• University of Bristol Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Ulster University Featured Masters Courses
  • University of Surrey Featured Masters Courses
University of Nottingham in China Featured Masters Courses
Cass Business School Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Dundee Featured Masters Courses
Ulster University Featured Masters Courses
"aerospace" AND "propulsi…×
0 miles

Masters Degrees (Aerospace Propulsion)

We have 33 Masters Degrees (Aerospace Propulsion)

  • "aerospace" AND "propulsion" ×
  • clear all
Showing 1 to 15 of 33
Order by 
The key technological achievement underlying the development and growth of the aerospace industry has been the design and development of efficient and economical propulsion systems. Read more

The key technological achievement underlying the development and growth of the aerospace industry has been the design and development of efficient and economical propulsion systems. Major efforts are also now being dedicated to the development of new technologies relevant to the propfan and variable cycle engines. Aerospace Propulsion is a specialist option of the MSc in Thermal Power.

Who is it for?

This course has been designed for those seeking a career in the design, development, operation and maintenance of propulsion systems.

Suitable for graduates seeking a challenging and rewarding career in an established international industry. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand.

Why this course?

This option is structured to enable you to pursue your own specific interests and career aspirations. You may choose from a range of optional modules and select an appropriate research project. An intensive two-week industrial management course is offered which assists in achieving exemptions from some engineering council requirements. You will gain a comprehensive background in the design and operation of different types of propulsion systems for aerospace applications, whilst looking at the methods of propulsion with the main focus on air-breathing engines and the use of gas turbines for propulsion.

We have been at the forefront of postgraduate education in aerospace propulsion at Cranfield since 1946. We have a global reputation for our advanced postgraduate education, extensive research and applied continuing professional development. Our graduates secure relevant employment within six months of graduation, and you can be sure that your qualification will be valued and respected by employers around the world.

Informed by Industry

Our industry partners help support our students in a number of ways - through guest lectures, awarding student prizes, recruiting course graduates and ensuring course content remains relevant to leading employers.

The Industrial Advisory Panel meets annually to maintain course relevancy and ensure that graduates are equipped with the skills and knowledge required by leading employers. Knowledge gained from our extensive research and consultancy activity is also constantly fed back into the MSc programme. The Thermal Power MSc Industrial Advisory Panel is comprised of senior engineers from companies such as:

  • Alstrom
  • Canadian Forces
  • EASA
  • EasyJet
  • E-ON
  • RMC
  • Rolls-Royce
  • Royal Air Force (RAF).

Accreditation

Re-accreditation for the MSc in Thermal Power is currently being sought with the Institution of Mechanical Engineers (IMechE), and the Royal Aeronautical Society (RAeS) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Course details

The taught programme for the Aerospace Propulsion masters consists of eight compulsory modules and up to six optional modules. The modules are generally delivered from October to April.

Individual project

You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner. 

Assessment

Taught modules 50%, Individual research project 50%

Your career

Over 90% of the graduates of the course have found employment within the first year of course completion. Many of our graduates are employed in the following roles and industries:

  • Gas turbine engine manufacturers
  • Airframe manufacturers
  • Airline operators
  • Regulatory bodies
  • Aerospace/energy consultancies
  • Power production industries
  • Academia: doctoral studies


Read less
The Master's degree in Aerospace Engineering is a new graduate program of the Université de Lyon, operated by the École Centrale de Lyon. Read more

The Master's degree in Aerospace Engineering is a new graduate program of the Université de Lyon, operated by the École Centrale de Lyon. It offers a two-year program in Master 1 (M1) [common-core syllabus] and Master 2 (M2) [2 options: "Aerospace Propulsion (PAS)" and "Dynamic and Sustainability of Composite Materials (DDC)"].

The concerned disciplinary fields are fluid mechanics and energy, solid and structural mechanics, materials, and control engineering, in relation with three renowned research laboratories of Lyon: LMFA, LTDS and Ampère.

The Master is in line with the strategic axis "Science and engineering for a sustainable society" defined by the Université de Lyon, as well as with two social challenges identified by the École Centrale de Lyon, "Aeronautics and space" and "Increasing the competitiveness of the industrial economy through innovation and entrepreneurship".

The purpose is to train future technical leaders and researchers for all aspects of the aerospace industry from major constructors like SAFRAN and Airbus, to component suppliers. A special attention is paid to make students aware of codes, languages and common practice in the industry. Furthermore, this industry is intrinsically transnational, with numerous opportunities to work abroad with connections to France or to work in France with connections to other countries. So the students are given the opportunity to develop international/intercultural skills.

