• University of Glasgow Featured Masters Courses
  • Coventry University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
Cranfield University Featured Masters Courses
FindA University Ltd Featured Masters Courses
University of Worcester Featured Masters Courses
FindA University Ltd Featured Masters Courses
"air" AND "power"×
0 miles

Masters Degrees (Air Power)

  • "air" AND "power" ×
  • clear all
Showing 1 to 15 of 36
Order by 
Air Power in the Modern World aims to provide graduate students worldwide with a comprehensive and up-to-the-minute understanding of military theory and operations between 1945 and today, with special reference to the role of air power in integrated (joint) contexts. Read more
Air Power in the Modern World aims to provide graduate students worldwide with a comprehensive and up-to-the-minute understanding of military theory and operations between 1945 and today, with special reference to the role of air power in integrated (joint) contexts.

Key benefits

- An entirely web-delivered graduate degree programme that is available twenty-four hours and can be studied anywhere in the world when connected to the internet.

- Innovative and academically rigorous, the programme is taught by King's College London staff.

- Students engage regularly and directly with their lecturers who provide support and guidance throughout the programme.

- All materials include authored content, video, audio, images, maps, and intensively used discussion forums with full access to the resources of the King's College London library's extensive electronic holdings.

- Maximum flexibility for individual students: access content and respond to discussion postings in your own time for each study unit.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

Course detail

- Description -

MA Air Power in the Modern World is a flexible, modular master's programme, rich in media and reading resources, delivered entirely online viaKing's College London Virtual Learning Environment. You will interact with an engaging and lively community of fellow graduates, from a wide variety of backgrounds.

It will equip you to engage critically with scholarly debate about the conduct and nature of contemporary warfare from an air power perspective, and to understand the contexts in which modern military operations take place.

- Study -

Modules are divided into five units, each studied for two weeks. Within each unit, students read online authored content and follow links to extensive readings and other resources. Selected students then post a draft response to the unit Short Essay question, and this draft forms the basis of a lively and intensive asynchronous (message-board style) online discussion within the tutor group, continuously moderated by the tutor. At the end of this discussion, the selected students revise their Short Essays for submission.

All students also complete an individual Long Essay for each module, due after all units are complete.

After studying the required number of modules, you complete an individual dissertation, which forms the final element of your degree programme.

- Delivery and duration -

The entire MA Air Power in the Modern World programme is delivered online, via the King's College London Virtual Learning Environment (KEATS); there is no requirement for students to attend King's or even to be resident in the UK.

The programme timetable is based on three semesters per academic year (September-December, January-March and April-June), with students normally completing one taught module per term. Students usually take two years to complete the required taught modules, followed by an additional six months to complete the 15,000-word dissertation. It may be possible for you to complete the programme in a shorter time if circumstances and teaching arrangements allow.

You will need to allow 10-15 hours work per week for each 11-week semester to complete the taught modules.

- Course purpose -

MA Air Power in the Modern World aims to offer an engaging, well-designed and flexible online master's degree in war studies to qualified graduate students, both civilian and military, who share an interest in air power.

- Course format and assessment -

Assessment for taught modules consists of:

- one short essay (1,500 words) from a choice of essay questions (25% of the module assessment)
- one long essay (3,000 words) from a choice of essay questions (75% of the module assessment)
- The dissertation (15,000 words) is submitted at the end of the programme. This important piece of assessed work contributes up to one-third of the final programme grade.

Career prospects

Past students from this programme have gone on to build careers in NGOs, civil services, NATO, the UN, media and publishing, finance and investment and teaching, as well as in the armed forces. A number of our students have had articles published in peer-reviewed journals, and undertaken further academic research. Several students have gone on to complete a PhD, one teaches part-time at King’s.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

Read less
Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Read more

Mission and goals

Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Energy plants are systems in which energy forms are transformed and utilized. To name a few examples: large thermal power stations, air-conditioning and climate control equipment for residences and offices, vehicle engines, airplane propellers, solar panels etc.
The Master of Science in Energy Engineering prepares professionals to design, select and use the main technologies in energy transformation, to actively follow scientific improvements and to operate effectively in a competitive and multi-disciplinary industrial context, characterized by significant environmental, regulatory and safety constraints. Students will analyze broad themes as well as specific subjects for which both a rigorous methodological approach to thermodynamics and an open attitude towards related interdisciplinary topics are required.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

Professional opportunities

Graduates can find employment in several sectors: in the technical area of designing, testing, running, and maintaining the energy systems, like heating and cooling systems, thermal power and hydro-electric power plants, engines, oil and gas fields; in the energy management area; and in utilities and public boards that supply energy as electricity and natural gas.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Energy_Engineering_MI.pdf
Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Energy plants are
systems in which energy forms are transformed and utilized. To name a few examples: large thermal power stations, air-conditioning and climate control equipment for residences and offices, vehicle engines, airplane propellers, solar panels etc. The Master of Science in Energy Engineering prepares professionals to design, select and use the main technologies in energy transformation, to actively follow scientific improvements and to operate effectively in a competitive and multi-disciplinary industrial context, characterized by significant environmental, regulatory and safety constraints. Students will analyze broad themes as well as specific subjects for which both a rigorous methodological approach to thermodynamics and an open attitude towards related interdisciplinary topics are required.
Graduates can find employment in several sectors: in the technical area of designing, testing, running, and maintaining the energy systems, like heating and cooling systems, thermal power and hydro-electric power plants, engines, oil and gas fields; in the energy management area; and in utilities and public boards that supply energy as electricity and natural gas. The programme is taught in English.

Subjects

- Five tracks available: Power Production; Heating, Ventilation and Air-Conditioning; Oil and Gas Engineering; Energy Engineering for an Environmentally Sustainable World (offered on Piacenza campus, see separate leaflet); Energy for Development.

- Subjects and courses common to all the tracks: Heat and Mass Transfer; Fundamentals of Chemical Processes; Advanced Energy Engineering and Thermoeconomics;; Combustion and Safety; Energy Conversion or Refrigeration, Heat Pumps and Thermal Power Systems and Components; Energy Economics or Project Management or Management Control Systems; Graduation Thesis.

