• University of Bristol Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Southampton Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Cass Business School Featured Masters Courses
OCAD University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Bath Spa University Featured Masters Courses
"aerospace" AND "propulsi…×
0 miles

Masters Degrees (Aerospace Propulsion)

We have 36 Masters Degrees (Aerospace Propulsion)

  • "aerospace" AND "propulsion" ×
  • clear all
Showing 1 to 15 of 36
Order by 
Aerospace Propulsion provides a comprehensive background in the design and operation of different types of propulsion systems for aerospace applications. Read more

Course Description

Aerospace Propulsion provides a comprehensive background in the design and operation of different types of propulsion systems for aerospace applications. The course is designed for those seeking a career in the design, development, operation and maintenance of propulsion systems.  The course is suitable for graduates seeking a challenging and rewarding career in an established international industry. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand.

Overview

The key technological achievement underlying the development and growth of the aerospace industry has been the design and development of efficient and economical propulsion systems. This sector has experienced a consistent growth in the past and is expected to do so in the future. Major efforts are also now being dedicated to the development of new technologies relevant to the propfan and variable cycle engines.

The MSc in Aerospace Propulsion provides a comprehensive background in the design and operation of different types of propulsion systems for aerospace applications. The course is designed for those seeking a career in the design, development, operation and maintenance of propulsion systems.

The course is suitable for graduates seeking a challenging and rewarding career in an established international industry. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand.

Structure

The course consists of approximately ten to fifteen taught modules and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:

- Provide the skills required for a rewarding career in the field of propulsion and power
- Meet employer requirements for graduates within power and propulsion industries
- Demonstrate a working knowledge and critical awareness of gas turbine performance, analysis techniques, component design and associated technologies
- Explain, differentiate and critically discuss the underpinning concepts and theories for a wide range of areas of gas turbine engineering and associated applications
- Be able to discern, select and apply appropriate analysis techniques in the assessment of particular aspects of gas turbine engineering.

Modules

The taught programme for the Aerospace Propulsion masters consists of eight compulsory modules and up to six optional modules. The modules are generally delivered from October to April.

Individual Project

Individual Project
You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner.

Recent Individual Research Projects include:

- Design of an experimental test rig facility for an axial compressor
- Energy management in a hybrid turbo-electric, hydrogen fuelled, hale UAV
- Civil aircraft intake, nacelle and nozzle aerodynamics
- The computation of adiabatic isobaric combustion temperature
- Air filtration systems for helicopters
- Nacelle parametric design space exploration
- Distributed propellers assessment for turboelectric distributed propulsion
- Aerodynamic analysis of the flowfield distortion within a serpentine intake
- Green runway :impact of water ingestion on medium and small jet engine performance and emissions
- Distributed propulsion systems boundary layer ingestion for uav aircraft
- Preliminary design of a low emissions combustor for a helicopter engine
- Compressor design and performance simulation through the use of a through-flow method
- Estimation of weight and mechanical losses of a pts for a geared turbofan engine
- Optimisation of turbine disc for a small turbofan engine
- Modelling of tip leakage flows in axial flow high pressure gas turbine
- Aerodynamic modelling and adjoint-based shape optimisation of separate-jet exhaust systems
- Preliminary design & performance analysis of a combustor for UAV.

Assessment

The final assessment is based on two components of equal weight; the taught modules (50%) and the individual research project (50%). Assessment is by examinations, assignments, presentations and thesis.

Funding

A variety of funding, including industrial sponsorship, is available. Please contact us for details.

Career opportunities

- Gas turbine engine manufacturers
- Airframe manufacturers
- Airline operators
- Regulatory bodies
- Aerospace/Energy consultancies
- Power production industries
- Academia: doctoral studies.

For further information

On this course, please visit our course webpage http://www.cranfield.ac.uk/Courses/Masters/Aerospace-Propulsion-Option-Thermal-Power

Read less
This specialist course has been developed to equip graduate engineers with the skills required of a highly demanding aerospace industry. Read more

About the course

This specialist course has been developed to equip graduate engineers with the skills required of a highly demanding aerospace industry.

Taught modules are balanced with practical and challenging individual and group aerospace project work. You will learn about aircraft design aerodynamics, space mechanics, spacecraft design, propulsion systems and the role of flight simulation in aerospace at an
advanced level.

Practical projects typically include the design, build and testing of a scale aircraft, computational fluid dynamics and structural analysis modelling of a critical aerospace component and flight performance evaluation using a flight simulator.

MSc Aerospace Engineering is accredited by the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE). This will provide a route to Chartered Engineer status in the UK.

Aims

Although the course has a distinct specialist and technical flavour, the MSc also seeks to provide graduates with a raft of non-technical skills to enable them to realise their professional potential to its fullest.

To this end, the course provides modules that cover topics in strategic management, enterprise, research and innovation, as well as exploring issues that are of special importance to the future of the aerospace industry, such as safety, security, and sustainability.

Course Content

The MSc Aerospace Engineering course consists of five taught modules, a group project, and an individual project and dissertation.

