staff, your employer or focused on your own area of interest.

Assessment

Taught modules 10%, Group project 50%, Individual research project 40%

Your career

The Avionic Systems Design option is valued and respected by employers worldwide. The applied nature of this course ensures that our graduates are ready to be of immediate use to their future employer and has provided sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression.

This course prepares graduates for careers as project design engineers, systems design, structural design or avionic engineers in aerospace or related industries, with the aim of progressing to technical management/chief engineer. Graduates from the MSc in Avionic Systems Design can therefore look forward to a varied choice of challenging career opportunities in the above disciplines.

Many of our graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry. Typical student destinations include BAE Systems, Airbus, Dassault and Rolls-Royce plc

Read less
The collaborative degree shows a level of commitment to the development of technical and professional skills that would impress any employer. Students… Read more

The collaborative degree shows a level of commitment to the development of technical and professional skills that would impress any employer. Students – and potential employers – also benefit from the knowledge gained from faculty at two institutions. With the increasing globalization of the technical workforce, degrees that span institutions and provide an international perspective are particularly valuable.

Expand Your Opportunities

In today’s competitive technology environment, top opportunities are going to skilled engineers who have a wide-range of professional capabilities. Aero-Systems Operations (AESOP) is an exceptional program joining UBx expertise in maintenance with UC expertise in engineering. Students at each university may purse UC CEAS' Master of Engineering (MEng) and UBx’s International Diploma collaboratively.

The AESOP curriculum offers a practice-oriented, personalized degree that prepares engineers to excel in the new working world. Advantages of the graduate degree include:

  • Maintain licensure requirements with graduate courses.
  • Gain a unique international graduate study experience 
  • Increase your earning potential.
  • Expand your knowledge and marketability.
  • Broaden your understanding of engineering through interdisciplinary focus.
  • Follow some courses online.

AESOP Curriculum

Core at UC, Fall Semester (9 Credits)

  • AESOP Program Requirement (3 credits – Mandatory)
  • Introduction to Aircraft Systems, Regulations and Maintenance
  • Project / Task Management Development (3 credits – choose one)
  • Examples include, but are not limited to: Engineering Economic Analysis, Quality Control , Project Management, Entrepreneurship and Technology Law
  • Interpersonal Skill Development (3 credits – choose one)
  • Examples include, but are not limited to: Management of Professionals, Leadership, Effectiveness in Technical Organizations

Technical Specialty at UC, Fall Semester (6 Credits)

Choose 2 Courses from Any of the Following Department Offerings:

  • Aeronautical Engineering
  • Mechanical Engineering
  • Electrical, Electronic and Computer Engineering
  • Computer Science

Aero System Operations at UBx, Spring Semester (12 credits)

Airworthiness UBx/ENAC (Mandatory)

Each Module includes theory, applications and lab (3 credits – choose 1)

  • Maintenance Repair & Overhaull
  • Continuous Airworthiness Maint. Org.
  • Maintenance Program Planning

Each Module includes theory, applications and lab (6 credits – choose 1)

  • Avionics Maintenance
  • Structural Maintenance
  • Propulsion System Maintenance
  • Human Machine Interface ENAC

Capstone Project at UBx, Spring Semester (3 Credits, Mandatory)

  • Choice of sponsored research at IMA or internship at Industry


Read less
What's the Master of Mechanical Engineering all about? . The Master of Science in Engineering. Mechanical Engineering is a general training programme integrating all disciplines of basic sciences, engineering and technology. Read more

What's the Master of Mechanical Engineering all about? 

The Master of Science in Engineering: Mechanical Engineering is a general training programme integrating all disciplines of basic sciences, engineering and technology. An essential element of the mechanical engineering curriculum at KU Leuven is the direct training of each student in a real-life industrial or research setting. Following up on the design assignment in the Bachelor's programme, the Master's programme brings the student in close contact with the industrial reality.

Structure 

Three versions

The Master's programme in Mechanical Engineering has three versions:

  • A Dutch-language version for students who have already obtained a Master's degree of Engineering Technology: Electromechanical Engineering
  • A Dutch-language version for students who have completed their Bachelor's training at our Faculty or at another university with Mechanical Engineering either as a major or as minor.
  • An English-language version which mainly addresses foreign students, and to which admission is granted after evaluation of the application file.