- Optional subjects according to the selected track: Development Economy; Engineering and Cooperation for Development; Power Production from Renewable Sources; Engineering of Solar Thermal Processes; Petroleum Reservoir Engineering; Petroleum Technology and Biofuel; Transport Phenomena in the Reservoirs; CFD for Energy Engineering Analysis; System and Electrical Machines; Advanced Energy Systems; Dynamic Behavior and Diagnostics of Machines; Materials for Energy; Turbomachinery; Internal Combustion Engines; Air Conditioning and Room Pollutant-Controlling Plants, Energy Savings and Renewable Energies in Buildings; Applied Acoustics and Lighting; Design of Thermal Systems; Energy Systems and Low-Carbon Technologies; Air Pollutions and Control Engineering; Operation and Control of Machines for Power Generation; Bio-energy and Waste-to-Energy Technologies; Smart Grids and Regulation for Renewable Energy Sources.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The course combines taught modules with an independent major research project. Read more
The course combines taught modules with an independent major research project. The taught modules introduce the nature of our atmosphere, its composition and meteorology, air pollutant emissions, air pollution chemistry and climate change / carbon management, together with the practical measures used to limit emissions from sources ranging from power stations to vehicles and the legislative and policy framework used by national and local authorities to enforce air quality objectives. The research project allows students to undertake an in-depth investigation of a particular aspect of air pollution of interest to them, and further their level of understanding.

This programme is run by the Division of Environmental Health and Risk Management.

About the Division of Environmental Health and Risk Management
The Division is based in the well-equipped, purpose-built facilities of the University's Public Health Building. Research attracts extensive funding from many sources, including the Department of Transport; the Department for Environment, Food and Rural Affairs (DEFRA); the Environment Agency; the Department of Health; the Natural Environment Research Council (NERC) and European Union. The collaborative nature of much of this work, together with the mix of pure, strategic and applied research, often involving interdisciplinary teams spanning physical, biological, chemical, medical and social sciences, provides a dynamic and internationally recognised research environment.

The Division is led by Professor Roy Harrison who is a member of the U.K. government’s Air Quality Expert Group, Committee on the Medical Effects of Air Pollutants, and Committee on Toxicity. He often gives media interviews on subjects including the Volkswagen emissions scandal.

About the School of Geography, Earth and Environmental Sciences

The School of Geography, Earth and Environmental Sciences has a renowned history for international excellence in research and teaching.
Our postgraduate programmes are shaped by research that addresses global grand challenges across the fields of geography, planning, earth sciences, environmental science, occupational health and safety, and environmental and public health. With policy- and practice-focused teaching, all our programmes have high employability outcomes.
We offer excellent facilities for postgraduate study including extensive map and archive facilities, earth imaging laboratory, stable-isotope laboratory (SILLA), environmental library, fully digital drawing office, and state-of-the-art laboratories for environmental chemistry, sedimentology, ecology, groundwater and palaeobiology. Our diverse range of programmes will provide you with a thorough understanding of the discipline, high-quality training and skills development, and access to our expert staff and extensive facilities.
Our graduates go on to forge careers in areas that matter – from environmental consultancies and the hydrocarbon industries, to urban planning, policy roles in NGOs and government regulatory services – and make a real contribution to global challenges. Many graduates also go on to study for PhDs.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
This course was introduced last year and is aimed at students who want to study advanced topics in mechanical engineering with a focus on power plant technologies. Read more

Why this course?

This course was introduced last year and is aimed at students who want to study advanced topics in mechanical engineering with a focus on power plant technologies.

It provides mechanical engineering graduates with an in-depth technical understanding of advanced mechanical engineering topics relevant to the power generation industry. You’ll also develop generic skills that allow you to contribute effectively in developing company capabilities.

The course helps to make you more employable and also satisfies the further learning requirements necessary to obtain Chartered Engineer status.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/advancedmechanicalengineeringwithpowerplanttechnologies/

You’ll study

You’ll have the opportunity to select technical and specialist classes.

- Compulsory modules
You’ll study three compulsory modules:
- Gas & Steam Turbines
- Advanced Boiler Technologies 1
- Power Plant Systems

- Other specialist instructional modules
These focus on different technical aspects allowing you to tailor learning to your individual needs. When choosing technical modules, you’ll discuss the options with the course co-ordinator. These options include:
- Ceramic & Polymer Engineering; Engineering Composites
- Metals & Alloys
- Light Weight Structures
- Machine Dynamics
- Mathematical Modelling in Engineering Science
- Pressurised Systems
- Systems Engineering 1 & 2
- Polymer & Polymer Composites
- Industrial Metallurgy

- Faculty-wide generic instructional modules
You’ll choose three faculty-wide generic modules which satisfy the broader learning requirements for Chartered Engineer status. You'll choose from:
- Design Management
- Project Management
- Sustainability
- Information Management
- Finance
- Risk Management
- Environmental Impact Assessment
- Knowledge Engineering & Management for Engineers

- Individual project
MSc students take on an individual project which allows study of a selected topic in-depth. This may be an industry-themed project or one aligned to engineering research at Strathclyde.

Facilities

Our facilities include many laboratories and research centres including:
- Advanced Space Concepts Laboratory
- Energy Systems Research Unit
- Future Air-Space Transportation Technology
- James Weir Fluids Laboratory
- Mechanics & Materials Research Centre

We have local access to a 3500-node region supercomputer.

Accreditation

As this is a new course starting in 2014/15, accreditation by IMechE is expected (as has been obtained for the Advanced Mechanical Engineering course), after it has been operational for one year.

English language requirements for international students

IELTS - minimum overall band score of 6.5 (no individual test score below 5.5).

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Students take three compulsory modules and a selection of specialist and generic modules.
To qualify for the MSc, students undertake an individual project which allows study of a selected topic in depth, normally industry-themed or aligned to engineering research at Strathclyde.

Assessment

Assessment is by written assignments, exams and the individual project.

