• Durham University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Swansea University Featured Masters Courses
Middlesex University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Aberdeen University Featured Masters Courses
"aerospace" AND "systems"…×
0 miles

Masters Degrees (Aerospace Systems)

We have 193 Masters Degrees (Aerospace Systems)

  • "aerospace" AND "systems" ×
  • clear all
Showing 1 to 15 of 193
Order by 
Aerospace systems are the future of the aerospace industry and constitute the major component of all modern aircraft. They are the essential onboard systems that ensure the safe and accurate operation of all aerospace vehicles, from civil passenger planes to sophisticated unmanned aerial vehicles. Read more
Aerospace systems are the future of the aerospace industry and constitute the major component of all modern aircraft. They are the essential onboard systems that ensure the safe and accurate operation of all aerospace vehicles, from civil passenger planes to sophisticated unmanned aerial vehicles.

Why this programme

◾The University of Glasgow has been the home of Aerospace Research for over 60 years. This long-standing activity has culminated in the Division of Aerospace Sciences having internationally recognised expertise in all areas of Aeronautics and Aerospace Systems.
◾The University of Glasgow is one of the few institutions in the UK, and the only University in Scotland, to offer an Aerospace Systems MSc.
◾Aeronautical engineering at the University of Glasgow is consistently highly ranked recently achieving 10th in the UK and 1st in Scotland (Complete University Guide 2017).
◾If you are an aeronautical engineering or avionics graduate wanting to improve your skills and knowledge; a graduate of another engineering discipline, mathematics or physics and you want to change field; looking for a well-rounded postgraduate qualification in electronics & electrical engineering to enhance your career prospects; this programme is designed for you.
◾Students in this programme can benefit from access to our outstanding facilities: including several wind tunnels, a flight simulation lab, an autonomous unmanned vehicle (UAV) laboratory, helicopter test rig laboratories and computer labs for modelling and simulation.

Programme structure

Modes of delivery of the MSc in Aerospace Systems include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

The summer period is dedicated to project work, with either academic or industrial placements providing the context for your project.

Semester 1 core courses
◾Aircraft flight dynamics
◾Control M
◾Navigation systems
◾Simulation of aerospace systems
◾Space flight dynamics 1.

Semester 2 core courses
◾Autonomous vehicle guidance systems
◾Fault detection, isolation and reconfiguration
◾Radar and electro-optic systems
◾Robust control 5.
◾Aerospace systems team design project.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Aerospace Systems. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Accreditation

MSc Aerospace Systems is accredited by the Royal Aeronautical Society (RAeS)

Industry links and employability

◾You will be introduced to this exciting multi-disciplinary area of technology, gaining expertise in autonomous guidance and navigation, advanced aerospace control, simulation and simulators, fault detection and isolation, electro-optic and radar systems, and space systems.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, advising on projects, curriculum development, and panel discussion.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the aerospace industry.

Career prospects

Career opportunities include aerospace, defence, laser targeting systems, radar development, electro-optics, autonomous systems and systems modelling.

Graduates of this programme have gone on to positions such as:
Software Engineer at Hewlett-Packard
Avionic and Mission System Engineer at Qinetiq
Engineering Corporal & Driver at Hellenic Army.

Read less
With increasing traffic density of civil aircraft, and the need for increased military precision in conflicts around the world, safer aircraft operations require more sophisticated avionic systems. Read more
With increasing traffic density of civil aircraft, and the need for increased military precision in conflicts around the world, safer aircraft operations require more sophisticated avionic systems.

This specialist option of the MSc Aerospace Vehicle Design (http://www.cranfield.ac.uk/courses/taught/aerospace-vehicle-design) provides you with an understanding of avionic systems design, analysis, development, test and airframe integration.

Who is it for?

This course is suitable for students with a background in aeronautical or mechanical engineering or those with relevant industrial experience. It provides a taught engineering programme with a focus on the technical, business and management aspects of aircraft design in the civil and military aerospace sectors.

Why this course?

The Avionic Systems Design option aims to provide an understanding of avionic systems design, analysis, development, test and airframe integration. This includes a detailed look at robust and fault-tolerant flight control, advanced 4D flight management and RNP navigation, self-separation and collision avoidance and advanced digital data communications systems, as well as pilot-friendly and intelligent cockpit displays and situation awareness.

We have been at the forefront of postgraduate education in aerospace engineering since 1946. Aerospace Vehicle Design at Cranfield University was one of the original foundation courses of the College of Aeronautics. Graduates of this course are eligible to join the Cranfield College of Aeronautics Alumni Association (CCAAA), an active community which hold a number of networking and social events throughout the year.

Cranfield University is well located for students from all over the world, and offers a range of library and support facilities to support your studies. This enables students from all over the world to complete this qualification whilst balancing work/life commitments.

Informed by Industry

The course has an Industrial Advisory Committee with senior members from major UK aerospace companies, government bodies, and the military services. The committee meets twice a year to review and advise on course content, acquisition skills and other attributes are desirable from graduates of the course. Panel members include:

- BAE Systems
- Airbus
- Royal Air Force
- Department for Business, Enterprise and Regulatory Reform
- Royal Australian Air Force
- Messier-Dowty
- Department of National Defence and the Canadian Armed Forces.

We also arrange visits to sites such as BAE Systems, Thales, GKN and RAF bases which specialise in the maintenance of military aircraft. This allows you to get up close to the aircraft and components to help with ideas for the group project

Accreditation

Royal Aeronautical Society (RAeS) - http://aerosociety.com/
Institution of Mechanical Engineers (IMechE) - http://www.imeche.org/

Course details

This option is comprised of 14 compulsory modules and a minimum of 60 hours of optional modules, selected from a list of 10 options. You are also required to complete a group design project and an individual research project. Delivered via a combination of structured lectures, industry guest lectures, computer based workshops and private study.

A unique feature of the course is that we have four external examiners; two from industry who assess the group design project and two from academia who assess the individual research project.

Group project

The extensive group design project is a distinctive and unique feature of this course. This teamwork project takes place over six months, usually between October and March; and recreates a virtual industrial environment bringing together students with various experience levels and different nationalities into one integrated design team.

You will be given responsibility for the detailed design of a significant part of the aircraft, for example, forward fuselage, fuel system, or navigation system. The project will progress from the conceptual phase through to the preliminary and detail design phases. You are required to run project meetings, produce engineering drawings and detailed analyses of their design. Problem solving and project coordination must be undertaken on a team and individual basis. At the end of the project, groups are required to report and present findings to a panel of 200 senior engineers from industry.