Five modules 

The programme consists of five modules.

  • The first major component is the core module in mechanical engineering.
  • The second major component is one out of five options, which have been put together in a complementary way.

Three generic options 

  • Manufacturing and Management: modern techniques for the design and production of discrete components, CAD and computer integration in production, management techniques, maintenance and logistics of a production company.
  • Mechatronics and Robotics: mechatronics is the discipline in which the synergy of construction, sensing, actuation and control of machinery are concurrently defined and tuned for optimum integration
  • Thermo-technical Sciences: physical principles and analysis, design, construction and operation of combustion engines and thermal and flow machines, cooling machines, power plants, etc.

Two application oriented options

  • Aerospace technology: physical principles, analysis, design, construction, exploitation and operation of aircraft and space systems;
  • Vehicle technology: physical principles, design, analysis and production of cars and ground vehicles and of systems for ground transportation.

Elective courses 

The third and fourth components in the programme structure concern a set of elective courses, to be chosen from a list of technical coursesand from a list of general interest courses.

Master's thesis

The final component is the Master's thesis, which represents 20% of the credits of the entire curriculum.

Strengths

  • The department has a large experimental research laboratory with advanced equipment, to which Master's students have access. FabLab (a "Fabrication Laboratory") is also directly accessible for students.
  • The department has built up an extensive network of companies which recruit a large number of our alumni since many years already, from whom we receive lots of informal feedback on the programme.
  • In addition to their academic teaching and research assignments, several members of the teaching staff also have other responsibilities in advisory boards, in external companies, science & technology committees, etc. and they share that expertise with students.
  • The programme attracts a large number of students.
  • The programme offers students the choice between application oriented options and generic methodology oriented options.
  • Many courses are dealing with contents in which the R&D of the Department has created spin-off companies, and hence can offer very relevant and innovation driven contents.
  • The programme has a clearly structured, extensive and transparent evaluation procedure for Master's theses, involving several complementary assessment views on every single thesis.
  • Several courses are closely linked to top-level research of the lecturers, and they can hence offer up-to-date and advanced contents to the students.

International experience

The Erasmus+ programme gives students the opportunity to complete one or two semesters of their degree at a participating European university. Student exchange agreements are also in place with Japanese and American universities.

Students are also encouraged to learn more about industrial and research internships abroad by contacting our Internship Coordinator. Internships are scheduled in between two course phases of the Master’s programme (in the summer period after the second semester and before the third semester).

These studying abroad opportunities and internships are complemented by the short summer courses offered via the Board of European Students of Technology (BEST) network. This student organisation allows students to follow short courses in the summer period between the second and the third semester. The Faculty of Engineering Science is also member of the international networks CESAER, CLUSTER and T.I.M.E.

You can find more information on this topic on the website of the Faculty

Career perspectives

The field of mechanical engineering is very wide. Mechanical engineers find employment in many industrial sectors thanks to our broad training programme. Demand for this engineering degree on the labour market is very strong and constant. A study by the Royal Flemish Engineers Association, identifies the specific sectors in which graduated mechanical engineers are employed.

  • mechanical engineering: e.g. production machinery, compressed air systems, agricultural machinery
  • metal and non-metal products: a very wide range of products e.g. pressure vessels, piping, suit cases,...
  • off-shore and maritime engineering
  • automation industry
  • vehicle components, such as exhaust systems, drivetrain components and windshield wipers,...
  • development and production of bicycles
  • aircraft components, such as high lift devices, aircraft engines and cockpit display systems
  • building, textile, plastic, paper sector
  • electrical industry
  • chemical industry
  • environmental engineering and waste management
  • energy sector
  • financial, banking and insurance sector
  • communications sector
  • transportation sector: infrastructure and exploitation and maintenance of rolling stock
  • software development and vendors
  • technical and management consulting: large companies and small offices
  • education and research
  • technical and management functions in the public sector


Read less
PROVIDING SOLUTIONS TO THE CHALLENGES CURRENTLY FACING THE AEROSPACE INDUSTRY. Improve graduate employability by developing the postgraduate skills required for a successful transition to industry. Read more
PROVIDING SOLUTIONS TO THE CHALLENGES CURRENTLY FACING THE AEROSPACE INDUSTRY

THE AIMS OF THIS PROGRAMME ARE TO:

Improve graduate employability by developing the postgraduate skills required for a successful transition to industry
Develop and enhance the skills of professional engineers already practising in industry
Enable disciplinary transfer to aerospace for maths & physics graduates
Equip graduate with the skill sets required for a research role in industry or academia.