It is to notice that the aerospace industry is subjected to long-term cycles. A "design" dominated stage with ambitious projects (A380, A350, A400M, EC 175, LEAP, …) is ending, while a "production" dominated stage is starting for the next decade. The problematic is thus moving from the design of large complex systems to the continuous optimisation of components, taking into account manufacturing and maintainability constraints, in particular with the increasing implementation of composite materials. The provided training is supporting such a change.

More specifically, the M2 option "Aerospace Propulsion" is focusing on the design process of an aircraft or a rocket engine, providing a practical understanding of all aspects of the industry, from design to manufacture and maintenance. Graduates should drive components redesign, for optimisation for new purposes or for adaptation to new production processes or maintenance procedures.



Read less
The programme provides a preparation particularly focused on issues of design, operation and maintenance of aircraft and their on-board systems. Read more

Mission and goals

The programme provides a preparation particularly focused on issues of design, operation and maintenance of aircraft and their on-board systems. The objective is to prepare highly culturally and professionally qualified technicians able to carry out and manage activities related to research and design in the fields of aerodynamics, materials, lightweight structures, aircraft systems and aerospace propulsion in national and international contexts, both in autonomy or in cooperation.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

Career opportunities

The graduate finds employment in aeronautical and space industries; in public and private bodies for experimentation in the aerospace field; in aircraft fleet management and maintenance companies; in air-traffic control agencies; in the airforce; in industries producing machinery and equipment in which aerodynamics and lightweight structures play a significant role.
Aeronautical engineers are particularly sought after in related fields. In fact, they may be involved in the design of terrestrial or nautical vehicles or large buildings or bridges or even in the design of power plants. Graduates are also in demand in the lightweight constructions industry, in the motor industry in the areas of monitoring the mechanical behaviour of structures subject to stress.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Aeronautical_Engineering.pdf
This programme aims at providing the students with specific skills in design, operation and maintenance of aircrafts and their on-board systems. The objective is to prepare culturally and professionally highly qualified technicians able to carry out and manage activities related to research and design in the fields of aerodynamics, materials, lightweight structures, aircraft systems and aerospace propulsion. Graduates can find employment in national and international contexts in aeronautical and space industries, public and private bodies for experimentation in the aerospace field, aircraft fleet management and maintenance companies, air-traffic control agencies, or in the air force. The track in Rotary wing is taught in English, while the other tracks are partially available in English.

Subjects

Specializations available:
- Aerodynamics
- Flight mechanics and systems
- Propulsion
- Structures
- Rotary-wing aircraft

Mandatory courses are:
- Aerodynamics
- Flight Dynamics
- Aerospace Structures
- Dynamics and control of aerospace structures

Other courses:
- Fundamentals of Aeroelasticity
- Nonlinear analysis of aerospace structures
- Fundamentals of Thermochemical propulsion
- Management of aerospace projects
- Gasdynamics
- Aircraft instrumentation & integrated systems
- Aircraft Design
- Heat transfer and thermal analysis
- Numerical modeling of differential problems
- Rotorcraft design
- Aircraft engines
- Airport and air traffic management
- Aerospace materials
- Communication skills
- Thesis

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Gain fundamental and applied knowledge applicable to the understanding of the design and operation of different types of gas turbines for all applications. Read more

Gain fundamental and applied knowledge applicable to the understanding of the design and operation of different types of gas turbines for all applications. Pursue your own specific interests and career aspirations through a wide range of modules through four specialist options:

Who is it for?

This course aims to provide both fundamental and applied knowledge applicable to the understanding of the design and operation of different types of gas turbines for all applications. Suitable for graduates seeking a challenging and rewarding career in an established international industry.

Why this course?

The MSc course in Thermal Power is structured to enable you to pursue your own specific interests and career aspirations. You may choose from a wide range of modules and select an appropriate research project. An intensive industrial management course is offered which assists in achieving exemptions from some engineering council requirements.

The course is embedded in a large power and propulsion activity that is recognised internationally for its enviable portfolio of research, short courses and postgraduate programmes.

We have been at the forefront of postgraduate education in aerospace propulsion at Cranfield since 1946. We have a global reputation for our advanced postgraduate education, extensive research and applied continuing professional development. Our graduates secure relevant employment within six months of graduation, and you can be sure that your qualification will be valued and respected by employers around the world.

This MSc programme benefits from a wide range of cultural backgrounds which significantly enhances the learning experience for both staff and students.