Compulsory Modules

Design and Analysis of Aerospace Vehicles
Advanced Aerodynamics, Propulsion Systems, and Space Mechanics
Current Topics in Aerospace
Strategic Management Innovation and Enterprise
Research Methodology and Sustainable Engineering
Group Project in Aerospace Engineering
Aircraft Structures, Loads and Aeroelasticity
Dissertation

Special Features

Highly rated by students

Mechanical Engineering at Brunel ranks highly in the Guardian league tables for UK universities, with a student satisfaction score of 86.4% in 2015. Postgraduate students can therefore expect to benefit from an experienced and supportive teaching base whilst having the opportunity to thrive in a dynamic and high-profile research environment.

Outstanding facilities

We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Strong links with industry

We regularly consult aerospace engineering experts to keep our programmes up to date with industry needs. Read more about how we integrated industrial expertise into an MEng Aerospace Engineering module.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

Aerospace Engineering is accredited by the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE). This will provide a route to Chartered Engineer status in the UK.

Assessment

Modules are taught over eight months (from October to May) and are assessed by a balanced combination of examination and assignment.

Read less
The programme provides a preparation particularly focused on issues of design, operation and maintenance of aircraft and their on-board systems. Read more

Mission and goals

The programme provides a preparation particularly focused on issues of design, operation and maintenance of aircraft and their on-board systems. The objective is to prepare highly culturally and professionally qualified technicians able to carry out and manage activities related to research and design in the fields of aerodynamics, materials, lightweight structures, aircraft systems and aerospace propulsion in national and international contexts, both in autonomy or in cooperation.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

Career opportunities

The graduate finds employment in aeronautical and space industries; in public and private bodies for experimentation in the aerospace field; in aircraft fleet management and maintenance companies; in air-traffic control agencies; in the airforce; in industries producing machinery and equipment in which aerodynamics and lightweight structures play a significant role.
Aeronautical engineers are particularly sought after in related fields. In fact, they may be involved in the design of terrestrial or nautical vehicles or large buildings or bridges or even in the design of power plants. Graduates are also in demand in the lightweight constructions industry, in the motor industry in the areas of monitoring the mechanical behaviour of structures subject to stress.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Aeronautical_Engineering.pdf
This programme aims at providing the students with specific skills in design, operation and maintenance of aircrafts and their on-board systems. The objective is to prepare culturally and professionally highly qualified technicians able to carry out and manage activities related to research and design in the fields of aerodynamics, materials, lightweight structures, aircraft systems and aerospace propulsion. Graduates can find employment in national and international contexts in aeronautical and space industries, public and private bodies for experimentation in the aerospace field, aircraft fleet management and maintenance companies, air-traffic control agencies, or in the air force. The track in Rotary wing is taught in English, while the other tracks are partially available in English.

Subjects

Specializations available:
- Aerodynamics
- Flight mechanics and systems
- Propulsion
- Structures
- Rotary-wing aircraft

Mandatory courses are:
- Aerodynamics
- Flight Dynamics
- Aerospace Structures
- Dynamics and control of aerospace structures

Other courses:
- Fundamentals of Aeroelasticity
- Nonlinear analysis of aerospace structures
- Fundamentals of Thermochemical propulsion
- Management of aerospace projects
- Gasdynamics
- Aircraft instrumentation & integrated systems
- Aircraft Design
- Heat transfer and thermal analysis
- Numerical modeling of differential problems
- Rotorcraft design
- Aircraft engines
- Airport and air traffic management
- Aerospace materials
- Communication skills
- Thesis

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The Master's degree in Aerospace Engineering is a new graduate program of the Université de Lyon, operated by the École Centrale de Lyon. Read more
The Master's degree in Aerospace Engineering is a new graduate program of the Université de Lyon, operated by the École Centrale de Lyon. It offers a two-year program in Master 1 (M1) and Master 2 (M2). It will be set up progressively starting from September 2016, with only one M2 option "Aerospace Propulsion (PAS)" opened. Then from September 2017, a second M2 option "Dynamic and Sustainability of Composite Materials (DDC)" and the M1 common-core syllabus will be opened.

The concerned disciplinary fields are fluid mechanics and energy, solid and structural mechanics, materials, and control engineering, in relation with three renowned research laboratories of Lyon: LMFA, LTDS and Ampère.

The Master is in line with the strategic axis "Science and engineering for a sustainable society" defined by the Université de Lyon, as well as with two social challenges identified by the École Centrale de Lyon, "Aeronautics and space" and "Increasing the competitiveness of the industrial economy through innovation and entrepreneurship".

The purpose is to train future technical leaders and researchers for all aspects of the aerospace industry from major constructors like SAFRAN and Airbus, to component suppliers. A special attention is paid to make students aware of codes, languages and common practice in the industry. Furthermore, this industry is intrinsically transnational, with numerous opportunities to work abroad with connections to France or to work in France with connections to other countries. So the students are given the opportunity to develop international/intercultural skills.

It is to notice that the aerospace industry is subjected to long-term cycles. A "design" dominated stage with ambitious projects (A380, A350, A400M, EC 175, LEAP, …) is ending, while a "production" dominated stage is starting for the next decade. The problematic is thus moving from the design of large complex systems to the continuous optimisation of components, taking into account manufacturing and maintainability constraints, in particular with the increasing implementation of composite materials. The provided training is supporting such a change.

More specifically, the M2 option "Aerospace Propulsion" is focusing on the design process of an aircraft or a rocket engine, providing a practical understanding of all aspects of the industry, from design to manufacture and maintenance. Graduates should drive components redesign, for optimisation for new purposes or for adaptation to new production processes or maintenance procedures.