This element of the course is both real and engaging, and places the student group in a professional role as aerospace design engineers. Students testify that working as an integrated team on real problems is invaluable and prepares them well for careers in a highly competitive industry.

Watch past presentation YouTube videos to give you a taster of our innovative and exciting group projects:

- Blended Wing Body Aircraft - https://www.youtube.com/watch?v=UfD0CIAscOI
- A9 Dragonfly Box Wing Aircraft - https://www.youtube.com/watch?v=C4LQzXBJInw
- MRT7 Tanker Aircraft - https://www.youtube.com/watch?v=bNfQM2ELXvg
- A-13 Voyager - https://www.youtube.com/watch?v=LS6Wq7lpmDw
- SL-12 Vimana - https://www.youtube.com/watch?v=HjEEazsVtSc

Individual project

The individual research project aims to provide the training necessary for you to apply knowledge from the taught element to research, and takes place over six months. The project may be theoretical and/or experimental and drawn from a range of topics related to the course and suggested by teaching staff, your employer or focused on your own area of interest.

Assessment

Taught modules 10%, Group project 50%, Individual research project 40%

Your career

The Avionic Systems Design option is valued and respected by employers worldwide. The applied nature of this course ensures that our graduates are ready to be of immediate use to their future employer and has provided sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression.

This course prepares graduates for careers as project design engineers, systems design, structural design or avionic engineers in aerospace or related industries, with the aim of progressing to technical management/chief engineer. Graduates from the MSc in Avionic Systems Design can therefore look forward to a varied choice of challenging career opportunities in the above disciplines.

Many of our graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry. Typical student destinations include BAE Systems, Airbus, Dassault and Rolls-Royce plc

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Aerospace Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Aerospace Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Aerospace Engineering at Swansea University has a distinguished history of working with aerospace companies around the world. As a student on the MSc Aerospace Engineering, you will be provided with a systematic understanding of the advanced knowledge, critical awareness and new insights required by effective practising aerospace engineers.

The MSc Aerospace Engineering degree is based on the world-class expertise available in the Materials Engineering Centre and the Zienkiewicz Centre for Computational Engineering.

At Swansea, world-class aerospace research drives excellent teaching within a cutting-edge learning environment with state-of-the-art facilities. The MSc Aerospace Engineering course prepares you for the design, analysis, testing and flight of the full range of aeronautical vehicles, including propeller-driven and jet-powered planes, helicopters and gliders.

Students on the Aerospace Engineering course will gain hands-on experience through access to one of the world’s most advanced engineering flight simulators housed within the College of Engineering. The MSc Aerospace Engineering course at Swansea University is accredited by the Institution of Mechanical Engineers (IMechE), the Royal Aeronautical Society (RAeS), and the Institution of Engineering Designers (IED).

Modules on the Aerospace Engineering course typically include:

Finite Element Computational Analysis

Composite Materials

Flight Dynamics and Control

Advanced Airframe Structure

Advanced Aerodynamics

Numerical Methods for Partial Differential Equations

Aerospace Materials Engineering

Group Project

Research Dissertation

MSc Dissertation - Aerospace Engineering

Student Quotes

“After passing all the modules on the MSc Aerospace Engineering course, I had the possibility to develop my final thesis in an industrial environment. I learnt about avionics and electronic equipment and developed team work and communication skills.

My favourite memory of the MSc Aerospace Engineering course is our team winning the International Aircraft Design and Handling competition. Our effort really paid off when we won the first prize!

Before starting my final thesis, I found a job as an Applications Engineer in one of the most important aerospace engineering companies, MTorres. Personally, I think obtaining a Master’s degree in a university with a great reputation such as Swansea University makes it much easier to find a job.

Swansea University provides a fantastic opportunity to study any field of engineering due to the professional and friendly staff.”

Roberto Morujo, MSc Aerospace Engineering

Links with Industry

Aerospace Engineering at Swansea University has a distinguished history of working with aerospace companies around the world, including:

BAE Systems

Rolls Royce

EADS

Airbus

We have also contributed to many exciting projects, from the super-jet Airbus A380 to the 1,000mph land-speed record breaking BLOODHOUND SSC.

Careers

The MSc Aerospace Engineering course is suitable for those who would like to gain comprehensive knowledge, understanding and skills that will enable them to contribute to the creation and maintenance of aerospace and aeronautical equipment.

The MSc Aerospace Engineering course covers the necessary aspects for a successful career in the growing aerospace industry.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Aerospace Engineering at Swansea University has a wide range of in-house facilities ranging from computer labs housing state-of-the-art PCs through to specialist equipment used almost exclusively by aerospace students.

Practical flying experience on the MSc Aerospace Engineering course is gained from the state-of-the-art Merlin MP521X engineering flight simulator mounted on a six axis hydraulic motion system and flying experience at a local airport.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.



Read less
The Systems Engineering Management MSc has been specifically designed for the needs of engineering professionals working in the field of complex systems development. Read more
The Systems Engineering Management MSc has been specifically designed for the needs of engineering professionals working in the field of complex systems development. The programme encompasses not only the technical tools and approaches needed to build success in this area, but also the management dimension of the relevant processes.

Degree information

Students gain an integrated, interdisciplinary view of complex systems and an advanced understanding of the systems engineering process. They gain the ability to apply this process to a variety of real world situations and the management skills necessary to facilitate the development of complex systems on time and within budget.

Students undertake modules to the value of 180 credits.

The programme consists of four core taught modules (60 credits) two optional taught modules (30 credits) and three research modules (90 credits). Modules are generally taught as intensive five-day 'block weeks' to minimise time away from the office.

A Postgraduate Diploma (120 credits, full-time nine months, or flexible study up to five years) is offered. A Postgraduate Certificate (60 credits, full-time 12 weeks, or flexible study up to two years) is offered.