Careers

This course is particularly suitable for graduate engineers in these sectors:
- chemical, petrochemical & process engineering
- design engineering
- power generation
- manufacturing
- oil & gas

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/

Read less
This fully-online MA in Military History offers potential graduate students from around the world a chance to engage with reputable military historians and leading academics, also from around the world, through 24 hours a day, 7 days a week ongoing lectures and discussion seminars in state-of-the-art learning environments. Read more
This fully-online MA in Military History offers potential graduate students from around the world a chance to engage with reputable military historians and leading academics, also from around the world, through 24 hours a day, 7 days a week ongoing lectures and discussion seminars in state-of-the-art learning environments.

This is military history like never before; universally-accessible, affordable and dynamic. Students will be offered a wide range of fascinating topics to explore, from classic 'war theorists' to military technologies to counter-insurgency tactics. You will then be able to combine your research with skills-based analysis, under the personal supervision of a qualified expert in the field.

Successful completion of this course will enhance your career prospects, whether studied at PGCert, PGDip or MA level . It will be particularly relevant to archivists and curators, researchers, journalists, political and central government professionals, civil servants, military professionals, conflict resolution and NGO workers, charity and campaign workers. Attainment of the MA degree could also lead to doctoral research.

Typical modules include:

The Discipline of Military History
The Rise of Air Power
The Evolution of Modern Sea Power
War Media & Propaganda
The American Civil War
The Second World War
The Art of War to the Age of Napoleon

All of our modules can be easily accessed and feature exciting ‘virtual classrooms’ where lectures and seminar discussions are conducted on a weekly basis, making the most of a variety of multi-media formats. Furthermore, our online platform gives you access to unlimited course materials and University-supported learning resources at no extra cost.

Read less
Are you interested in exploring military history? Do you want to study a whole series of different aspects of war?. Read more
Are you interested in exploring military history? Do you want to study a whole series of different aspects of war?

Our two-year MA in Military History by distance learning programme offers you the opportunity to explore military history, drawing in particular on Birmingham's expertise in the history of the two World Wars and air power. Subjects to be studied include command and leadership; tactics, operations and the use of technology; ethics and war; and the individual's experience of war. You will complete the MA with a 15,000-word dissertation on a topic of your choice.

From the walls of Troy to the streets of Sangin, warfare has been at the centre of human life and death.

Those who know nothing of war can understand neither the past nor the present, for, as Trotsky famously said, ‘war is the locomotive of history’. Modern military history does more than re-fight old battles, however. It can, for example, teach us much about the cultures and societies that find themselves at war, and indeed about the souls of the men and women who do the fighting.

This course will stimulate and challenge you to think about the history of warfare in all its aspects, building a skill set over two years of part-time study which will equip you for further research in the field and/or broaden and deepen your understanding of the cruel, complex but endlessly fascinating phenomenon that is war.

About the School of History and Culture

The programmes in the School of History and Cultures offer students enquiry based learning within a rich and diverse environment to stimulate debate and challenge conventional thinking.
The programmes derive from departments which are all excellently rated by the QAA both in teaching and research terms (Medieval History 5, Modern History 5 and African Studies 5*). Our staff publish widely, and we are developing and consolidating a strong, supportive research culture in the School.
We are extremely proud to announce in June 2016, that History at Birmingham was ranked the top research department in the country by the Research Excellence Framework (REF). The national REF exercise assessed research publications and the public impact of research carried out in all universities in the UK between 2008-2014. Our department had an impressive 45% of its research judged to be ‘world-leading’.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
This MSc course addresses scientific, technological and legislative aspects of the diagnosis (analysis and assessment) and management (remediation and restoration) of important environmental issues concerned with contaminated land, water quality, air pollution and waste. Read more
This MSc course addresses scientific, technological and legislative aspects of the diagnosis (analysis and assessment) and management (remediation and restoration) of important environmental issues concerned with contaminated land, water quality, air pollution and waste.

It has been designed with industry advice to enable good science and engineering graduates begin and advance successful careers in the environmental sector, and pursue postgraduate scientific research. The MSc is delivered in first-class teaching and research facilities by a dedicated team of internationally renowned environmental scientists, and presents considerable interaction with environmental consultancies and engineers, industry, local and regulatory authorities, and research institutes.

During 2007-2011, the course was supported by 6 NERC studentships, the most awarded annually to an environmental MSc. Students on the course have won the most EMpower research projects funded by companies within the nuclear industry, and since 2008, a Prize for Best Performance Overall has been awarded annually by Arup, a global environmental engineering and consultancy company.

See the website https://www.royalholloway.ac.uk/earthsciences/coursefinder/mscenvironmentaldiagnosismanagement.aspx

Why choose this course?

- The quality of teaching and learning on the course is enhanced considerably by significant professional networking and interaction with leading experts from environmental consultants and engineers, industry, local and regulatory authorities, and universities and research institutes; who present seminars, host study visits, co-supervise research projects, and act as an advisory panel.

- Graduates of the course are skilled and knowledgeable scientists with excellent employment prospects within the environmental sector, particularly as environmental consultants and engineers, in local and regulatory authorities, industry, charitable trusts, and research institutes and universities.

- In the 2008 Research Assessment Exercise (RAE), the Department’s research was ranked equal 6th in the UK with 70% rated as world-leading or internationally excellent in terms of originality, significance and rigour.

Course content and structure

You will study seven taught modules, three case studies and complete an Independent Research Project:

- Communication & Co-operation Skills
Provides practical training in written and verbal communication media; project, team and time management; role playing in environmental impact assessment; careers advice and a mock job interview.

- Environmental Inorganic Analysis
A practical laboratory and field-work based introduction to quality assured sampling strategies, preparation processes and analytical methods for heavy metals in soils, surface waters, and vegetation.

- Diagnostic & Management Tools
Provides practical computer-based training in statistical analysis of environmental data, geographical information systems, and environmental risk assessment.

- Environmental Organic Chemistry Pathways Toxicology
Comprises physical and chemical properties, transport, fate and distribution, and toxicology of organic compounds in the environment.

- Contaminated Land Case Study
A practical laboratory and field-work based human health risk assessment of pollutant linkages at a former gravel extraction and landfill site. It comprises desk-top study, site investigation and sampling, laboratory analysis, data interpretation, quantitative risk assessment, and remediation options.

- Water Quality: Diagnosis & Management
A practical laboratory and field-work based introduction to aquatic science, hydrogeology, treatment of water and wastewater, and chemical, biological and physical monitoring of water quality. Includes a study visit to a global manufacturer of pesticides and herbicides.