COURSE CONTENT

THE SUBJECT

Even in the current economic climate, the demand for Masters level Aerospace Engineering graduates has remained strong and continues to grow.

To facilitate postgraduate education in an era of rapidly evolving technology an MSc in Advanced Aerospace Engineering will be delivered by the School of Mechanical and Aerospace Engineering at Queen's.

This novel program will augment the undergraduate education of those who complete it through a combination of advanced scientific knowledge, interpersonal, research and management skills. It will provide postgraduate training for Bachelors degree and PhD students and will provide a pool of highly-qualified MSc graduates for recruitment into industry and to PhD study.

This will be achieved through the delivery of masters level taught elements as well as the completion of novel, industrially relevant research projects.

PROGRAMME DETAILS

Students must take and pass taught modules equivalent to 120 CAtS points and complete a dissertation, which is equivalent to 60 CATS points.

Taught elements may be selected from a list which includes novel modules on aircraft maintenance management and digital manufacturing. The normal load is 60 CATS points per semester.

The programme is available for both full-time and part-time modes of study. Part-time students will take 2 or 3 modules per semester, with all 120 CATS points being completed within 3 years.

PROGRAMME DELIVERY

Formal lectures are presented, but students will also acquire knowledge and understanding experientially through assignments as well as individual and group project work.

Assessment is based on written examinations, coursework and oral presentations by both individuals and groups.

The School provides a supportive learning environment with an emphasis on IT provision and the use of advanced engineering simulation platforms.

OPPORTUNITIES

Employment prospects for aerospace engineers with Masters level qualifications are excellent with salary levels remaining above the UK average.

Our programme is fully accredited by the Royal Aeronautical Society meaning that it 'provides the exemplifying level of understanding, knowledge and skills to underpin professional competence to help graduates on their way to registration as Chartered Engineers (CEng) or as Incorporated Engineers (IEng)'. Benefits for professionally registered graduates include improved career prospects and employability, higher earning potential and international recognition of their commitment to their discipline.

Read less
Do you want to be able to help design the next generation of renewable energy systems, clean cars and aircraft? Do you want to be able to invent the electrical systems for future factories and robots?. Read more
Do you want to be able to help design the next generation of renewable energy systems, clean cars and aircraft? Do you want to be able to invent the electrical systems for future factories and robots?

The Power Electronics, Machines and Drives (PEMD) is a 1 year degree course that provides its students with the knowledge to design, construct and analyse integrated networks of power electronic converters, electrical machines, actuators, energy storage devices, and control systems. As a result of recent technical advances, PEMD technology is becoming commonplace and can be found for example in more-electric aircraft and ships, electric vehicles, railway systems, renewable power generation, active management of power distribution systems, automation systems for factories and industrial processes. The adoption of PEMD technology is being driven by the need to increase energy efficiency, and controllability, whilst reducing system weight and maintenance costs.

This MSc course has been designed to equip electrical engineers with the knowledge and skills that are required to design modern PEMD systems, it includes the fundamentals of electrical machine and power electronics design, system integration, control, energy management and protection. The teaching team of eight academic staff belong to the Power Conversion Group and are all actively involved in researching new aspects of machines, drives, power electronics and electrical systems, particularly for applications in transport and sustainable electricity supply. The Group's research activities and industrial links inform the course content and enrich the student experience.

Aims

-To enable you to gain experience in the design and analysis of systems in electrical engineering, for example renewable energy, more-electric aircraft, vehicles, and next-generation electric power transmission
-To enable you to critically evaluate electrical machine and converter technology applied in manufacturing, power systems and transport industries
-To employ recent developments in these research areas and to prepare students who wish to continue on to research studies
-To develop your ability to integrate strands of machines, power electronics, drives and their control

The MSc course begins with an introduction to the fundamentals of converters, machines, actuators and relevant control systems. The course will give you a high level of exposure to system integration and is illustrated by a broad range of high-technology activities related to industrial and other systems.