Informed by Industry

Our industry partners help support our students in a number of ways - through guest lectures, awarding student prizes, recruiting course graduates and ensuring course content remains relevant to leading employers.

The Industrial Advisory Panel meets annually to maintain course relevancy and ensure that graduates are equipped with the skills and knowledge required by leading employers. Knowledge gained from our extensive research and consultancy activity is also constantly fed back into the MSc programme. The Thermal Power MSc Industrial Advisory Panel is comprised of senior engineers from companies such as:

  • Alstom
  • Canadian Forces
  • EASA
  • EasyJet
  • E-ON
  • RMC
  • Rolls-Royce
  • Royal Air Force (RAF)

Accreditation

Re-accreditation for the MSc in Thermal Power is currently being sought with the Institution of Mechanical Engineers (IMechE), and the Royal Aeronautical Society (RAeS) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Course details

The course is comprised of taught modules, depending on the course option chosen. Modules for each option vary; please see individual descriptions for compulsory modules which must be undertaken. There is also an opportunity to choose from an extensive choice of optional modules to match specific interests.

Individual project

You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in the presence of an external examiner.

Previous Individual projects have included:

  • Techno-economic, Environmental and Risk Assessment Studies
  • Centrifugal Compressors Simulations and Diagnostics for oil and gas applications
  • Advanced Power Generation Systems with Low Carbon Emissions
  • Design of Turbines for use in Oscillating Water Columns
  • Design of a 1MW Industrial Gas Turbine
  • Gas Path Analysis for Engine Diagnostics
  • Procurement Criteria for Civil Aero-Engines
  • Selection of Combined Heat and Power Plants
  • Condition Monitoring Systems Instrumentation
  • Repowering Steam Turbine Plants
  • Combined Cycle Plant Technical and Economic Evaluation.

Assessment

Taught modules 50%, Individual research project 50%

Your career

Over 90% of the graduates of the course have found employment within the first year of course completion. Many of our graduates are employed in the following industries:

  • Gas turbine engine manufacturers
  • Airframe manufacturers
  • Airline operators
  • Regulatory bodies
  • Aerospace, and energy consultancies
  • Power production industries
  • Academia: doctoral studies.


Read less
This specialist course has been developed to equip graduate engineers with the skills required of a highly demanding aerospace industry. Read more

About the course

This specialist course has been developed to equip graduate engineers with the skills required of a highly demanding aerospace industry.

Taught modules are balanced with practical and challenging individual and group aerospace project work. You will learn about aircraft design aerodynamics, space mechanics, spacecraft design, propulsion systems and the role of flight simulation in aerospace at an
advanced level.

Practical projects typically include the design, build and testing of a scale aircraft, computational fluid dynamics and structural analysis modelling of a critical aerospace component and flight performance evaluation using a flight simulator.

MSc Aerospace Engineering is accredited by the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE). This will provide a route to Chartered Engineer status in the UK.

Aims

Although the course has a distinct specialist and technical flavour, the MSc also seeks to provide graduates with a raft of non-technical skills to enable them to realise their professional potential to its fullest.

To this end, the course provides modules that cover topics in strategic management, enterprise, research and innovation, as well as exploring issues that are of special importance to the future of the aerospace industry, such as safety, security, and sustainability.

Course Content

The MSc Aerospace Engineering course consists of five taught modules, a group project, and an individual project and dissertation.

Compulsory Modules

Design and Analysis of Aerospace Vehicles
Advanced Aerodynamics, Propulsion Systems, and Space Mechanics
Current Topics in Aerospace
Strategic Management Innovation and Enterprise
Research Methodology and Sustainable Engineering
Group Project in Aerospace Engineering
Aircraft Structures, Loads and Aeroelasticity
Dissertation

Special Features

Highly rated by students

Mechanical Engineering at Brunel ranks highly in the Guardian league tables for UK universities, with a student satisfaction score of 86.4% in 2015. Postgraduate students can therefore expect to benefit from an experienced and supportive teaching base whilst having the opportunity to thrive in a dynamic and high-profile research environment.

Outstanding facilities

We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Strong links with industry

We regularly consult aerospace engineering experts to keep our programmes up to date with industry needs. Read more about how we integrated industrial expertise into an MEng Aerospace Engineering module.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

Aerospace Engineering is accredited by the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE). This will provide a route to Chartered Engineer status in the UK.

Assessment

Modules are taught over eight months (from October to May) and are assessed by a balanced combination of examination and assignment.