Read less
Aerospace engineering has evolved and diversified since the early days of powered flight. Employers now require skills ranging from aerodynamics and flight control to space engineering simulation and design. Read more
Aerospace engineering has evolved and diversified since the early days of powered flight. Employers now require skills ranging from aerodynamics and flight control to space engineering simulation and design. This diversity means that engineers need to be able to operate and develop advanced devices, and understand complex theoretical and computational models.

* This programme will give you advanced skills in computational modelling, numerical techniques and an in-depth understanding in engineering approaches to aerospace problems
* After your degree, you will be well prepared to develop new computational and technological products for the aerospace industries
* You will join research groups working at the cutting edge of aerospace engineering, and computational modelling
* This is a well established course with variety and choice for students - there are a wide number of engineering modules, but also the chance to specialise on your own area

Why study with us?

The School of Engineering and Materials Science (SEMS) undertakes high quality research in a wide range of areas. This research feeds into our teaching at all levels, helping us to develop very well qualified graduates with opportunities for employment both in many leading industries as well as in research. Both Engineering and Materials are very well established at Queen Mary, with the Aerospace Department being the first established in the UK. Our aerospace teaching programmes were ranked number 2 in the UK in the 2011 National Student Survey.

Studying Engineering has taught me to think, plan, organise and execute tasks in a systematic and methodical manner. Osman Bawa

* This MSc programme is available to students from a variety of non-engineering backgrounds such as Physics, Maths, and Electronic Engineering
* It was the first of its kind in the country; offering some unique modules including, Aeroelasticity, Crash worthiness, and Space engineering
* Students will collaborate with researchers working in alternative fuels sources, so it is relevant and timely
* Aerospace Engineering is an employment related field which allows you to keep up-to-date with the latest developments in design, aerodynamics, propulsion and technology.

Facilities

You will have access to a range of facilities, including:

* Excellent computing resources such as a high-performance computing cluster, several high-performance PC clusters and parallel high-performance SGI computer clusters, an extensive unit of Linux and UNIX workstations.
* A wide range of experimental facilities from low speed wind tunnels with one of the lowest ever recorded turbulence level of 0.01% to supersonic wind tunnels, anechoic chamber dedicated to aeroacoustics problems, two new state-of-the-art electrospray technology laboratories, experimental propulsion, an advanced CueSim flight simulator and labs equipped with modern measurements techniques.
* Engineering and Materials Sciences postgraduates will also have access to the School's extensive experimental facilities used for materials, the latest electron microscopes and a brand new Nanovision centre.

Read less
Today’s military aviation platforms are complex systems and it is essential, therefore, that they are deployed and maintained in such a way as to ensure their continued airworthiness and the safety of the crew operating them. Read more

Course Description

Today’s military aviation platforms are complex systems and it is essential, therefore, that they are deployed and maintained in such a way as to ensure their continued airworthiness and the safety of the crew operating them. To achieve this requires engineers to be cognisant of a broad range of aerospace engineering, airworthiness and safety disciplines.

The MSc in Military Aerospace and Airworthiness has been designed to address these needs by providing a course aimed specifically at employees in the MoD, the Armed Forces and the international defence industry. It provides practicing engineers with the knowledge and skills to enable them to work more effectively in aerospace engineering, airworthiness, and safety. The course structure allows students to continue in full-time employment whilst they are studying.

Cranfield University has been at the forefront of postgraduate education in aeronautics and engineering for over 60 years, so you can be sure that your qualification will be valued and respected by employers.

Overview

The MSc distinguishes itself from similar courses offered by leading UK Universities by offering one focussed specifically on the Military context and offers unique subject areas unavailable elsewhere. You will be taught by staff, primarily from Cranfield Defence and Security at Shrivenham, and the School of Engineering at Cranfield, Bedfordshire, many of them world leaders in their field. Visiting lecturers include experts from industry, research establishments, and the MoD. The course draws students from the UK and Western Europe giving an eclectic mix to the classroom environment. Maximum number of places: 25 per year.

Course overview

The course is delivered on a part-time basis. It contains five compulsory modules:
- Airworthiness of Military Aircraft
- Aviation Safety Management
- Fixed-Wing Aeromechanics
- Propulsion Systems
- Safety Assessment of Aircraft Systems

which together provide an overarching introduction to the subject of military aerospace and airworthiness and impart the essential knowledge required by all students on the course.

Students choose one further module to complete the PgCert or a further seven modules to complete the PgDip (MSc taught phase). This provides students with the flexibility to tailor their studies to account for prior educational and work experience and the current and future needs of their employment role.

The modules taken in the taught phase of the MSc (the PgDip) provide students with the knowledge and skills necessary to complete a research-based project, which forms the final part of the Masters award.