Core modules
-Systems Engineering Management
-Lifecycle Management
-Risk, Reliability, Resilience
-The Business Environment

Optional modules
-Defence Systems
-Environmental Systems*
-Project Management
-Rail Systems
-Spacecraft Systems
-Systems Design
-Systems, Society, Sustainability*

*These modules are delivered by UCL's Department of Civil, Environmental and Geomatic Engineering in ten half-day sessions over the course of a term instead of the usual intensive 'block week' format

Research modules - all MSc students undertake a structured research programme comprising the following mandatory modules:
-Systems Engineering in Practice (15 credits)
-Systems Engineering Project Concept (15 credits)
-Systems Engineering Research Project (60 credits)

Teaching and learning
The programme is delivered through a combination of lectures, discussion sessions, workshop activity, and project work. Each taught course will be separately assessed through a combination of course work and a written examination. The project will be assessed through written dissertation and subsequent oral examination.

Careers

Complex systems are commonplace in many branches of UK industry including rail, aerospace, defence, and manufacturing. The ability to create such systems effectively is crucial to the competitiveness of these industries and has a direct bearing on the wealth of the nation.

Recent graduates of the programme have the following careers:
-London Underground: Head of Railway Systems
-Accenture: Analyst
-Thales Aerospace: Design Authority Manager
-BAE Systems: Systems Design Authority
-Selex Sensors and Airborne Management: Engineering Lead
-Xerox: Engineering Manager
-QinetiQ: Marine Engineer
-BAE Systems: Senior Hardware Engineer
-British Aerospace: Software Engineer
-Orange: Principal Engineer
-Halcrow Group Limited: Design Manager

Top career destinations for this degree:
-Software Engineer, Bank of America Merrill Lynch
-Analyst, Accenture
-Proposals engineer, Invensys PLC
-Engineering Manager, BAE Systems
-Systems Engineer, BIG

Why study this degree at UCL?

This MSc combines academic rigour with the practical expertise exemplified by our collaborators in UK industry and government. The flexible programme enables participants to structure their studies to suit their own career goals, and is accredited by the IET as a programme of further learning for registration as a Chartered Engineer.

Lectures are presented by experts in the field, many of whom have engaged in the practice of systems engineering in industry.

Industry is operating in an environment where technology changes rapidly, and where global competition grows ever more intensive. The challenge to remain competitive means we must make the right thing at the right price. Our MSc equips graduates with the skills to meet this challenge.

Read less
Demand for aerospace engineering graduates is rising, both in the UK and overseas. In fact, the UK aerospace industry is the second biggest in the world after the USA, and it’s home to some of the world’s leading aerospace companies such as Airbus, Astrium, BAE Systems, GKN and Rolls-Royce. Read more

Demand for aerospace engineering graduates is rising, both in the UK and overseas. In fact, the UK aerospace industry is the second biggest in the world after the USA, and it’s home to some of the world’s leading aerospace companies such as Airbus, Astrium, BAE Systems, GKN and Rolls-Royce.

Taught by expert academics in a leading research environment, this programme will equip you with the knowledge and skills to succeed in an exciting and challenging sector. You’ll study aerospace structures and structural analysis, along with optional, specialist modules in areas such as aerodynamics and computational fluid dynamics, aircraft design, systems and optimisation methods, rotary wing aircraft and propulsion.

Our Aerospace Engineering Industrial Advisory Board is actively engaged in ensuring this course meets the needs of industry and reflects trends in the sector. It also provides industrial talks and seminars and advice and support to our students during their professional projects.

In addition to our advanced CAD facilities for design work, we have the latest industry-standard software for computational fluid dynamics and finite element modelling of material stress analysis, programming and structural and multidisciplinary optimisation.

Accreditation

We are currently seeking accreditation from the Institute of Mechanical Engineers (IMechE) and the Royal Aeronautical Society.

Course content

You’ll take a compulsory module in Semester 1 which develops your knowledge of aerospace structures and the theory behind aerospace structural analysis, as well as applying this understanding to real-world problems.

This will inform the rest of your studies, where you’ll select from a wide range of optional modules allowing you to pursue the topics that appeal to your interests or suit your future career plans. You could gain sophisticated knowledge in areas such as aerospace vehicle design, computational methods or materials failure analysis.

Throughout the programme you’ll complete your Professional Project – an independent piece of research on a topic within aerospace engineering that allows you to demonstrate your knowledge and skills. In the two taught semesters you’ll review the literature around your topic and plan the project, before completing the design, analysis, computation, experimentation and writing up in the summer months.

Want to find out more about your modules?

Take a look our Aerospace Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Aerospace Structures 15 credits
  • Professional Project 75 credits

Optional modules

  • Materials Selection and Failure Analysis 15 credits
  • Design Optimisation - MSc 15 credits
  • Aerospace Vehicle Design 20 credits
  • Aerodynamics and Aerospace Propulsion 20 credits
  • Finite Element Methods of Analysis 20 credits
  • Mechatronics and Robotics Applications 15 credits
  • Engineering Computational Methods 15 credits
  • Rotary Wing Aircraft 15 credits
  • Vehicle and Product Systems Design 15 credits
  • Computational Fluid Dynamics Analysis 15 credits

For more information on typical modules, read Aerospace Engineering MSc in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The professional project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Typical projects for MSc Aerospace Engineering students could include:

  • Design of a stiffened titanium aircraft structural component for additive manufacturing
  • Development of software based on Swarm Intelligence Methodologies for Structural Optimisation
  • Circulation control using air jets to improve the performance of aircraft wings and wind turbines
  • Design and optimisation of a Flexible Structural Support for a Mars Rover Umbilical Release Mechanism
  • Aerodynamic analysis of the Bloodhound supersonic car using Computational Fluid Dynamics
  • Computational Fluid Dynamics modelling of turbulent combustion processes
  • The control of flow separation using vortex generators

A proportion of projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

The aerospace industry is one of the most successful parts of UK engineering and is truly global in nature.

You’ll be able apply the skills you gain from this course to numerous areas of the aerospace industry, such as aerospace fundamental research, airline management and operations, satellite operations, aerospace design and manufacture in both the civil and military environments and Formula 1 racing.

Whether you join an aerospace company in the UK, such as Airbus, BAE Systems or Rolls-Royce or choose to work elsewhere in the world, the foundation provided by the MSc will make sure you are prepared for a rewarding and challenging career.

Links with industry

During this course you will meet employers from organisations operating within this sector through seminars and talks and by attending our careers fair. In previous years there have been talks from colleagues at Airbus, Astrium, BAE Systems, Rolls-Royce to provide additional industrial perspectives to the course and career guidance to students. 