Read less
This MSc aims to build up your knowledge of the design of flying vehicles such as aircraft, missiles, airships and spacecraft. Select from one of three specialist options and excel in a growing aerospace industry. Read more

This MSc aims to build up your knowledge of the design of flying vehicles such as aircraft, missiles, airships and spacecraft. Select from one of three specialist options and excel in a growing aerospace industry:

Who is it for?

This MSc course provides a taught engineering programme with a focus on the technical, business and management aspects that encompass aircraft design in the civil and military aerospace sectors.

Teaching integrates a range of disciplines required for modern aircraft design, for example:

  • Aircraft systems design
  • Avionic systems design
  • Design for manufacture
  • Initial aircraft design 
  • Operation and cost
  • Propulsion integration
  • Stability and performance 
  • Structural design and Airframe

Why this course?

Cranfield have been at the forefront of postgraduate education in aerospace engineering since 1946 with the Aerospace Vehicle Design being one of the original foundation courses of the College of Aeronautics. Graduates from this course also become members of the Cranfield College of Aeronautics Alumni Association (CCAAA), an active community which holds a number of networking and social events throughout the year.

One unique feature of the course is that we have a range of external examiners, from industry and from academia who continually assess the quality of the course.

Cranfield University is very well located for students from all over the world, and offers a range of library, IT and support facilities to support your studies. This enables students from all over the world to complete this qualification whilst achieving the right balance of work/life commitments.

Informed by Industry

The course has an Industrial Advisory Committee with senior members from major UK aerospace companies, government bodies, and the military services. The committee meets twice a year to review and advise on course content, acquisition skills and other attributes which are deemed desirable from graduates of the course. Panel members have included professionals from organisations such as:

  • Airbus
  • BAE Systems
  • BOEING
  • Department of National Defence and the Canadian Armed Forces.
  • GKN Aerospace 
  • Messier-Dowty
  • Royal Air Force
  • Royal Australian Air Force
  • Thales UK

Accreditation

The MSc in Aerospace Vehicle Design, in part meets the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng (Hons) accredited for CEng will be able to show that they have satisfied the required educational base for CEng registration.

Course details

The taught component of the Aerospace Vehicle Design masters is generally delivered from October to March (or March-August for the March intake). Modules for each option vary - please refer to MSc course option pages for descriptions of compulsory modules which must be undertaken. Students also have an extensive choice of optional modules to match their specific interests.

Group project

The extensive group design project is a distinctive and unique feature of this course. This teamwork project takes place from October to March (or March-August for the March intake), and recreates a virtual industrial environment bringing together students with various experience levels and different nationalities into one integrated design team.

Each team member is given the responsibility for the detailed design of a significant part of the aircraft, for example, forward fuselage, fuel system, or navigation system. The project progress a design from the conceptual phase through to the preliminary and detail design phases. Students will be required to run project meetings, produce engineering drawings and conduct detailed analyses of their design. Problem solving and project co-ordination must be undertaken on a team and individual basis. At the end of the project, the group is required to report and present findings to a panel of up to 200 senior engineers from industry and academia.

This element of the course is both realistic and engaging, and places the whole student group in a professional role as aerospace design engineers. Students testify that working as an integrated team on real problems is invaluable and prepares them well for careers in a highly competitive industry.

Students following the Structural Design option do not participate in the Group Design Project but instead undertake a more intensive individual project.

Watch past presentation videos to give you a taster of our innovative and exciting group projects

Individual project

The individual research project element aims to provide the training necessary for you to apply knowledge from the taught elements to research, and takes place from March to September (or October-February for the March intake). The project may be theoretical and/or experimental and can be selected from a range of topics related to the course as suggested by teaching staff, your employer or even focused on your own area of interest. 

Assessment

Refer to MSc course option pages for breakdown of assessment

Your career

The MSc in Aerospace Vehicle Design is valued and respected by employers worldwide. The applied nature of this course ensures that our graduates are ready to be of immediate use to their future employer and has provided sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression.

This course prepares graduates for careers as project engineers, systems design, structural design or avionic engineers in aerospace or related industries, with the aim of progressing to technical management/chief engineer roles. Graduates from the MSc in Aerospace Vehicle Design can therefore look forward to a varied choice of challenging career opportunities in the above disciplines. 

Many of our graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry. Some example student destinations include BAE Systems, Airbus, Dassault and Rolls-Royce.