- River Thames Basin Case Study
A combination of fieldwork, laboratory work and desk-top study to diagnose water quality in chemical and ecological terms, to identify industrial and agricultural pollutant linkages, and to determine environmental, ecological and health impacts.

- Air Pollution: Monitoring, Impacts & Management
Covers: sources, sinks, dispersion, conversion, monitoring, impacts and management of air pollutants with study visits to a local authority and a government research institute.

- Royal Holloway Campus Air Quality Case Study
Involves a consultancy company-style investigation of ambient and indoor air quality within the confines of RHUL campus; and combines desk-top research with practical fieldwork and laboratory analysis.

- Waste Management & Utilisation
Considers municipal, industrial and radioactive waste management options, with study visits to a landfill site, a waste incinerator, composting facility, recycling centre and nuclear power station.

- Independent Research Project
Consists of a four-month, independent scientific investigation, usually in collaboration with environmental consultants and engineers, local and regulatory authorities, industry, research institutes, and universities. Projects may comprise a desk-top study or practical laboratory and field investigation, they may be funded, and often lead to employment or to PhD research. Final results are presented at the Research Project Symposium to an audience from within the environmental sector

On completion of the course graduates will have acquired the experience, knowledge, and critical understanding to enable them to:

- Conduct themselves as professional environmental research scientists, consultants, and managers, convey in a professional manner, scientific, technical and managerial information, and manage projects and resources efficiently

- Apply quality assured sampling strategies, preparation procedures and analytical systems to quantify health risks posed by inorganic and organic pollutant linkages in soils, waters and air

- Apply statistical analysis, geographical information systems, and environmental impact and risk assessment to the interpretation of environmental data

- Appreciate the importance and impacts of hydro-geological, and bio- and physico-chemical processes on the treatment of water and wastewater, and on the quality of groundwater and aquatic ecosystems

- Appreciate the emissions, dispersion, conversion, and monitoring of natural and man-made gaseous and particulate air pollutants, their impacts on climate change, human health and vegetation, and management on local, regional and global scales

- Appreciate the prevention, re-use, recycling, recovery, disposal and utilisation of municipal and industrial waste and the management of nuclear waste within the constraints of national and international legislation

- Manage an independent environmental science research project, often with professional collaboration, and of significant value to their career development.

Assessment

- Written examinations test understanding of the principles and concepts taught in the modules and case studies, and the ability to integrate and apply them to environmental diagnosis and management.

- Assessment of module work and practical computing, laboratory and fieldwork evaluates critical understanding of the environmental science taught, and mastery of producing quality assured data, and its analysis, interpretation, presentation and reporting.

- Assessment also reflects the ability to work independently and in teams, and to learn during study visits.

- Assessment of research projects is based on the ability to manage and report on an original piece of independent scientific work.

- All assessed work has significant confidential written and verbal feedback.

Employability & career opportunities

94% of the graduates of the MSc from 2008 to 2013 either successfully secured first-destination employment as international environmental consultants and engineers, in industry, local and regulatory authorities and charitable trusts, or are conducting postgraduate research within international research institutes and universities.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
This course is aimed at professional engineers aspiring to increased management responsibility in the building services sector or who have reached a stage in their careers when they are carrying increasing management responsibility. Read more

About the course

This course is aimed at professional engineers aspiring to increased management responsibility in the building services sector or who have reached a stage in their careers when they are carrying increasing management responsibility.

It caters to the worldwide demand for building services engineering managers who have a sound knowledge of engineering and management principles – and the ability to apply this knowledge to complex situations.

Management modules cover engineering finance and accounting, people management, business organisation and facilities and contract management.

Aims

Building Service Engineers help buildings to deliver on their potential by working with architects and construction engineers to produce buildings that offer the functionality and comfort we expect, with the minimum impact on our environment. They design the lighting appropriate for the space, the heating, cooling, ventilation and all systems that ensure comfort, health and safety in all types of buildings, residential commercial and industrial.

Building services engineering is an interdisciplinary profession. It involves the specification, design, installation and management of all the engineering services associated with the built environment.

With the growing complexity of engineering services in modern buildings and the significance of energy conservation and pollution control, the role of the building services engineer is becoming increasingly important.

As an interdisciplinary profession that involves the specification, design, installation and management of all the engineering services associated with the built environment, comfort and function also need to be combined – which calls for engineers with a wide range of knowledge and skills.

This MSc programme is for:

Recent engineering and technology graduates, moving into building services and related disciplines.
Established engineers and technologists, working in building services and faced with the challenge of new areas of responsibility.
Engineers who want to develop technical understanding and expertise across the multi-disciplines of building services engineering.
Managers and designers, who need to broaden their experience and require updating.
Lecturers in higher education, moving into or requiring updating in building services engineering.
Others with engineering and technology backgrounds, perhaps working in advisory or consultancy roles, who wish to familiarise themselves with building services engineering. However, choice of course will be dependent upon the type and extent of knowledge and skills required.

Course Content

Modes of Study
3-5 Years Distance Learning

The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace.

There is no requirement to attend lectures at Brunel University and there is no set timetable of lectures, instead you follow a structured programme of self-study at home or at work. This gives you the freedom to arrange a work programme to suit yourself and you should usually allow about twelve hours each week for study.

There are set submission dates for assignments but we have tried to design the programme so that they are well-spaced, giving you the maximum flexibility in your study plans.

You can take between three and five years to complete the course. The average is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

You are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year.

Examinations can be taken either at Brunel University or in the country you are resident in. We have an extensive network of organisations (universities, colleges and British Council offices) throughout the world who will provide invigilation services.

The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Compulsory Modules

Building Heat Transfer and Air Conditioning
Electrical Services and Lighting Design
Acoustics, Fire, Lifts and Drainage
Engineering Finance and Accounting
Management of People in Engineering Activities
Organisation of Engineering Business
Management of Facilities and Engineering Contracts
Dissertation

Students should choose one of the two themes below:

Theme A - Traditional

Energy Conversion Technologies
This element provides a broad introduction to the principles of energy conversion and thermodynamic machines and demonstrates their application to energy conversion and management in buildings. Emphasis is placed on refrigeration plant, energy conversion plant and energy management.
Refrigeration covers the basic principles and components of vapour compression systems, heat pumps and absorption systems.
Energy Conversion considers power cycles, combined heat and power, combustion processes, boiler plant, thermal energy storage and environmental impacts of plant operation.