Read less
The School of Mechanical, Aerospace and Civil Engineering has a strong and unique tradition in the UK in Aerospace Design, Helicopters, Heat Transfer, Aerodynamics, Computational Fluid Dynamics and Flow Diagnostics. Read more
The School of Mechanical, Aerospace and Civil Engineering has a strong and unique tradition in the UK in Aerospace Design, Helicopters, Heat Transfer, Aerodynamics, Computational Fluid Dynamics and Flow Diagnostics. This course builds on those strengths and exploits our links with BAe Systems, Airbus, Rolls-Royce, DSTL, USAF, North West Aerospace Alliance, North West Development Agency and SBAC.

This MSc aims to produce high quality graduates with specialist training in aerospace engineering who will be suitable for employment in the engineering industries and consultancies linked to that industry. Aerospace engineering graduates are highly valued and are currently in great demand and the Manchester programme specifically seeks to serve this growing industry requirement. The programme is suitable for engineering and science graduates, as well as engineering professionals working in technical and commercial management. The programme is also well designed to be used for conversion to Aerospace Engineering from some close enough specialities such as Mechanics, Mathematics and Physics.

Teaching and learning

The Aerospace Engineering MSc is a full time course which is studied over 12 months and there is one start date each year in September. You will develop advanced technical skills in Aerospace Engineering that will enable you to pursue a career in both general and specialised engineering industries or develop an in depth knowledge for a career in research in industry or academia.

Career opportunities

The Aerospace Engineering MSc has a strong focus on employability to support you to take control of your future and give yourself the best chance of securing your ideal job after graduation.

Each year Manchester careers fairs, workshops and presentations attract more than 600 exhibitors and 20,000 visitors to target Manchester graduates.

After graduating with an Aerospace Engineering MSc you will be in a strong position to seek employment with companies such as: Airbus, Rolls Royce, GE Aviation, Airbus, Bombardier Transportation, BAe Systems, MBDA, SAFRAN, GKN Aerospace, Spirit, Finmeccanica, EDF, BP, Schlumberger, etc.

The UK Aerospace Engineering is 2nd largest in the world and around 30% of companies in the Aerospace sector currently have vacancies.

Destination of Leavers Survey
Past graduates have found employment in:
-Airframe manufacturers
-Gas turbine and aircraft systems industries
-Defence laboratories
-Consultancy and management
-Postgraduate research

Accrediting organisations

Two highly established organisations, the Royal Aeronautical Society and Institution of Mechanical Engineers , have accredited the Aerospace Engineering MSc course under license from the UK regulator, the Engineering Council . This allows satisfactory completion of the Aerospace Engineering MSc to contribute towards the academic requirements for registration with these Institutions as a Chartered Engineer.

Read less
This specialist course has been developed to equip graduate engineers with the skills required of a highly demanding aerospace industry. Read more

About the course

This specialist course has been developed to equip graduate engineers with the skills required of a highly demanding aerospace industry.

Taught modules are balanced with practical and challenging individual and group aerospace project work. You will learn about aircraft design aerodynamics, space mechanics, spacecraft design, propulsion systems and the role of flight simulation in aerospace at an
advanced level.

Practical projects typically include the design, build and testing of a scale aircraft, computational fluid dynamics and structural analysis modelling of a critical aerospace component and flight performance evaluation using a flight simulator.

MSc Aerospace Engineering is accredited by the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE). This will provide a route to Chartered Engineer status in the UK.

Aims

Although the course has a distinct specialist and technical flavour, the MSc also seeks to provide graduates with a raft of non-technical skills to enable them to realise their professional potential to its fullest.

To this end, the course provides modules that cover topics in strategic management, enterprise, research and innovation, as well as exploring issues that are of special importance to the future of the aerospace industry, such as safety, security, and sustainability.

Course Content

The MSc Aerospace Engineering course consists of five taught modules, a group project, and an individual project and dissertation.

Compulsory Modules

Design and Analysis of Aerospace Vehicles
Advanced Aerodynamics, Propulsion Systems, and Space Mechanics
Current Topics in Aerospace
Strategic Management Innovation and Enterprise
Research Methodology and Sustainable Engineering
Group Project in Aerospace Engineering
Aircraft Structures, Loads and Aeroelasticity
Dissertation

Special Features

Highly rated by students

Mechanical Engineering at Brunel ranks highly in the Guardian league tables for UK universities, with a student satisfaction score of 86.4% in 2015. Postgraduate students can therefore expect to benefit from an experienced and supportive teaching base whilst having the opportunity to thrive in a dynamic and high-profile research environment.

Outstanding facilities

We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Strong links with industry

We regularly consult aerospace engineering experts to keep our programmes up to date with industry needs. Read more about how we integrated industrial expertise into an MEng Aerospace Engineering module.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

Aerospace Engineering is accredited by the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE). This will provide a route to Chartered Engineer status in the UK.

Assessment

Modules are taught over eight months (from October to May) and are assessed by a balanced combination of examination and assignment.

Read less
Aerospace Propulsion provides a comprehensive background in the design and operation of different types of propulsion systems for aerospace applications. Read more

Course Description

Aerospace Propulsion provides a comprehensive background in the design and operation of different types of propulsion systems for aerospace applications. The course is designed for those seeking a career in the design, development, operation and maintenance of propulsion systems.  The course is suitable for graduates seeking a challenging and rewarding career in an established international industry. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand.

Overview

The key technological achievement underlying the development and growth of the aerospace industry has been the design and development of efficient and economical propulsion systems. This sector has experienced a consistent growth in the past and is expected to do so in the future. Major efforts are also now being dedicated to the development of new technologies relevant to the propfan and variable cycle engines.

The MSc in Aerospace Propulsion provides a comprehensive background in the design and operation of different types of propulsion systems for aerospace applications. The course is designed for those seeking a career in the design, development, operation and maintenance of propulsion systems.

The course is suitable for graduates seeking a challenging and rewarding career in an established international industry. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand.

Structure

The course consists of approximately ten to fifteen taught modules and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:

- Provide the skills required for a rewarding career in the field of propulsion and power
- Meet employer requirements for graduates within power and propulsion industries
- Demonstrate a working knowledge and critical awareness of gas turbine performance, analysis techniques, component design and associated technologies
- Explain, differentiate and critically discuss the underpinning concepts and theories for a wide range of areas of gas turbine engineering and associated applications
- Be able to discern, select and apply appropriate analysis techniques in the assessment of particular aspects of gas turbine engineering.