Read less
Advance your knowledge of aerospace engineering with our specialist one-year degree. You'll study concepts of systems integration and flight control alongside traditional aeronautical subjects such as materials, structures, aerodynamics and propulsion. Read more

Advance your knowledge of aerospace engineering with our specialist one-year degree.

You'll study concepts of systems integration and flight control alongside traditional aeronautical subjects such as materials, structures, aerodynamics and propulsion. By exploring these topics, you'll learn how to create more efficient and environmentally friendly aircraft and aerospace systems.

You can choose the direction your studies take by specialising further in aeromechanics or avionics.

We have close links with some of the world's leading aerospace companies, which means you'll learn about the latest developments in industry. You will have the opportunity to work alongside industry experts through our 12-week industrial training programme. The group design project gives you the chance to design and build an Unmanned Air Vehicle.

The MSc Advanced Aerospace Technologies degree draws on the considerable expertise of six departments in our engineering and science faculties, as well as the University's Management School. This breadth and depth of study will ensure you graduate as a knowledgeable aerospace engineering specialist.

Core modules

  • Aerospace Group Design Project
  • Aerospace Individual Investigative Project

Optional modules

Avionics stream

  • Industrial Training Programme: Avionics
  • Motion Control and Servo Drives
  • Advanced Space Systems and Space Weather
  • Real-Time Embedded Systems
  • Testing and Verification in Safety Critical Systems
  • Energy Storage Management
  • Hardware-in-the-Loop and Rapid Control Prototyping
  • Antennas, Radar and Navigation
  • Electronic Communication Technologies
  • Advanced Industrial Control
  • Multi-Sensor and Decision Systems
  • Robotics and Autonomous Systems
  • Electrical Energy Management and Conversion
  • Logic and Computation
  • Theory of Distributed Systems
  • State Space Control Design

Aerodynamics and Propulsion stream

  • Industrial Training Programme: Propulsion
  • Reciprocating Engines
  • Advanced Aero Propulsion
  • Theory and Application of Turbulence
  • Acoustics
  • Advanced Fluid Mechanics
  • Advanced Structural Vibrations
  • Advanced Manufacturing
  • Design and Manufacture of Composites
  • Processing of Metals
  • Computational Fluid Dynamics
  • Aircraft Aeroelasticity and Loads

Aerospace Materials, Structures and Manufacturing stream

  • Industrial Training Programme: Aerospace Materials
  • Reciprocating Engines
  • Advanced Aero Propulsion
  • Experimental Stress Analysis
  • Advanced Structural Vibrations
  • Advanced Manufacturing
  • Design and Manufacture of Composites
  • Processing of Metals
  • Finite Element Techniques
  • Aircraft Aeroelasticity and Loads

Teaching

  • Lectures
  • Laboratory classes
  • Tutorials and example classes
  • Design classes
  • Industrial and research seminars
  • Industrial visits
  • Group projects

Assessment

  • Examinations
  • Coursework assignments
  • Oral and poster presentations
  • Class tests


Read less
Our MSc Aerospace Engineering is a fully immersive conversion course for engineering graduates. It draws on the considerable expertise of six departments in our engineering and science faculties, as well as the University's Management School. Read more

Our MSc Aerospace Engineering is a fully immersive conversion course for engineering graduates.

It draws on the considerable expertise of six departments in our engineering and science faculties, as well as the University's Management School. Because we have close links with some of the world's leading aerospace companies, you will learn about the latest developments in industry.

You'll study concepts of systems integration and flight control alongside traditional aeronautical subjects such as materials, structures, aerodynamics and propulsion for the design of high-speed flight and lightweight aircraft. By exploring these topics, you'll learn how to create more efficient and environmentally friendly aircraft and aerospace systems.

You can tailor the course to suit your interests and career aspirations by specialising in either aeromechanics or avionics. You'll graduate as a highly knowledgeable aerospace engineering specialist.

Core modules

  • Aerospace Group Design Project
  • Aerospace Individual Investigative Project
  • Aerodynamic Design
  • Aero Propulsion
  • Flight Dynamics and Control
  • Aircraft Design
  • Space Systems Engineering

Optional modules

Avionics stream

  • Advanced Industrial Control
  • Real-Time Embedded Systems
  • Motion Control and Servo Drives
  • Multi-Sensor and Decision Systems
  • Antennas, Radar and Navigation
  • Energy Storage Management
  • Electronic Communication Technologies
  • State Space Control Design
  • Hardware-in-the-Loop and Rapid Control Prototyping
  • Logic and Computation