The next five course units give specialist tuition on advanced topics including machine design, systems analysis, converter circuits and applications. In addition to lectures, tutorials, design exercises and enquiry-based learning, you will attend industrial seminars and practical laboratories which employ mainly industrial equipment. The course will include a `mechatronic' emphasis in examining how system blocks interact and ensuring that electrical and mechanical systems work together.

The summer is spent on this individual dissertation project, which is strongly supported by the Power Conversion Research Group's research base (including the Rolls-Royce University Technology Centre) and extensive industrial contacts. Cutting-edge research areas include versatile power and conversion systems for a variety of applications, including more-electric aircraft and ships, electric and hybrid vehicles, automation systems and autonomous/micro-grid power systems.

Career opportunities

Graduates of the course will have acquired in-depth education in modern design, broad exposure to the expanding range of applications, hands-on experience and integration into state-of-the-art systems. These comprise the special knowledge and skills needed for a professional career in energy conversion systems, an area in which engineers are in demand for key power electronic/drives/automation industries.

Industry's competitive edge relies on high-technology drives and in the integration of systems to provide superior overall performance. Applications include the `more electric aircraft', electric transport and high-reliability systems.

Our students have been employed by companies such as:
-ABB
-BAE Systems
-Cummings Turbo Technologies
-GE Energy
-National Instruments
-Rolls-Royce
-Siemens

Opportunities also exist for further study to doctoral level (PhD) in the Power Conversion Group's recently re-equipped and expanding research laboratories.

Read less
Gas Turbine Technology provides a comprehensive background in the design and operation of different types of gas turbines for all applications. Read more

Course Description

Gas Turbine Technology provides a comprehensive background in the design and operation of different types of gas turbines for all applications. This course is designed for those seeking a career in the design, development, operations and maintenance of power and propulsion systems. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand. The course is suitable for graduates seeking a challenging and rewarding career in an international growth industry.

The UK continues to lead the world in power and propulsion technology. In addition to its established aerospace role, the gas turbine is finding increasing application in power generation, oil and gas pumping, chemical processing and power plants for ships and other large vehicles.

Course overview

The course consists of approximately ten to fifteen taught modules and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:

- Provide the skills required for a rewarding career in the field of propulsion and power.
- Meet employer requirements for graduates within power and propulsion industries.
- Demonstrate a working knowledge and critical awareness of gas turbine performance, analysis techniques, component design and associated technologies.
- Explain, differentiate and critically discuss the underpinning concepts and theories for a wide range of areas of gas turbine engineering and associated applications.
- Be able to discern, select and apply appropriate analysis techniques in the assessment of particular aspects of gas turbine engineering.

Individual Project

You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner.

Recent Individual Research Projects include:

- S-duct aerodynamic shape multi-objective optimisation
- Performance modelling of evaporative gas turbine cycles for marine applications
- Mechanical integrity/stress analysis of the high pressure compressor of a new engine
- High pressure turbine blade life analysis for a civilian derivative aircraft conducting military operations
- Engine performance degradation due to foulants in the environment
- Effects of manufacturing tolerances on gas turbine performance and components
- Development of a transient combustion model
- Numerical fan modelling and aerodynamic analysis of a high bp ratio turbofan engine
- Combustor modelling
- Impact of water ingestion on large jet engine performance and emissions
- Windmilling compressor and fan aerodynamics
- Neural networks based sensor fault diagnostics for industrial gas turbine engines
- Boundary layer ingestion for novel aircraft
- Multidisciplinary design optimisation for axial compressors
- Non-linear off design performance adaptation for a twin spool turbofan engine
- Engine degradation analysis and washing effect on performance using measured data.

Modules

The taught programme for the Gas Turbine Technology masters consists of seven compulsory modules and up to seven optional modules. The modules are generally delivered from October to April.

Core -

Blade Cooling
Combustors
Engine Systems
Gas Turbine Theory and Performance
Mechanical Design of Turbomachinery
Gas Turbine Simulation and Diagnostics
Turbomachinery

Optional -

Computational Fluid Dynamics
Fatigue and Fracture
Gas Turbine Applications
Jet Engine Control (only October intake)
Management for Technology
Propulsion Systems Performance and Integration
Rotating Equipment Selection

Assessment

The final assessment is based on two components of equal weight; the taught modules (50%) and the individual research project (50%). Assessment is by examinations, assignments, presentations and thesis.

Funding

A variety of funding, including industrial sponsorship, is available. Please contact us for details.