Modules

The taught programme for the Aerospace Propulsion masters consists of eight compulsory modules and up to six optional modules. The modules are generally delivered from October to April.

Individual Project

Individual Project
You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner.

Recent Individual Research Projects include:

- Design of an experimental test rig facility for an axial compressor
- Energy management in a hybrid turbo-electric, hydrogen fuelled, hale UAV
- Civil aircraft intake, nacelle and nozzle aerodynamics
- The computation of adiabatic isobaric combustion temperature
- Air filtration systems for helicopters
- Nacelle parametric design space exploration
- Distributed propellers assessment for turboelectric distributed propulsion
- Aerodynamic analysis of the flowfield distortion within a serpentine intake
- Green runway :impact of water ingestion on medium and small jet engine performance and emissions
- Distributed propulsion systems boundary layer ingestion for uav aircraft
- Preliminary design of a low emissions combustor for a helicopter engine
- Compressor design and performance simulation through the use of a through-flow method
- Estimation of weight and mechanical losses of a pts for a geared turbofan engine
- Optimisation of turbine disc for a small turbofan engine
- Modelling of tip leakage flows in axial flow high pressure gas turbine
- Aerodynamic modelling and adjoint-based shape optimisation of separate-jet exhaust systems
- Preliminary design & performance analysis of a combustor for UAV.

Assessment

The final assessment is based on two components of equal weight; the taught modules (50%) and the individual research project (50%). Assessment is by examinations, assignments, presentations and thesis.

Funding

A variety of funding, including industrial sponsorship, is available. Please contact us for details.

Career opportunities

- Gas turbine engine manufacturers
- Airframe manufacturers
- Airline operators
- Regulatory bodies
- Aerospace/Energy consultancies
- Power production industries
- Academia: doctoral studies.

For further information

On this course, please visit our course webpage http://www.cranfield.ac.uk/Courses/Masters/Aerospace-Propulsion-Option-Thermal-Power

Read less
The Aerospace Engineering MSc aims to further develop students' knowledge of and expertise in specialist engineering subjects associated with the main application areas of aeronautical engineering. Read more
The Aerospace Engineering MSc aims to further develop students' knowledge of and expertise in specialist engineering subjects associated with the main application areas of aeronautical engineering. Particular prominence is given to Sustainable Aviation, Advanced Materials and Processes, Experimental Methods and Techniques, Computational Fluid Dynamics, Structural Analysis and Simulation, Flight Dynamics and Simulation, and Advanced Aircraft Systems, in particular Unmanned Aerial Vehicles.

An emphasis on applied technical work will strengthen the engineering development skills of students from an academic background. The programme is delivered by a specialist team of academics. Access to state of the art laboratory and computing facilities within the new Engineering and Computing building. Personal tutor support throughout the postgraduate study. Excellent links with a number of industrial organisations enable access to the latest technology and real-world applications.

WHY CHOOSE THIS COURSE?

The work carried out on this course will provide the demonstrable expertise necessary to help secure professional level employment in related industries.

The Aerospace Engineering MSc curriculum consists of eight mandatory core topics and a substantial MSc project. Successful completion of all elements leads to the award of MSc in Aerospace Engineering. Completion of the taught modules without a project leads to the award of a Post Graduate Diploma.

WHAT WILL I LEARN?

The mandatory study topics are as follows:
-Mathematical modelling in Aerospace Engineering
-Unmanned Aerial Vehicle Systems (UAV)
-Experimental Methods and Techniques
-Computational Fluid Dynamics (CFD)
-Advanced Materials and Processes
-Design and analysis of Aerospace structures
-Flight Dynamics and Simulation
-Project Management
-Individual Project

The substantial individual project gives students the opportunity to work on a detailed area of related technology alongside an experienced academic supervisor. Some projects are offered in conjunction with the work of the Faculty’s research centres or industry. Typical project titles include:
-Integration of Advanced Materials into Aircraft Structures
-Sustainable Aircraft Development and Design
-Intelligent Power Generation
-UAV SWARM Systems

You will have access to:
-Unique Flight Simulator Suite (3 flight simulators, 2 UAV ground control systems plus the associated UAV,1 Air Traffic Control unit);
Harrier Jump Jet;
-New bespoke Mercedes-Petronas low speed wind tunnel and associated measurement;
-Faculty workshop (metal/woodwork), Composites Laboratory, Metrology Laboratory, Electrical Laboratory, Communications and Signal Processing Laboratory, Cogent Wireless Intelligent Sensing Laboratory
-Faculty Open Access Computer Facilities

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

The specialist topics studied on the programme will prepare you for work in specialist companies involved with aeronautical engineering. There are also many roles in related industries that rely on the technology. Possible destinations include:
-Design, Development, Operations and Management;
-Projects/Systems/Structural/Avionics Engineers.

Typical student destinations include:
-BAE Systems
-Rolls-Royce
-Airbus
-Dassult

Opportunities also exist to complete a PhD research degree upon completion of the master’s course:
-Research at Coventry University
-Cogent Computing
-Control Theory and Applications Centre
-Distributed Systems and Modelling

Aerospace Engineering MSc has been developed to improve upon the fundamental undergraduate knowledge of aerospace/aeronautical students and help mechanical students learn more about the application of their subject to aircraft. The whole aerospace/aviation industry is committed to a more sustainable and a more efficient future. The techniques, methods and subjects covered in this degree explore the ever changing industrial environment in more detail.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
This Masters in Computer Systems Engineering exposes students to state-of-the-art miniaturised and mobile computer systems and smart device technology, allowing them to acquire the complementary hardware and software knowledge and skills required for understanding and designing such systems. Read more
This Masters in Computer Systems Engineering exposes students to state-of-the-art miniaturised and mobile computer systems and smart device technology, allowing them to acquire the complementary hardware and software knowledge and skills required for understanding and designing such systems.

Why this programme

◾You will be taught jointly by the Schools of Engineering and Computing Science. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
◾Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017).
◾If you are a computer engineering graduate, this programme will enhance your knowledge; if you are an electronic engineering graduate you can focus on developing your software skills; or if you are computer science graduate you can focus on developing your hardware skills.
◾With a 92% overall student satisfaction in the National Student Survey 2015, Electronic and Electrical Engineering at the School of Engineering combines both teaching excellence and a supportive learning environment.

Programme structure

Modes of delivery of the MSc in Computer Systems Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

Core courses
◾Digital signal processing
◾Either networked systems or computer communications
◾Human–computer interaction
◾Software and requirements engineering
◾MSc project.