Modules

Core:
- Study Skills (non-assessed)
- Airworthiness of Military Aircraft
- Aviation Safety Management
- Fixed-Wing Aeromechanics
- Fundamentals of Aeronautical Engineering Top-up (FAE qualified students only)
- Propulsion Systems
- Safety Assessment of Aircraft Systems
- Research Project (MSc only)

Elective:
- Aircraft Accident Investigation and Response
- Aircraft Fatigue and Damage Tolerance
- Aircraft Survivability
- Air Transport Engineering - Maintenance Operations
- Design Durability and Integrity of Composite Aircraft Structures
- Fundamentals of Aircraft Engine Control
- Guided Weapons
- Human Factors in Aircraft Maintenance
- Introduction to Aircraft Structural Crashworthiness
- Introduction to Human Factors
- Mechanical Integrity of Gas Turbines
- Military Aircraft Systems
- Military Avionics -STA Communications and Navigation
- Practical Reliability
- Rotary-Wing Aeromechanics

Individual Project

The individual research project would focus on a topical subject area covered by the taught phase of the course. The subject of the project can be chosen to match the research needs of the sponsor and/or the interests of the individual student and students are encouraged to utilise their employment resources to place the project in context. Lecturing staff on both campuses will undertake supervision of research projects.

Assessment

Specific assessment details will be dependent upon the modules chosen but will include closed-book written examinations, individual and group design exercises, technical essays, engineering calculations, computer-based assessment.
In addition, for MSc students, the assessment includes lectures and tutorials relating to research, methodologies, project planning, research ethics, plagiarism and technical writing skills, one-to-one discussion with a nominated
academic supervisor, examination of a written dissertation and viva voce examination.

Career opportunities

The course creates opportunities to develop your career at a more senior level and in achieving Incorporated or Chartered Engineer status.

For further information

On this course, please visit our course webpage http://www.cranfield.ac.uk/courses/masters/military-aerospace-and-airworthiness.html

Read less
The MSc in Power, Propulsion and the Environment course is an important element in the development of engineers with an environmental awareness. Read more

Course Description

The MSc in Power, Propulsion and the Environment course is an important element in the development of engineers with an environmental awareness. This course is suitable for talented graduates seeking a challenging and rewarding career in an international growth industry. The course is suitable for graduates seeking a challenging and rewarding career in an growing international industry. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand.

The gas turbine is employed today in a wide variety of industrial applications including oil, power, and process industries. The continuing expansion of the applications of rotating machinery implies that a multidisciplinary approach to their design and selection is required. This should take into account their techno-economic and environmental impact.

Course overview

The course consists of approximately ten to fifteen taught modules and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:

- Provide the skills required for a rewarding career in the field of propulsion and power.
- Meet employer requirements for graduates within power and propulsion industries.
- Demonstrate a working knowledge and critical awareness of gas turbine performance, analysis techniques, component design and associated technologies.
- Explain, differentiate and critically discuss the underpinning concepts and theories for a wide range of areas of gas turbine engineering and associated applications.
- Be able to discern, select and apply appropriate analysis techniques in the assessment of particular aspects of gas turbine engineering.

Individual Project

You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner.

Recent Individual Research Projects include:

- Benchmark of methods to measure the density of atmospheric ice
- Green runway: investigation of emissions and noise for large aircraft operation within an airport.
- Techno economic environmental risk assessment on marine propulsion.

Assessment

The final assessment is based on two components of equal weight; the taught modules (50%) and the individual research project (50%). Assessment is by examinations, assignments, presentations and thesis.

Funding

A variety of funding, including industrial sponsorship, is available. Please contact us for details.

Cranfield Postgraduate Loan Scheme (CPLS) - https://www.cranfield.ac.uk/Study/Postgraduate-degrees/Fees-and-funding/Funding-opportunities/cpls/Cranfield-Postgraduate-Loan-Scheme

The Cranfield Postgraduate Loan Scheme (CPLS) is a funding programme providing affordable tuition fee and maintenance loans for full-time UK/EU students studying technology-based MSc courses

Career opportunities

- Gas turbine engine manufacturers
- Airframe manufacturers
- Airline operators
- Regulatory bodies
- Aerospace/Energy consultancies
- Power production industries
- Academia: doctoral studies.

Further Information

For further information on this course, please visit our course webpage - http://www.cranfield.ac.uk/Courses/Masters/Power-Propulsion-and-the-Environment-option

Read less
Demand for aerospace engineering graduates is rising, both in the UK and overseas. In fact, the UK aerospace industry is the second biggest in the world after the USA, and it’s home to some of the world’s leading aerospace companies such as Airbus, Astrium, BAE Systems, GKN and Rolls-Royce. Read more

Demand for aerospace engineering graduates is rising, both in the UK and overseas. In fact, the UK aerospace industry is the second biggest in the world after the USA, and it’s home to some of the world’s leading aerospace companies such as Airbus, Astrium, BAE Systems, GKN and Rolls-Royce.

Taught by expert academics in a leading research environment, this programme will equip you with the knowledge and skills to succeed in an exciting and challenging sector. You’ll study aerospace structures and structural analysis, along with optional, specialist modules in areas such as aerodynamics and computational fluid dynamics, aircraft design, systems and optimisation methods, rotary wing aircraft and propulsion.

Our Aerospace Engineering Industrial Advisory Board is actively engaged in ensuring this course meets the needs of industry and reflects trends in the sector. It also provides industrial talks and seminars and advice and support to our students during their professional projects.

In addition to our advanced CAD facilities for design work, we have the latest industry-standard software for computational fluid dynamics and finite element modelling of material stress analysis, programming and structural and multidisciplinary optimisation.

Accreditation

We are currently seeking accreditation from the Institute of Mechanical Engineers (IMechE) and the Royal Aeronautical Society.