Cranfield Postgraduate Loan Scheme (CPLS) - https://www.cranfield.ac.uk/Study/Postgraduate-degrees/Fees-and-funding/Funding-opportunities/cpls/Cranfield-Postgraduate-Loan-Scheme

The Cranfield Postgraduate Loan Scheme (CPLS) is a funding programme providing affordable tuition fee and maintenance loans for full-time UK/EU students studying technology-based MSc courses.

Career opportunities

- Gas turbine engine manufacturers
- Airframe manufacturers
- Airline operators
- Regulatory bodies
- Aerospace/Energy consultancies
- Power production industries
- Academia: doctoral studies.

Further Information

For further information on this course, please visit our course webpage - http://www.cranfield.ac.uk/Courses/Masters/Gas-Turbine-Technology-option-Thermal-power

Read less
Aerospace Propulsion provides a comprehensive background in the design and operation of different types of propulsion systems for aerospace applications. Read more

Course Description

Aerospace Propulsion provides a comprehensive background in the design and operation of different types of propulsion systems for aerospace applications. The course is designed for those seeking a career in the design, development, operation and maintenance of propulsion systems.  The course is suitable for graduates seeking a challenging and rewarding career in an established international industry. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand.

Overview

The key technological achievement underlying the development and growth of the aerospace industry has been the design and development of efficient and economical propulsion systems. This sector has experienced a consistent growth in the past and is expected to do so in the future. Major efforts are also now being dedicated to the development of new technologies relevant to the propfan and variable cycle engines.

The MSc in Aerospace Propulsion provides a comprehensive background in the design and operation of different types of propulsion systems for aerospace applications. The course is designed for those seeking a career in the design, development, operation and maintenance of propulsion systems.

The course is suitable for graduates seeking a challenging and rewarding career in an established international industry. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand.

Structure

The course consists of approximately ten to fifteen taught modules and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:

- Provide the skills required for a rewarding career in the field of propulsion and power
- Meet employer requirements for graduates within power and propulsion industries
- Demonstrate a working knowledge and critical awareness of gas turbine performance, analysis techniques, component design and associated technologies
- Explain, differentiate and critically discuss the underpinning concepts and theories for a wide range of areas of gas turbine engineering and associated applications
- Be able to discern, select and apply appropriate analysis techniques in the assessment of particular aspects of gas turbine engineering.

Modules

The taught programme for the Aerospace Propulsion masters consists of eight compulsory modules and up to six optional modules. The modules are generally delivered from October to April.

Individual Project

Individual Project
You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner.

Recent Individual Research Projects include:

- Design of an experimental test rig facility for an axial compressor
- Energy management in a hybrid turbo-electric, hydrogen fuelled, hale UAV
- Civil aircraft intake, nacelle and nozzle aerodynamics
- The computation of adiabatic isobaric combustion temperature
- Air filtration systems for helicopters
- Nacelle parametric design space exploration
- Distributed propellers assessment for turboelectric distributed propulsion
- Aerodynamic analysis of the flowfield distortion within a serpentine intake
- Green runway :impact of water ingestion on medium and small jet engine performance and emissions
- Distributed propulsion systems boundary layer ingestion for uav aircraft
- Preliminary design of a low emissions combustor for a helicopter engine
- Compressor design and performance simulation through the use of a through-flow method
- Estimation of weight and mechanical losses of a pts for a geared turbofan engine
- Optimisation of turbine disc for a small turbofan engine
- Modelling of tip leakage flows in axial flow high pressure gas turbine
- Aerodynamic modelling and adjoint-based shape optimisation of separate-jet exhaust systems
- Preliminary design & performance analysis of a combustor for UAV.

Assessment

The final assessment is based on two components of equal weight; the taught modules (50%) and the individual research project (50%). Assessment is by examinations, assignments, presentations and thesis.

Funding

A variety of funding, including industrial sponsorship, is available. Please contact us for details.

Career opportunities

- Gas turbine engine manufacturers
- Airframe manufacturers
- Airline operators
- Regulatory bodies
- Aerospace/Energy consultancies
- Power production industries
- Academia: doctoral studies.

For further information

On this course, please visit our course webpage http://www.cranfield.ac.uk/Courses/Masters/Aerospace-Propulsion-Option-Thermal-Power

Read less

Show 10 15 30 per page



Cookie Policy    X