Optional courses typically include
◾Advanced operating systems
◾Artificial intelligence
◾Computer architecture
◾Digital communications 4
◾Human-centred security
◾Information retrieval
◾Internet technology
◾Microwave and millimetre wave circuit design
◾Optical communications
◾Real time embedded programming
◾Safety critical systems.

Projects

◾In addition to taught work and practical assignments you will also complete a joint research project worth 60 credits in one of the state-of-the-art laboratories in the schools.
◾This extended project is an integral part of the MSc programme: many of these are linked to industry while others are related to research in either of the participating Schools.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Computer Systems Engineering. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾As computer systems have reduced in size, and are increasingly mobile with more complex functionalities, they are now a fundamental component of smart device technology.
◾This postgraduate programme is particularly suited to acquiring the complementary hardware and software knowledge and skills required for understanding and designing such systems.
◾The programme makes use of the combined resources and complementary expertise of the engineering and computing science staff to deliver a curriculum which is relevant to the needs of industry.
◾The School of Computing Science has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributions in Computer Systems Engineering include: IBM, J.P. Morgan, Amazon, Adobe and Red Hat.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the computer/software industry.
◾The Computer Systems Engineering MSc programme also provides excellent preparation for those wanting to pursue a PhD in a similar research field.

Career prospects

Career opportunities include positions in software development, chip design, embedded system design, telecommunications, video systems, automation and control, aerospace, development of PC peripherals and FPGA programming, defence and services for the heavy industries, for example generator and industrial motor control systems, etc.

Read less
The graduate in Automation and Control Engineering is an expert who can actively participate and take the lead in the executive design and development of products and systems. Read more

Mission and goals

The graduate in Automation and Control Engineering is an expert who can actively participate and take the lead in the executive design and development of products and systems. She/he may take on full responsibility for designing, installing, testing and maintaining complex machines and systems. The goal of the Automation and Control Engineering programme is to provide the graduate with a strong background in fundamental scientific disciplines, such as mathematics and physics, in classical engineering fields, such as thermodynamics, mechanics, electric drives, automatic control, and in the disciplines of the information and telecommunication technology, like computer science, electronics, communication networks. Thanks to the interdisciplinary nature of her/his background, the graduate has all the necessary skills to design or manage systems resulting from the integration of highly diverse components and technologies. This flexibility both in the attitude and in the competences is a significant asset of the Automation and Control Engineer, in view of the large variety of possible applications, of the continuous and rapid evolution of the technologies, as well as of the dynamics of the job market.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

Career opportunities

Automation and Control Engineering offers challenging and fulfilling careers for engineering technologists in design, research and development, and technical support, in many fields where automation and control are of paramount importance, such as: (a) industry producing manufacturing systems, automatic machines, robotic systems, mechatronic systems; (b) process industry (pulp and paper, energy production and conversion, chemical and petrochemical industry, etc.); (c) transportation systems (ground, marine and aerospace), concerning both the development of vehicles (cars, boats, helicopters, aircrafts, satellites), and the design, management and control of infrastructures; (d) transportation and distribution networks; (e) food industry; (f) electrical appliances and domotics; (g) environmental resources.

Typical companies where the automation and control engineers may operate include those producing and selling automation systems (both hardware and software); companies that use automated production plants or that manage highly complex services; engineering and consulting firms that design and project complex, economically challenging and technologically advanced plants and systems.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Automation_Engineering.pdf
This programme aims at providing the graduates with sound engineering skills to design, develop, implement and manage automation systems for manufacturing plants, industrial processes, mechatronic devices, distribution networks and environmental systems. Graduates have a strong background in the classical engineering fields and in the information and telecommunication technology. The interdisciplinary nature of this programme provides the graduates with all the skills to design/manage systems resulting from the integration of highly diverse technologies.
Graduates will have wide employment opportunities in many fields: industry producing manufacturing systems, automatic machines, robotic systems, mechatronic systems, process industry, transportation systems, transportation and distribution networks, food industry, electrical appliances, home automation and environmental resources.
The programme is taught in English.

Subjects

The mandatory courses are:
- Advanced and multivariable control
- Automation and control laboratory
- Computer aided manufacturing
- Dynamics of electrical machines and drives
- Dynamics of mechanical systems
- Model identification and data analysis
- Software engineering

Among the optional courses:
- Automation and control in vehicles
- Automation of energy systems
- Control of industrial robots
- Production systems control
- Safety in automation systems
- Thesis and final exam

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This Masters in Sensor and Imaging Systems (SIS) focuses on the technologies and techniques that underpin a vast range of societal, research and industrial needs. Read more
This Masters in Sensor and Imaging Systems (SIS) focuses on the technologies and techniques that underpin a vast range of societal, research and industrial needs. It is delivered and awarded jointly by the Universities of Glasgow and Edinburgh. Sensing and sensor systems are essential for advances in research across all fields of physics, engineering and chemistry and are enhanced when multiple sensing functions are combined into arrays to enable imaging. Industrial applications of sensor systems are ubiquitous: from mass-produced sensors found in modern smart phones and every modern car to the state-of-the-art, specialist high-value sensors routinely used in oil and gas recovery, scientific equipment, machine tools, medical equipment and environmental monitoring. This is an industry-focused programme, designed for people looking to develop skills that will open up opportunities in a host of end applications.

Why this programme

◾This is a jointly taught and awarded degree from the University of Glasgow and the University of Edinburgh, developed in with conjunction with CENSIS.
◾CENSIS is a centre of excellence for Sensor and Imaging Systems (SIS) technologies, CENSIS enables industry innovators and university researchers to collaborate at the forefront of market-focused SIS innovation, developing products and services for global markets.
◾CENSIS, the Innovation Centre for Sensor and Imaging Systems, is one of eight Innovation Centres that are transforming the way universities and business work together to enhance innovation and entrepreneurship across Scotland’s key economic sectors, create jobs and grow the economy. CENSIS is funded by the Scottish Funding Council (£10m) and supported by Scottish Enterprise, Highlands and Islands Enterprise and the Scottish Government.
◾CENSIS has now launched its collaborative MSc in Sensor and Imaging Systems, designed to train the next generation of sensor system experts.
◾This programme will allow you to benefit from the commercial focus of CENSIS along with the combined resources and complementary expertise of staff from two top ranking Russell Group universities, working together to offer you a curriculum relevant to the needs of industry.
◾The Colleges of Science and Engineering at the University of Glasgow and the University of Edinburgh delivered power and impact in the 2014 Research Excellent Framework. Overall, 94% of Edinburgh’s and 90% of Glasgow’s research activity is world leading or internationally excellent, rising in Glasgow’s case to 95% for its impact.
◾Fully-funded places and bursaries are available to Scottish/EU candidates. Further information on funded places.