Theme B - Renewable

Renewable Energy Technologies
This element includes: energy sources, economics and environmental impact, energy storage technologies, the role of renewables, solar thermal, solar electricity, wind power generation, hydro, tidal and wave power, biofuels, building integrated renewables.

Special Features

There are several advantages in choosing Brunel's Building Services programme:

Award-winning courses: Building Services Engineering courses at Brunel have been awarded the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers.

Relevance: it is well established within the building services industry, with sponsors of students that include major design and contracting organisations, area health authorities, local authorities and the British Council, as well as several national governments.

Applicability: emphasis on applications enables students and employers to benefit immediately from the skills and knowledge gained.

Responsiveness: Brunel's proximity to London, where large and innovative building developments have been taking place over the last decade, enables rapid infusion of new ideas and technological innovations into the programme content.

Excellent facilities

We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Accreditation

The course is approved by the Chartered Institute of Building Services Engineers (CIBSE) and the Institution of Mechanical Engineers (IMechE) as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng).

Teaching

Students are supplied with a study pack in the form of text books and CD-ROMs; you have assignments to submit and exams to sit each year. Examinations can be taken either at Brunel University or in the country you are resident in.
We have an extensive network of organisations (Universities, Colleges and British Council Offices) throughout the world who will provide invigilation services. The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of each stage. Examinations are normally taken in May.
Successful completion of the taught modules allows the student to proceed to the dissertation stage. To qualify for the award of the MSc degree, the student must submit a satisfactory dissertation.

Read less
Aerospace Propulsion provides a comprehensive background in the design and operation of different types of propulsion systems for aerospace applications. Read more

Course Description

Aerospace Propulsion provides a comprehensive background in the design and operation of different types of propulsion systems for aerospace applications. The course is designed for those seeking a career in the design, development, operation and maintenance of propulsion systems.  The course is suitable for graduates seeking a challenging and rewarding career in an established international industry. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand.

Overview

The key technological achievement underlying the development and growth of the aerospace industry has been the design and development of efficient and economical propulsion systems. This sector has experienced a consistent growth in the past and is expected to do so in the future. Major efforts are also now being dedicated to the development of new technologies relevant to the propfan and variable cycle engines.

The MSc in Aerospace Propulsion provides a comprehensive background in the design and operation of different types of propulsion systems for aerospace applications. The course is designed for those seeking a career in the design, development, operation and maintenance of propulsion systems.

The course is suitable for graduates seeking a challenging and rewarding career in an established international industry. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand.

Structure

The course consists of approximately ten to fifteen taught modules and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:

- Provide the skills required for a rewarding career in the field of propulsion and power
- Meet employer requirements for graduates within power and propulsion industries
- Demonstrate a working knowledge and critical awareness of gas turbine performance, analysis techniques, component design and associated technologies
- Explain, differentiate and critically discuss the underpinning concepts and theories for a wide range of areas of gas turbine engineering and associated applications
- Be able to discern, select and apply appropriate analysis techniques in the assessment of particular aspects of gas turbine engineering.

Modules

The taught programme for the Aerospace Propulsion masters consists of eight compulsory modules and up to six optional modules. The modules are generally delivered from October to April.

Individual Project

Individual Project
You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner.

Recent Individual Research Projects include:

- Design of an experimental test rig facility for an axial compressor
- Energy management in a hybrid turbo-electric, hydrogen fuelled, hale UAV
- Civil aircraft intake, nacelle and nozzle aerodynamics
- The computation of adiabatic isobaric combustion temperature
- Air filtration systems for helicopters
- Nacelle parametric design space exploration
- Distributed propellers assessment for turboelectric distributed propulsion
- Aerodynamic analysis of the flowfield distortion within a serpentine intake
- Green runway :impact of water ingestion on medium and small jet engine performance and emissions
- Distributed propulsion systems boundary layer ingestion for uav aircraft
- Preliminary design of a low emissions combustor for a helicopter engine
- Compressor design and performance simulation through the use of a through-flow method
- Estimation of weight and mechanical losses of a pts for a geared turbofan engine
- Optimisation of turbine disc for a small turbofan engine
- Modelling of tip leakage flows in axial flow high pressure gas turbine
- Aerodynamic modelling and adjoint-based shape optimisation of separate-jet exhaust systems
- Preliminary design & performance analysis of a combustor for UAV.

Assessment

The final assessment is based on two components of equal weight; the taught modules (50%) and the individual research project (50%). Assessment is by examinations, assignments, presentations and thesis.

Funding

A variety of funding, including industrial sponsorship, is available. Please contact us for details.

Career opportunities

- Gas turbine engine manufacturers
- Airframe manufacturers
- Airline operators
- Regulatory bodies
- Aerospace/Energy consultancies
- Power production industries
- Academia: doctoral studies.

For further information

On this course, please visit our course webpage http://www.cranfield.ac.uk/Courses/Masters/Aerospace-Propulsion-Option-Thermal-Power

Read less
This course is accredited by the Institution of Mechanical Engineers (IMechE) and provides a route for you to achieve Chartered Engineer status. Read more

Why this course?

This course is accredited by the Institution of Mechanical Engineers (IMechE) and provides a route for you to achieve Chartered Engineer status. It focuses on the areas of aerospace, energy, materials and power plant technologies.

Mechanical engineers are currently in demand in all types of industry. The MSc in Advanced Mechanical Engineering has been developed to provide high-calibre mechanical engineering graduates with an in-depth technical understanding of advanced mechanical topics, together with generic skills that will allow them to contribute effectively in developing company capabilities.