Read less
The Aircraft Design option of the MSc in Aerospace Vehicle Design (AVD) aims to provide a comprehensive overview of aircraft performance, structures and systems. Read more

Course Description

The Aircraft Design option of the MSc in Aerospace Vehicle Design (AVD) aims to provide a comprehensive overview of aircraft performance, structures and systems. A holistic teaching approach is taken to explore how the individual elements of an aircraft can be designed and integrated using up-to-date methods and techniques. You will learn to understand how to select specific systems such as fuel systems, and their effect on the aircraft as a whole.
This course is suitable for students with a background in aeronautical or mechanical engineering or those with relevant industrial experience.

Overview

Modern aircraft design focuses on the integration of new technologies and systems, with current and advanced configurations to lead us towards environmentally friendly and cost effective aviation in the civil arena and high performance and effective aviation in the military arena. This includes new structures, materials and manufacturing processes. New aircraft design is essential to address issues such as carbon footprint reduction, lower noise pollution and improved passenger comfort as well as contributing to national security.

Our work in this field covers all flying vehicles including civil and military aircraft, helicopters, Unmanned Aerial Vehicle Systems (UAVS), ultra-high capacity airlines and space vehicles. Current research being undertaken includes:

Advanced Configurations – such as blended wing and morphing wing aircraft design. This includes both fixed wing and rotorcraft vehicles.

Advanced Systems Integration – such as Distributed Propulsion using hydrogen or alternative fuels for power and high temperature superconducting materials technology.

Advanced Materials and Manufacturing Processes – exploring the benefits achieved through the application of advanced composite materials.

Advanced Design Methodologies – developing techniques to ensure that optimum designs are achieved.

Airworthiness Compliance – ensuring new designs demonstrate the same safety requirements as traditional aircraft.

Operational Aspects – cost, performance, reliability and maintainability are important features of aircraft design as well as advanced techniques such as Integrated Vehicle Health Management (IVHM). Vulnerability and susceptibility also have a major impact.

Biomimetics – taking lessons from nature for example insects and birds, and their application in aviation such as launch, recovery and flight.

English Language Requirements

If you are an international student you will need to provide evidence that you have achieved a satisfactory test result in an English qualification. The minimum standard expected from a number of accepted courses are as follows:

IELTS - 6.5
TOEFL - 92
Pearson PTE Academic - 65
Cambridge English Scale - 180
Cambridge English: Advanced - C
Cambridge English: Proficiency - C

In addition to these minimum scores you are also expected to achieve a balanced score across all elements of the test. We reserve the right to reject any test score if any one element of the test score is too low.

Structure

The Aircraft Design option consists of a taught component, a group design project and an individual research project.

Individual Project

The individual research project aims to provide the training necessary for you to apply knowledge from the taught element to research, and takes place from March to September. The project may be theoretical and/or experimental and drawn from a range of topics related to the course and suggested by teaching staff, your employer or focused on your own area of interest.

Group Project

The extensive group design project is a distinctive and unique feature of this course. This teamwork project takes place from October to March, and recreates a virtual industrial environment bringing together students with various experience levels and different nationalities into one integrated design team.

Each team member is given responsibility for the detailed design of a significant part of the aircraft, for example, forward fuselage, fuel system, or navigation system. The project will progress from the conceptual phase through to the preliminary and detail design phases. You will be required to run project meetings, produce engineering drawings and detailed analyses of your design. Problem solving and project coordination must be undertaken on a team and individual basis. At the end of the project, groups are required to report and present findings to a panel of 200 senior engineers from industry.

This element of the course is both realistic and engaging, and places the student group in a professional role as aerospace design engineers. Students testify that working as an integrated team on real problems is invaluable and prepares them well for careers in a highly competitive industry.

Assessment

The taught modules (10%) are assessed by an examination and/or assignment. The Group Project (50%) is assessed by a written technical report and oral presentations. The Individual Research Project (40%) forms the remainder of the course.

Career opportunities

The MSc in Aircraft Design is valued and respected by employers worldwide. The applied nature of this course ensures that our graduates are ready to be of immediate use to their future employer and has provided sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression.

This course prepares graduates for careers as project design engineers, systems design, structural design or avionic engineers in aerospace or related industries, with the aim of progressing to technical management/chief engineer. Graduates from the MSc in Aircraft Design can therefore look forward to a varied choice of challenging career opportunities in the above disciplines.

Many of our graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry. Typical student destinations include BAE Systems, Airbus, Dassault and Rolls-Royce.

For further information

on this course, please visit our course webpage http://www.cranfield.ac.uk/Courses/Masters/AVD-Option-Aircraft-Design

Read less
This course is accredited by the Institution of Mechanical Engineers (IMechE) and provides a route for you to achieve Chartered Engineer (CEng) status. Read more

Why this course?

This course is accredited by the Institution of Mechanical Engineers (IMechE) and provides a route for you to achieve Chartered Engineer (CEng) status.

It has been developed to provide high-calibre mechanical engineering graduates with an in-depth technical understanding of advanced mechanical engineering topics together with generic skills that will allow them to contribute effectively post graduation.

The course helps you to become a specialist in the area of aerospace. You'll also have the opportunity to take modules in general skills such as project management and risk analysis. These are necessary skills for any professional aerospace engineer.