Programme structure

The programme comprises a mix of core and optional courses. The curriculum you undertake is flexible and tailored to your prior experience and expertise, your particular research interests, and the specific nature of the extended research project topic provisionally identified at the beginning of the MSc programme.

Graduates receive a joint degree from the universities of Edinburgh and Glasgow.

Programme timetable
◾Semester 1: University of Glasgow
◾Semester 2: University of Edinburgh
◾Semester 3: MSc project, including the possibility of an industry placement

Core courses
◾Circuits and systems
◾Fundamentals of sensing and imaging
◾Imaging and detectors
◾Technology and innovation management
◾Research project preparation.

Optional courses
◾Biomedical imaging techniques
◾Biophysical chemistry
◾Biosensors and instrumentation
◾Chemical biology
◾Digital signal processing
◾Electronic product design and manufacture
◾Electronic system design
◾Entrepreneurship
◾Lab-on-chip technologies
◾Lasers and electro-optic systems
◾Microelectronics in consumer products
◾Microfabrication techniques
◾Nanofabrication
◾Physical techniques in action
◾Waves and diffraction.

Career prospects

You will gain an understanding of sensor-based systems applicable to a whole host of markets supported by CENSIS.

Career opportunities are extensive. Sensor systems are spearheading the next wave of connectivity and intelligence for internet connected devices, underpinning all of the new ‘smart markets’, e.g., grid, cities, transport and mobility, digital healthcare and big data.

You will graduate with domain-appropriate skills suitable for a range of careers in areas including renewable energy, subsea and marine technologies, defence, automotive engineering, intelligent transport, healthcare, aerospace, manufacturing and process control, consumer electronics, and environmental monitoring.

Globally, the market for sensor systems is valued at £500Bn with an annual growth rate of 10%. The Scottish sensor systems market is worth £2.6Bn pa. There are over 170 sensor systems companies based in Scotland (SMEs and large companies), employing 16,000 people in high-value jobs including product R&D, design, engineering, manufacturing and field services.

Read less
The Integrated Photonic and Electronic Systems MRes, taught at the University of Cambridge and at the UCL Centre for Doctoral Training in Integrated Photonic and Electronic Systems, aims to train students to PhD level in the skills needed to produce new integrated photonic systems for applications ranging from information display to ultra-fast communications and industrial materials processing. Read more
The Integrated Photonic and Electronic Systems MRes, taught at the University of Cambridge and at the UCL Centre for Doctoral Training in Integrated Photonic and Electronic Systems, aims to train students to PhD level in the skills needed to produce new integrated photonic systems for applications ranging from information display to ultra-fast communications and industrial materials processing.

Degree information

The programme offers a wide range of specialised modules, including electronics and biotechnology. Students gain a foundation training in the scientific basis of photonics and systems, and develop a good understanding of the industry. They are able to design an individual bespoke programme to reflect their prior experience and future interests.

Students undertake modules to the value of 180 credits. Students take two compulsory research projects (90 credits), one transferable skills module (15 credits), three optional modules (45 credits) and two elective modules (30 credits).
-Project Report 1 at either UCL or Cambridge
-Project Report 2 at either UCL, Cambridge or industry
-Transferable Business Skills

Optional modules - students choose three optional modules from the following:
-Nanotechnology
-Biosensors
-Advanced Photonic Devices
-Photonic Systems
-Solar-Electrical Power: Generation and Distribution
-Photonic Sub-systems
-Broadband Technologies and Components
-Management of Technology
-Strategic Management
-Telecommunication Business Environment

Elective modules - students choose a further two elective modules from the list below:
-Solid State Devices and Chemical/Biological Sensors
-Display Technology
-Analogue Integrated Circuits
-Robust and Nonlinear Systems and Control
-Digital Filters and Spectrum Estimation
-Image Processing and Image Coding
-Computer Vision and Robotics
-Materials and Processes for Microsystems
-Building an Internet Router
-Network Architecture
-Software for Network Services
-Optical Transmission and Networks
-Nanotechnology and Healthcare
-RF Circuits and Sub-systems
-Physics and Optics of Nano-Structure
-Broadband Communications Lab
-Analogue CMOS IC Design Applications

Dissertation/report
All students undertake two research projects. An independent research project (45 credits) and an industry-focused project (45 credits).

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, projects, seminars, and laboratory work. Student performance is assessed through unseen written examination and coursework (written assignments and design work).

Careers

Dramatic progress has been made in the past few years in the field of photonic technologies. These advances have set the scene for a major change in commercialisation activity where photonics and electronics will converge in a wide range of information, sensing, display, and personal healthcare systems. Importantly, photonics will become a fundamental underpinning technology for a much greater range of companies outside the conventional photonics arena, who will in turn require those skilled in photonic systems to have a much greater degree of interdisciplinary training, and indeed be expert in certain fields outside photonics.

Employability
Our students are highly employable and have the opportunity to gain industry experience during their MRes year in large aerospace companies like Qioptiq, BAE Systems, Selex ES; medical equipment companies such as Hitachi; and technology and communications companies such as Toshiba through placements based both in the UK and overseas. Several smaller spin-out companies from both UCL and Cambridge also offer projects. The Centre organises industry day events which provide an excellent opportunity to network with senior technologists and managers interested in recruiting photonics engineers. A recent 2014 graduate is now working as a Fiber Laser Development Engineer for Coherent Scotland. Another is a Patent Attorney for HGF Ltd.

Why study this degree at UCL?

The University of Cambridge and UCL have recently established an exciting Centre for Doctoral Training (CDT) in Integrated Photonic and Electronic Systems, leveraging their current strong collaborations in research and innovation.

The centre provides doctoral training using expertise drawn from a range of disciplines, and collaborates closely with a wide range of UK industries, using innovative teaching and learning techniques.

This centre, aims to create graduates with the skills and confidence able to drive future technology research, development and exploitation, as photonics becomes fully embedded in electronics-based systems applications ranging from communications to sensing, industrial manufacture and biomedicine.