This course will help you to gain expert knowledge in advanced mechanical engineering topics. You'll also have the opportunity to take modules in general skills such as project management and risk analysis. These are necessary skills for any professional engineer.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/advancedmechanicalengineering/

Specialist pathways

In addition to the Advanced Mechanical Engineering programme, the following specialist pathways are offered:
- Advanced Mechanical Engineering with Aerospace (MSc)
- Advanced Mechanical Engineering with Energy Systems (MSc)
- Advanced Mechanical Engineering with Power Plant Technologies (MSc)

You’ll study

You can take up to nine technical modules and three generic modules. MSc students also undertake an individual project.

If you're taking the Advanced Mechanical Engineering (without specialisms) you’re free to select from any of the classes below.
- Energy Systems Compulsory Modules
- Materials Compulsory Modules
- Power Plant Technologies Compulsory Modules
- Aerospace Optional Modules
- Energy Systems Optional Modules
- Materials Optional Modules
- Power Plant Optional Modules
- Generic Modules

If you’re on a specialist programme, you must include the three compulsory modules from your area of specialism, which you'll find in the 'course content' tab.

MSc students take on an individual project which allows study of a selected topic in-depth. This may be an industry-themed project or one aligned to engineering research at Strathclyde.

Facilities

Our facilities include many laboratories and research centres including:
- Advanced Space Concepts Laboratory
- Energy Systems Research Unit
- Future Air-Space Transportation Technology
- James Weir Fluids Laboratory
- Mechanics & Materials Research Centre

We have local-access to a 3500 node region supercomputer.

Accreditation

This course is accredited by the Institution of Mechanical Engineers and meets requirements for Chartered Engineer (CEng) status.

English Language Requirements for International Students

IELTS - minimum overall band score of 6.5 (no individual test score below 5.5).

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Students select from a combination of specialist and generic modules. The specialist modules focus on different technical aspects allowing tailored learning to suit individual needs. The generic modules provide other skills which are considered necessary for professional engineers.

To qualify for the MSc, students undertake an individual project which allows study of a selected topic in depth, normally industry-themed or aligned to engineering research at Strathclyde.

Assessment

The course is assessed through written assignments, exams and the individual project.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/

Read less
The programme provides a preparation particularly focused on issues of design, operation and maintenance of aircraft and their on-board systems. Read more

Mission and goals

The programme provides a preparation particularly focused on issues of design, operation and maintenance of aircraft and their on-board systems. The objective is to prepare highly culturally and professionally qualified technicians able to carry out and manage activities related to research and design in the fields of aerodynamics, materials, lightweight structures, aircraft systems and aerospace propulsion in national and international contexts, both in autonomy or in cooperation.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

Career opportunities

The graduate finds employment in aeronautical and space industries; in public and private bodies for experimentation in the aerospace field; in aircraft fleet management and maintenance companies; in air-traffic control agencies; in the airforce; in industries producing machinery and equipment in which aerodynamics and lightweight structures play a significant role.
Aeronautical engineers are particularly sought after in related fields. In fact, they may be involved in the design of terrestrial or nautical vehicles or large buildings or bridges or even in the design of power plants. Graduates are also in demand in the lightweight constructions industry, in the motor industry in the areas of monitoring the mechanical behaviour of structures subject to stress.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Aeronautical_Engineering.pdf
This programme aims at providing the students with specific skills in design, operation and maintenance of aircrafts and their on-board systems. The objective is to prepare culturally and professionally highly qualified technicians able to carry out and manage activities related to research and design in the fields of aerodynamics, materials, lightweight structures, aircraft systems and aerospace propulsion. Graduates can find employment in national and international contexts in aeronautical and space industries, public and private bodies for experimentation in the aerospace field, aircraft fleet management and maintenance companies, air-traffic control agencies, or in the air force. The track in Rotary wing is taught in English, while the other tracks are partially available in English.

Subjects

Specializations available:
- Aerodynamics
- Flight mechanics and systems
- Propulsion
- Structures
- Rotary-wing aircraft

Mandatory courses are:
- Aerodynamics
- Flight Dynamics
- Aerospace Structures
- Dynamics and control of aerospace structures

Other courses:
- Fundamentals of Aeroelasticity
- Nonlinear analysis of aerospace structures
- Fundamentals of Thermochemical propulsion
- Management of aerospace projects
- Gasdynamics
- Aircraft instrumentation & integrated systems
- Aircraft Design
- Heat transfer and thermal analysis
- Numerical modeling of differential problems
- Rotorcraft design
- Aircraft engines
- Airport and air traffic management
- Aerospace materials
- Communication skills
- Thesis

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The MSc in Advanced Process Integration and Design started in the Department of Chemical Engineering (UMIST) over twenty years ago. Read more
The MSc in Advanced Process Integration and Design started in the Department of Chemical Engineering (UMIST) over twenty years ago. The programme was a result of emerging research from the Centre for Process Integration, initially focused on energy efficiency, but expanded to include efficient use of raw materials and emissions reduction. Much of the content of the course stems from research related to energy production, including oil and gas processing.

The MSc in Advanced Process Integration and Design aims to enable students with a prior qualification in chemical engineering to acquire a deep and systematic conceptual understanding of the principles of process design and integration in relation to the petroleum, gas and chemicals sectors of the process industries.

Overview of course structure and content
In the first trimester, all students take course units on energy systems, utility systems and computer aided process design. Energy Systems develops systematic methods for designing heat recovery systems, while Utility Systems focuses on provision of heat and power in the process industries. Computer Aided Process Design develops skills for modelling and optimisation of chemical processes.

In the second trimester, the students choose three elective units from a range covering reaction systems, distillation systems, distributed and renewable energy systems, biorefining, and oil and gas processing. These units focus on design, optimisation and integration of process technologies and their associated heat and power supply systems.

In two research-related units, students develop their research skills and prepare a proposal for their research project. These units develop students skills in critical assessment of research literature, group work, written and oral communication, time management and research planning.

Students then carry out the research project during the third trimester. In these projects, students apply their knowledge and skills in process design and integration to investigate a wide range of process technologies and design methodologies. Recent projects have addressed modelling, assessment and optimisation of petroleum refinery hydrotreating processes, crude oil distillation systems, power plants, waste heat recovery systems, refrigeration cycles with mixed refrigerants, heat recovery steam generators, biorefining and biocatalytic processes and waste-to-energy technologies.