You’ll study

You'll study three compulsory modules:
- Aerodynamics Performance
- Aerodynamic Propulsion Systems
- Spaceflight Mechanics

You'll select a number of specialist instructional classes in your chosen area. You'll also choose three generic skill modules from the following topics:
- Design Management
- Project Management
- Sustainability
- Information Management
- Finance
- Risk Management
- Environmental Impact Assessment
- Knowledge Engineering & Management for Engineers

MSc students take on an individual project which allows study of a selected topic in-depth. This may be an industry-themed project or one aligned to engineering research at Strathclyde.

Facilities

Our facilities include many laboratories and research centres including:
- Advanced Space Concepts Laboratory
- Energy Systems Research Unit
- Future Air-Space Transportation Technology
- James Weir Fluids Laboratory
- Mechanics & Materials Research Centre

We have local access to a 3500-node region supercomputer.

Accreditation

This course is accredited by the Institution of Mechanical Engineers and meets requirements for Chartered Engineer (CEng) status.

English language requirements for international students

IELTS - minimum overall band score of 6.5 (no individual test score below 5.5).

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Students take three compulsory modules and a selection of specialist and generic modules.
To qualify for the MSc, students undertake an individual project which allows study of a selected topic in depth, normally industry-themed or aligned to engineering research at Strathclyde.

Assessment

Assessment is by written assignments, exams and the individual project.

Careers

This course is particularly suitable for graduate engineers in these sectors:
- chemical, petrochemical & process engineering
- design engineering
- power generation
- manufacturing
- oil & gas
- renewable energy

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/

Read less
The objective of the Space Engineering MSc is to educate highly skilled professionals, qualified to develop and manage technical activities related to research and design in the space sector. Read more

Mission and goals

The objective of the Space Engineering MSc is to educate highly skilled professionals, qualified to develop and manage technical activities related to research and design in the space sector. Space Engineering graduates have all the competences to fully develop activities related to the design, technical analysis and verification of a space mission. Within these activities, in particular, graduates from Politecnico di Milano can develop specific skills in the areas of: mission analysis, thermal and structural design of space components, design of the space propulsion and power generation system, design of the orbit and attitude control systems, space systems integration and testing.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/space-engineering/

Professional opportunities

The knowledge gained through the degree in Space Engineering is suited to responsibility positions where working autonomy is required. As an example, positions offered by the space industry, research centres, private or public companies involved in the design, manufacturing and testing of space components. Furthermore, the skills and competences of the space engineer are well suited to companies involved in the design and manufacturing of products characterized by lightweight structures and autonomous operation capacity, and more in general where advanced design tools and technologies are adopted.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Space_Engineering_02.pdf
The Master of Science programme in Space Engineering aims at training professionals able to develop and manage technical activities related to research and design in the space sector. Within these activities, students can develop specific skills in the following areas: mission analysis, thermal and structural design of space components, design of the space propulsion and power generation system, design of the orbit and attitude control systems, and space systems integration/testing. Space engineers are suitable for positions offered by the space industry, research centres, private or public companies involved in the design, manufacturing and testing of space components, or generally in the design of advanced technologies. The programme is taught in English.

Subjects

- 1st year
Aerothermodynamics, Orbital Mechanics, Aerospace Structures, Dynamics and Control of Aerospace Structures with Fundamentals of Aeroelasticity, Fundamentals of Thermochemical Propulsion, Heat Transfer and Thermal Analysis, Communications Skills.

- 2nd year
Spacecraft Attitude Dynamics and Control, Space Propulsion and Power Systems, Space Physics, Numerical Modeling of Aerospace Systems, Experimental Techniques in Aerospace Engineering, Aerospace Technologies and Materials, Telecommunication Systems, Space Mission Analysis and Design, Graduation Thesis and Final Work.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/space-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/space-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Gas Turbine Technology provides a comprehensive background in the design and operation of different types of gas turbines for all applications. Read more

Course Description

Gas Turbine Technology provides a comprehensive background in the design and operation of different types of gas turbines for all applications. This course is designed for those seeking a career in the design, development, operations and maintenance of power and propulsion systems. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand. The course is suitable for graduates seeking a challenging and rewarding career in an international growth industry.

The UK continues to lead the world in power and propulsion technology. In addition to its established aerospace role, the gas turbine is finding increasing application in power generation, oil and gas pumping, chemical processing and power plants for ships and other large vehicles.

Course overview

The course consists of approximately ten to fifteen taught modules and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:

- Provide the skills required for a rewarding career in the field of propulsion and power.
- Meet employer requirements for graduates within power and propulsion industries.
- Demonstrate a working knowledge and critical awareness of gas turbine performance, analysis techniques, component design and associated technologies.
- Explain, differentiate and critically discuss the underpinning concepts and theories for a wide range of areas of gas turbine engineering and associated applications.
- Be able to discern, select and apply appropriate analysis techniques in the assessment of particular aspects of gas turbine engineering.

Individual Project

You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner.

Recent Individual Research Projects include:

- S-duct aerodynamic shape multi-objective optimisation
- Performance modelling of evaporative gas turbine cycles for marine applications
- Mechanical integrity/stress analysis of the high pressure compressor of a new engine
- High pressure turbine blade life analysis for a civilian derivative aircraft conducting military operations
- Engine performance degradation due to foulants in the environment
- Effects of manufacturing tolerances on gas turbine performance and components
- Development of a transient combustion model
- Numerical fan modelling and aerodynamic analysis of a high bp ratio turbofan engine
- Combustor modelling
- Impact of water ingestion on large jet engine performance and emissions
- Windmilling compressor and fan aerodynamics
- Neural networks based sensor fault diagnostics for industrial gas turbine engines
- Boundary layer ingestion for novel aircraft
- Multidisciplinary design optimisation for axial compressors
- Non-linear off design performance adaptation for a twin spool turbofan engine
- Engine degradation analysis and washing effect on performance using measured data.