Read less
Manufacturing is at the heart of engineering, as everything in our daily lives needs to be made. Manufacturing engineers therefore play a vital role in the creation of wealth and in sustaining and improving the living standards of society. Read more
Manufacturing is at the heart of engineering, as everything in our daily lives needs to be made. Manufacturing engineers therefore play a vital role in the creation of wealth and in sustaining and improving the living standards of society. The Advanced Manufacturing Technology & Systems Management course is one of the most well-established of its kind in the UK, and it aims to provide our students with the tools, knowledge and understanding of this broad based discipline that demands expertise in many diverse topics.

This course is one of the most well-established of its kind in the UK, having evolved from the very successful MSc course in Machine Tool Technology, and is regularly updated in line with subject developments and changing industrial practices. Advanced Manufacturing Technology and Systems Management has developed into a broad based multi-disciplinary field, demanding expertise in many diverse topics. The structure of the course reflects this by requiring in-depth study of a number of topics ranging from the fundamentals of manufacturing processes to the management of manufacturing systems. More specialised study takes place during the dissertation project where students undertake individual research projects of industrial relevance. The MSc course has a strong practical orientation and it aims to produce engineers with the theoretical and practical experience which will enable them to analyse and investigate problems and to engage in design, development and research involving manufacturing technology. The course also prepares graduates for the management of manufacturing systems. Whilst the course is intended primarily for those wishing to pursue an industrial career, it is equally relevant as preparation for research in advanced manufacturing technology and systems management.

Teaching and learning

The Advanced Manufacturing Technology and Systems Management MSc is a full time course which is studied over 12 months and there is one start date each year in September.

Throughout the course you will develop advanced technical skills in both manufacturing technology and systems management, as well as soft skill such as team working, presenting and report writing, all of which will enable you to pursue a career in both general and specialised engineering industries or develop an in-depth knowledge for a career in research in industry or academia.
During the course you will visit a number of companies, such as Airbus and Jaguar Land Rover, and have the opportunity to attend industrial guest lectures, which will not only further enhance your understanding of manufacturing but also to give you an insight into the practical application of many of the subject areas you will be studying. Moreover, many of the dissertation projects, one of which you will be working on as part of this course, originate from and are run in collaboration with industry.

Career opportunities

The Advanced Manufacturing Technology and Systems Management MSc has a strong focus on employability, which will give you the best chance of securing your ideal job after graduation. Most academics who teach on this course have strong links with industry, which you will benefit from, not only by having the opportunity to visit a number of companies and attend industrial talks but also to work on a dissertation project that is closely related to an industrial problem.

Each year Manchester careers fairs, workshops and presentations attract more than 600 exhibitors and 20,000 visitors illustrating how employers target Manchester graduates.

After graduating with an MSc in Advanced Manufacturing Technology and Systems Management you will be in a strong position to seek employment with companies such as: Rolls Royce, Airbus, BAE Systems, Siemens, Jaguar Land Rover, Bentley Motors, Nissan Motor Company, Bombardier Transportation, to name just a few.

Destination of Leavers Survey
Every year our The University of Manchester conducts a destination of leavers survey with students six months after they have graduated. A small selection of these destinations since 2010 is listed below:
-Rolls Royce (Design Engineer)
-The University of Manchester (PhD Researcher)
-University of Sheffield (PhD Researcher)
-BAE Systems (Design Engineer)
-Airbus UK (Research and Technology Engineer)
-Siemens
-Tata Steel

Accrediting organisations

The Institution of Mechanical Engineers has accredited the Advanced Manufacturing Technology and Systems Management MSc course under license from the UK regulator, the Engineering Council. This allows satisfactory completion of the Advanced Manufacturing Technology and Systems Management MSc to contribute towards the academic requirements for registration with the Institution as a Chartered Engineer.

Read less
The Masters in Aeronautical Engineering focuses on advanced engineering subjects required for understanding modern design of fixed-wing aircraft. Read more
The Masters in Aeronautical Engineering focuses on advanced engineering subjects required for understanding modern design of fixed-wing aircraft.

Why this programme

◾The University of Glasgow has been the home of Aerospace Research for over 60 years. This long-standing activity has culminated in the Division of Aerospace Sciences having internationally recognised expertise in all areas of Aeronautics and Aerospace Systems.
◾Aeronautical engineering at the University of Glasgow is consistently highly ranked recently achieving 10th in the UK and 1st in Scotland (Complete University Guide 2017).
◾If you are an aerospace engineering graduate wanting to improve your skills and knowledge; a graduate of a related engineering discipline or physical science and you want to change field; or you are looking for a well rounded postgraduate qualification in aeronautical engineering to enhance your career prospects, this programme is designed for you.
◾You will benefit from access to our outstanding facilities: including several wind tunnels, a flight simulation lab, an autonomous unmanned vehicle (UAV) laboratory, helicopter test rig laboratories, structural testing apparatus and computer labs for modelling and simulation.

Programme structure

Modes of delivery of the MSc in Aeronautical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work. You will attend taught courses and take part in laboratory-based assignments and field visits. You will be further assessed in coursework, report writing and oral presentations.

The summer period is dedicated to project work, with either academic or industrial placements providing the context for your project.

Semester 1 courses
◾Aerospace control 1
◾Aircraft flight dynamics
◾Navigation systems
◾Space flight dynamics 1
◾Viscous shear flows.

Semester 2 courses (five chosen)
◾Autonomous vehicle guidance systems
◾Composites airframe structures
◾Introduction to aeroelasticity
◾Introduction to computational fluid dynamics
◾Introduction to wind engineering
◾Robust control 5
◾Spacecraft systems 2
◾Aerospace design project.

]]Projects]]
◾To complete the MSc degree you must undertake a project worth 60 credits.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Aeronautical Engineering. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

[[Accreditation ]]

MSc Aeronautical Engineering is accredited by the Royal Aeronautical Society (RAeS)

Career prospects

Career opportunities include positions in aerospace, defence, renewable energy, control design, structural engineering. You can also continue studying, for a research Masters or a PhD.

Graduates of this programme have gone on to positions such as:

◾Teaching Assistant at a university
◾Graduate Engineer at UTC Aerospace Systems
◾Scientist at Fluid Gravity Engineering Ltd.

Read less

Show 10 15 30 per page



Cookie Policy    X