The course also aims to develop students' skills in implementing engineering models, optimisation and process simulation, in the context of chemical processes, using bespoke and commercially available software.

Industrial relevance of the course
A key feature of the course is the applicability and relevance of the learning to the process industries. The programme is underpinned by research activities in the Centre for Process Integration within the School. This research focuses on energy efficiency, the efficient use of raw materials, the reduction of emissions reduction and operability in the process industries. Much of this research has been supported financially by the Process Integration Research Consortium for over 30 years. Course units are updated regularly to reflect emerging research and design technologies developed at the University of Manchester and also from other research groups worldwide contributing to the field.

The research results have been transferred to industry via research communications, training and software leading to successful industrial application of the new methodologies. The Research Consortium continues to support research in process integration and design in Manchester, identifying industrial needs and challenges requiring further research and investigation and providing valuable feedback on practical application of the methodologies. In addition, the Centre for Process Integration has long history of delivering material in the form of continuing professional development courses, for example in Japan, China, Malaysia, Australia, India, Saudi Arabia, Libya, Europe, the United States, Brazil and Colombia.

Career opportunities

The MSc course in Advanced Process Design and Integration typically attracts 40 students; our graduates have found employment with major international oil and petrochemical companies (e.g. Shell, BP, Reliance and Petrobras and Saudi Aramco), chemical and process companies (e.g. Air Products), engineering, consultancy and software companies (e.g. Jacobs and Aspen Tech) and academia.

Accrediting organisations

This programme is accredited by the IChemE (Institution of Chemical Engineers).

Read less
Aerospace is a priority research area for the University, the Faculty of Engineering launched it's Institute for Aerospace Technology in 2010. Read more
Aerospace is a priority research area for the University, the Faculty of Engineering launched it's Institute for Aerospace Technology in 2010. This will drive development of cutting-edge technology in this key research area, with the aim of radically improving all aspects of air transport.

This programme aims to science and engineering graduates from a diversity of backgrounds, with a solid grounding in current aerospace technologies, together with options to develop an emphasis in manufacturing, advanced materials and structures, and power electronic systems.

This programme aims to provide science or engineering graduates from a diversity of backgrounds, with a solid grounding in current aerospace technologies, together with options to develop an emphasis in manufacturing, advanced materials and structures, and power electronic systems.

The MSc comprises of three distinct "aerospace" streams; Aerospace Manufacturing, Aerospace Materials and Structures and Aerospace Power Electronics Systems. Students will choose which stream they wish to study. 60 credits of core compulsary modules will be studied and then a further 60 credits of modules will be taken in the chosen stream.

As part of the MSc students will complete an individual research project which will be undertaken over the summer term.

Read less
Our MSc Environmental Health course explores how the environment around us impacts our daily lives and our health through analysing how stressors can affect how our bodies function. Read more
Our MSc Environmental Health course explores how the environment around us impacts our daily lives and our health through analysing how stressors can affect how our bodies function. We deliver the curriculum of the Chartered Institute of Environmental Health (a world recognised professional body) teaching about hazard and risk in the topics of: housing and health, environmental protection and health, occupational health and safety, food safety and public health. On completing this course you will have a detailed understanding of risks and how to mitigate impacts using technical, scientific or legal interventions to create a safer and healthier environment.

Accredited by the Chartered Institute of Environmental Health (CIEH) this course fulfils the academic requirement to gain recognition as an Environmental Health Practitioner. Full professional accreditation opens up a broad range of career prospects in the public, private and voluntary sectors in the UK and abroad.

Members of the core teaching team sit on CIEH committees at both local and national level and in their accreditation visit, the CIEH commended ‘the excellent channels of communication established between Northumbria University and the CIEH’.

We offer the MSc Environmental Health as both a full-time and as a part-time course using a day release model. For more information on the part-time option, please view this web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/environmental-health-msc-pt-dtpenv6/

Learn From The Best

This course is delivered by our highly experienced teaching team. Three of the core four teaching staff are Environmental Health Practitioners who bring many combined years of experience gained working across local government, public health, health promotion, private consultancy, advocacy and specialist divisions of the Health Protection Agency (Chemical Hazards and Poisons Division and health emergency planning) to equip you with specialist knowledge and skills that are at the forefront of the subject.

Our staff are research-active and hold advanced degrees in complimentary subjects (e.g. environmental engineering and sustainable development, and public health) and memberships to professional organisations (including the Chartered Institute of Environmental Health, Chartered Institution of Wastes Management, Emergency Planning Society, etc.) to ensure they are aware of the latest trends, research and developments within this field.

Throughout the duration of your course you will benefit from site visits, presentations from guest lecturers and practical tasks to support you in transferring the theory you have learned into practise.

Teaching And Assessment

This course is focused upon the five core CIEH subject areas: food safety, housing and health, health and safety, environmental protection and public health.

Delivering an excellent postgraduate experience you will be offered the opportunity to question and reflect on how the world around us can impact on public health, whilst developing the skills and knowledge necessary to understand these risks and how to intervene and manage them effectively.

Teaching is delivered through a mix of lectures, seminars and workshops. You will also participate in debates, discussion and critiques of academic papers, field trips, case study scenarios and general discussions of academic and ethical issues.

Assessments for this course are undertaken in the form of essays, reports, audits, presentations and assessed discussions completed as an individual and part of a group. Wherever possible assessments reflect the type of work you could be doing as an Environmental Health Practitioner in the future.

At the end of the course you will have also had the chance to complete professional exams in practical food inspection and the integrated professional assessment. In addition, many of our assessments have been devised to be used as a potential basis to complete parts of your Portfolio of Professional Practice submission to the Chartered Institute of Environmental Health (CIEH). Using these brings you closer to gaining recognition as an Environmental Health Practitioner.

Module Overview
KE7008 - Public Health (NC, 20 Credits)
KE7009 - Environmental Protection and Health (NC, 20 Credits)
KE7010 - Housing and Health (NC, 20 Credits)
KE7011 - Managing for Health and Safety (NC, 20 Credits)
KE7012 - Food Safety Management (NC, 20 Credits)
KE7013 - Foundations for Professional Practice and Research (NC, 20 Credits)
KE7015 - Research or Work Related Dissertation (NC, 60 Credits)
KE7025 - CIEH Integrated Professional Assessment (NC, 0 Credits)

Learning Environment

When studying the MSc Environmental Health course you will have access to our state-of-the-art learning facilities.