Modules

The taught programme for the Gas Turbine Technology masters consists of seven compulsory modules and up to seven optional modules. The modules are generally delivered from October to April.

Core -

Blade Cooling
Combustors
Engine Systems
Gas Turbine Theory and Performance
Mechanical Design of Turbomachinery
Gas Turbine Simulation and Diagnostics
Turbomachinery

Optional -

Computational Fluid Dynamics
Fatigue and Fracture
Gas Turbine Applications
Jet Engine Control (only October intake)
Management for Technology
Propulsion Systems Performance and Integration
Rotating Equipment Selection

Assessment

The final assessment is based on two components of equal weight; the taught modules (50%) and the individual research project (50%). Assessment is by examinations, assignments, presentations and thesis.

Funding

A variety of funding, including industrial sponsorship, is available. Please contact us for details.

Cranfield Postgraduate Loan Scheme (CPLS) - https://www.cranfield.ac.uk/Study/Postgraduate-degrees/Fees-and-funding/Funding-opportunities/cpls/Cranfield-Postgraduate-Loan-Scheme

The Cranfield Postgraduate Loan Scheme (CPLS) is a funding programme providing affordable tuition fee and maintenance loans for full-time UK/EU students studying technology-based MSc courses.

Career opportunities

- Gas turbine engine manufacturers
- Airframe manufacturers
- Airline operators
- Regulatory bodies
- Aerospace/Energy consultancies
- Power production industries
- Academia: doctoral studies.

Further Information

For further information on this course, please visit our course webpage - http://www.cranfield.ac.uk/Courses/Masters/Gas-Turbine-Technology-option-Thermal-power

Read less
NOTE. Are you a student from outside the EU? If you are an International student we have designed a version of this award especially for you! It is called the Extended International Master in Aeronautical Engineering. Read more
NOTE: Are you a student from outside the EU? If you are an International student we have designed a version of this award especially for you! It is called the Extended International Master in Aeronautical Engineering. It includes an extra semester of preliminary study to prepare you for postgraduate learning in the UK. We strongly recommend that all international students take this option as it is proven to improve your chances of success. Take a look at this alternative course here.

About the Course A focus on the practical application of the advanced theories learnt. Familiarisation with a range of industry standard design and analysis software. The opportunity to undertake low cost gliding, with reduced price club membership for students. Good career prospects. The aerospace industry is one of the UK's most successful industrial sectors, with its involvement in major international project groups including Airbus, Rolls Royce, British Aerospace to name but a few. Not every university that teaches engineering includes Aeronautical Engineering in its portfolio, but Staffordshire University is proud to be running a new and innovative MSc award in this area which started September 2012.

The MSc in Aeronautical Engineering builds upon the success of the undergraduate Aeronautical programme which has been running at Staffordshire for over ten years. The MSc is an award for the graduate engineer (who will have usually studied a BEng(hons) in Mechanical or Aeronautical Engineering or equivalent, or possibly a BSc(hons) in Aeronautical Technology) and who wishes to expand and deepen their knowledge of aeronautical engineering.

The MSc covers a broad range of areas including fixed wing and rotary aircraft, subsonic and supersonic flight regimes, aircraft propulsion systems, aircraft control systems, materials, etc. As well as taught classes, students use our extensive range of laboratories which include industry standard design and analysis software, including Pro Engineer, Phoenix CFD, ANSYS FEA, etc.

Course content

Students study eight taught modules then undertake a research-based dissertation, the length of the course being about 12 months in total.

Modules studied include: ​​​
-Technical and Study Skills
-Research Methods and Project Management
-Control Systems for Aeronautics
-Structural Integrity
-Aircraft Propulsion Systems
-Advanced Aeronautics
-Advanced Vehicle Aerodynamics
-MSc Project the 60 credit dissertation module, student centred but with close staff guidance.

Options include:
-MSc Project by Distance Learning (as an alternative to the MSc Project)
-Advanced Engineering Materials
-Technical Paper Authoring
-Industrial Responsibility

Employment opportunities

It is envisaged that graduates from the MSc in Aeronautical Engineering will be in a position to apply for a large range of technical, engineering, analytical, operation or management jobs within the aerospace and airline industries.

Read less
Aeronautical engineering graduates are highly valued and in great demand. This Masters course is ideal for graduates seeking employment in the aeronautical sector and for practising aerospace engineers who want to extend and update their skills. Read more
Aeronautical engineering graduates are highly valued and in great demand. This Masters course is ideal for graduates seeking employment in the aeronautical sector and for practising aerospace engineers who want to extend and update their skills.

Progression to management is key to the careers of postgraduate engineers, so as part of the course you will develop relevant managerial skills, as well as an awareness of the wider issues that affect the aeronautical industry, such as safety and the environment. The course meets the academic requirements for Chartered Engineer (CEng) status with the Institution of Mechanical Engineering (IMechE) and the Royal Aeronautical Society (RAeS).