You will take part in practical experiments in our research laboratories, in addition to utilising our industry standard portable monitoring and analytical instrumentation to obtain real-world data for air quality, contaminated land and noise.

Specialist software, such as ADMS for air quality modelling, will allow you to analyse and model your findings. All of these experiences contribute to your understanding of how technology is used in the study and practice of environmental health.

With your course’s supporting documentation being available on our e-Learning Portal, Blackboard, and directed reading listed on the e-Reading Lists, both accessible at all times, this means you can support your own learning and self-development of the subject.

Research-Rich Learning

Our teaching team are research-active, specialising in fields such as health and safety management, compliance management, public health, food and safety standards, risk management, peroxides in aqueous solution, air quality, airborne particulates, environmental management in major incidents, and land contamination.

Research-rich learning is embedded throughout all aspects of this course, drawing on national and international findings to deepen your understanding of environmental health.

Your research experience is further enhanced with a dissertation where you are assigned to one of the core teaching team to undertake substantial research into a specific academic or work-based topic. You are encouraged to publish your findings in an appropriate journal.

In the latest UK-wide research assessment exercise (REF2014), 55% of the Geography Department’s research was ranked as world-leading or internationally excellent, making us a top-30 Geography Research Department based on research power.

Give Your Career An Edge

The MSc Environmental Health degree is highly valued by employers thanks to our accreditation with the Chartered Institute of Environmental Health (CIEH).

Graduates entering the job market benefit from the strength and breadth of the specialised knowledge gained alongside seeing its practical application. This, combined with transferrable skills embedded throughout the course, including written and verbal communication, team working, critical thought, and problem solving, prepare you for future graduate level employment across the public and private sectors and voluntary sector.

We boast fantastic links with local employers meaning that there are placement opportunities usually available to help you complete your CIEH Portfolio of Professional Practice (PPP). Many of our students become technical officers and earn a salary whilst they complete their PPP alongside starting to gain experience in their chosen career.

Your Future

Graduates will leave prepared for employment in roles such as Environmental Health Officers, risk managers, public health specialists/advocates, and health and safety managers.

As a CIEH accredited Environmental Health Practitioner you can find a career in the public, private or voluntary sectors. As a consultant in the private sector you could be working for holiday chains, supermarkets, food manufacturers. In the voluntary sector you could work for charities working to bring sanitation and water to developing countries. The public sector offers roles in housing associations, advisor/regulators or as public health advocates in local government, or in central government agencies, for example Public Health England, the Environment Agency or Food Standards Agency.

You will also graduate equipped with the necessary training to support further research around the broad subject of environmental health and could progress to a PhD should you wish to in the future.

Read less
The Master of Science programme in Energy Engineering for an Environmentally Sustainable World (EEE-SW) is taught in English and offers a broad overview of the various technical issues related to energy and the environment. Read more

Mission and Goals

The Master of Science programme in Energy Engineering for an Environmentally Sustainable World (EEE-SW) is taught in English and offers a broad overview of the various technical issues related to energy and the environment. This special programme aims to prepare technicians capable of following and actively directing technological advances, operating effectively in a competitive and multi-disciplinary industrial context.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-for-an-environmentally-sustainable-world-track/

Career Opportunities

Graduates find employment in numerous industrial sectors, including industries producing and distributing energy, thermal, thermal-electric, air-conditioning and refrigeration plant design and management companies, energy management in companies or bodies with production objectives which may be far-removed energy. A Master of Science Engineer has openings in research and development as well as in activities related to the feasibility study and design of large-scale plant, innovative processes and development of technologically advanced machines and components.

For the academic year 2014-2015 prospective students with a university qualification obtained abroad can apply only for the 1st semester. This study course does not accept applications for the 2nd semester.
Applicants are required to take the GRE test (Graduate Record Examination) through ETS DI code 6939 in due time to have test scores sent to Welcome Desk Piacenza (welcome.piacenza(at)polimi.it) within the last day of the application period.

Recommended minimum GRE scores to be achieved for admission:
Verbal Reasoning: 155
Quantitative Reasoning: 155
Analytical Writing: 4.0

Only students with a Degree earned at an Italian University can apply without taking GRE test and they can also apply for admission at the 2nd semester.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Energy_Engineering_01.pdf
The programme provides a mix of design, operational and management skills, with particular emphasis on system and process engineering related to the production of basic energy carriers (electricity, heat and fuels) under tight environmental constraints. Students will learn how to evaluate and solve engineering issues (thermal, environmental, mechanical, chemical, electrical) raised by energy conversion systems, as well as analyze and assess operational and maintenance issues. Particular attention will be devoted to renewable energy sources, non-conventional energy technologies, emission control, electric systems with distributed power generation, etc. Teaching is organized around 3 core aspects: modeling and simulation tools; interdisciplinary vision; problem-solving approach. The programme is taught in English.

Subjects*

1st year – 1st semester
- Advanced Mathematical methods for energy engineering
- Advanced Thermodynamics and Heat Transfer
- Fundamentals of chemical processes for energy and the environment
1st year – 2nd semester
- Turbomachinery and internal combustion engines
- Energy and environmental technologies for building systems
- Electric conversion of renewable energy sources
- Materials and manufacturing process for energy

2nd year – 1st semester
- Energy systems and low-carbon technologies
- Air pollution and control engineering
- Operation and control of machines for power generation
2nd year – 2nd semester
- Bio-energy and waste-to-energy technologies
- Smart grids and regulation for renewable energy sources
- Major independent project work

* The list and titles of the courses to be followed is undergoing a revision aimed at enhancing the focus of the programme on the connection between Energy and the Environment. This will entail a reduction of the credits devoted to manufacturing, operation and control of machines and an increase of the credits devoted to optimization methods, renewable energy, industrial ecology. The final list of courses to be taken for the Academic Year 2016-17 will be available in January 2016.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-for-an-environmentally-sustainable-world-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-for-an-environmentally-sustainable-world-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less

Show 10 15 30 per page



Cookie Policy    X