The University has recently built an Aerospace Centre on the Pontypridd Campus, which includes a BAE Jetstream aircraft, laboratory equipment, a gas turbine engine, wind tunnel and a flight simulator, as well as state-of-the-art engineering analysis software.

We have comprehensive links with industry through our Industrial Panel, which contains representatives from major companies, including BAMC, Storm, GE Aviation Systems, Nordam Europe, TES and BA Avionics.

See the website http://courses.southwales.ac.uk/courses/641-msc-aeronautical-engineering

What you will study

Modules include:
- Further Engineering Materials
- Aircraft Propulsion
- Finite Element Analysis
- Computational Fluid Dynamics
- Aircraft Structures
- Non-destructive Testing
- Safety, Health and Environment
- Integrated Project Planning and
- Management
- Dissertation

Learning and teaching methods

The course is delivered in two major blocks to offer an intensive but flexible learning pattern, with two start points each year – February and September. Modules involve lectures, tutorials and practical laboratory work, with continually assessed coursework or a mixture of coursework and exams.

Work Experience and Employment Prospects

Employment prospects are strong in this dynamic and diverse industry. Those with an MSc Aeronautical Engineering degree enhance their career opportunities in commercial and military aircraft engineering, the air transportation industry, teaching or research. The highly technical nature of this course also equips you for careers in many related, technology-intensive fields. Graduates are likely to progress to senior positions in the aeronautical engineering industry and related sectors.

Assessment methods

You will be continually assessed coursework or a mixture of coursework and exams. The dissertation allows you to research a specific aeronautical engineering topic, to illustrate your depth of knowledge, critical awareness and problem-solving skills. The dissertation has three elements of assessment: a thesis, a poster presentation, and a viva voce examination.

Facilities

The University has recently built an Aerospace Centre on the Pontypridd Campus, which includes a BAE Jetstream aircraft, laboratory equipment, a gas turbine engine, wind tunnel and a flight simulator, as well as state-of-the-art engineering analysis software.

Read less
Rotating Machinery, Engineering and Management provides a comprehensive background in the design and operation of different types of rotating equipment for power, oil, gas, marine and other surface applications. Read more

Course Description

Rotating Machinery, Engineering and Management provides a comprehensive background in the design and operation of different types of rotating equipment for power, oil, gas, marine and other surface applications. The course is designed for those seeking a career in the design, development, operation and maintenance of power systems. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand. This course is suitable for graduates seeking a challenging and rewarding career in an international growth industry.

Overview

Rotating machinery is employed today in a wide variety of industrial applications including oil, power, and process industries. With the continuing expansion of the applications of rotating machinery, qualified personnel are required by the increasingly large numbers of users.

English Language Requirements

If you are an international student you will need to provide evidence that you have achieved a satisfactory test result in an English qualification. The minimum standard expected from a number of accepted courses are as follows:

IELTS - 6.5
TOEFL - 92
Pearson PTE Academic - 65
Cambridge English Scale - 180
Cambridge English: Advanced - C
Cambridge English: Proficiency - C

In addition to these minimum scores you are also expected to achieve a balanced score across all elements of the test. We reserve the right to reject any test score if any one element of the test score is too low.

We can only accept tests taken within two years of your registration date (with the exception of Cambridge English tests which have no expiry date).

Structure

The course consists of approximately eight to twelve taught modules and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:
- Provide the skills required for a rewarding career in the field of propulsion and power.
- Meet employer requirements for graduates within power and propulsion industries.
- Demonstrate a working knowledge and critical awareness of gas turbine performance, analysis techniques, component design and associated technologies.
- Explain, differentiate and critically discuss the underpinning concepts and theories for a wide range of areas of gas turbine engineering and associated applications.
- Be able to discern, select and apply appropriate analysis techniques in the assessment of particular aspects of gas turbine engineering.

Modules

The taught programme for the Rotating Machinery, Engineering and Management masters consists of eight compulsory modules and up to four optional modules. The modules are generally delivered from October to April.

Core:
- Blade Cooling
- Combustors
- Engine Systems
- Gas Turbine Theory and Performance
- Management for Technology: Energy
- Mechanical Design of Turbomachinery
- Turbomachinery
- Gas Turbine Operations and Rotating Machines

Optional:
- Computational Fluid Dynamics
- Fatigue and Fracture
- Gas Turbine Simulation and Diagnostics

Individual Project

You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner.

Recent Individual Research Projects include:
- Performance and economic study on the viability of combined cycle floating power barge
- Risk-based maintenance for azep
- Implementation of the nutating disk engine in high bypass turbofan
- Load minimization of tidal turbines
- Gas turbine airfleet maintenance case study
- Airfleet maintenance study
- Advanced bottoming cycle technology
- Cavitation simulation in centrifugal pump.

Assessment

The final assessment is based on two components of equal weight; the taught modules (50%) and the individual research project (50%). Assessment is by examinations, assignments, presentations and thesis.

Career opportunities

- Gas turbine engine manufacturers
- Airframe manufacturers
- Airline operators
- Regulatory bodies
- Aerospace/Energy consultancies
- Power production industries
- Academia: doctoral studies.

For further information

On this course, please visit our course webpage http://www.cranfield.ac.uk/Courses/Masters/Rotating-Machinery-Engineering-and-Management-Option

Read less

Show 10 15 30 per page



Cookie Policy    X