Aeromechanics stream

  • Aerospace Metals
  • Reciprocating Engines
  • Theory and Application of Turbulence
  • Advanced Aero Propulsion
  • Advanced Structural Vibrations
  • Advanced Fluid Mechanics
  • Advanced Manufacturing
  • Design and Manufacture of Composites
  • Processing of Metals
  • Finite Element Techniques
  • Computational Fluid Dynamics
  • Aircraft Aeroelasticity and Loads

Teaching

  • Lectures
  • Laboratory classes
  • Tutorials and example classes
  • Design classes
  • Industrial and research seminars
  • Group projects

Assessment

  • Examinations
  • Coursework assignments
  • Oral and poster presentations
  • Class tests


Read less
Aerospace engineering has evolved and diversified since the early days of powered flight. Employers now require skills ranging from aerodynamics and flight control to space engineering simulation and design. Read more
Aerospace engineering has evolved and diversified since the early days of powered flight. Employers now require skills ranging from aerodynamics and flight control to space engineering simulation and design. This diversity means that engineers need to be able to operate and develop advanced devices, and understand complex theoretical and computational models.

* This programme will give you advanced skills in computational modelling, numerical techniques and an in-depth understanding in engineering approaches to aerospace problems
* After your degree, you will be well prepared to develop new computational and technological products for the aerospace industries
* You will join research groups working at the cutting edge of aerospace engineering, and computational modelling
* This is a well established course with variety and choice for students - there are a wide number of engineering modules, but also the chance to specialise on your own area

Why study with us?

The School of Engineering and Materials Science (SEMS) undertakes high quality research in a wide range of areas. This research feeds into our teaching at all levels, helping us to develop very well qualified graduates with opportunities for employment both in many leading industries as well as in research. Both Engineering and Materials are very well established at Queen Mary, with the Aerospace Department being the first established in the UK. Our aerospace teaching programmes were ranked number 2 in the UK in the 2011 National Student Survey.

Studying Engineering has taught me to think, plan, organise and execute tasks in a systematic and methodical manner. Osman Bawa

* This MSc programme is available to students from a variety of non-engineering backgrounds such as Physics, Maths, and Electronic Engineering
* It was the first of its kind in the country; offering some unique modules including, Aeroelasticity, Crash worthiness, and Space engineering
* Students will collaborate with researchers working in alternative fuels sources, so it is relevant and timely
* Aerospace Engineering is an employment related field which allows you to keep up-to-date with the latest developments in design, aerodynamics, propulsion and technology.

Facilities

You will have access to a range of facilities, including:

* Excellent computing resources such as a high-performance computing cluster, several high-performance PC clusters and parallel high-performance SGI computer clusters, an extensive unit of Linux and UNIX workstations.
* A wide range of experimental facilities from low speed wind tunnels with one of the lowest ever recorded turbulence level of 0.01% to supersonic wind tunnels, anechoic chamber dedicated to aeroacoustics problems, two new state-of-the-art electrospray technology laboratories, experimental propulsion, an advanced CueSim flight simulator and labs equipped with modern measurements techniques.
* Engineering and Materials Sciences postgraduates will also have access to the School's extensive experimental facilities used for materials, the latest electron microscopes and a brand new Nanovision centre.

Read less
Demand for aerospace engineering graduates is rising, both in the UK and overseas. In fact, the UK aerospace industry is the second biggest in the world after the USA, and it’s home to some of the world’s leading aerospace companies such as Airbus, Astrium, BAE Systems, GKN and Rolls-Royce. Read more

Demand for aerospace engineering graduates is rising, both in the UK and overseas. In fact, the UK aerospace industry is the second biggest in the world after the USA, and it’s home to some of the world’s leading aerospace companies such as Airbus, Astrium, BAE Systems, GKN and Rolls-Royce.

Taught by expert academics in a leading research environment, this programme will equip you with the knowledge and skills to succeed in an exciting and challenging sector. You’ll study aerospace structures and structural analysis, along with optional, specialist modules in areas such as aerodynamics and computational fluid dynamics, aircraft design, systems and optimisation methods, rotary wing aircraft and propulsion.

Our Aerospace Engineering Industrial Advisory Board is actively engaged in ensuring this course meets the needs of industry and reflects trends in the sector. It also provides industrial talks and seminars and advice and support to our students during their professional projects.

In addition to our advanced CAD facilities for design work, we have the latest industry-standard software for computational fluid dynamics and finite element modelling of material stress analysis, programming and structural and multidisciplinary optimisation.

Accreditation

We are currently seeking accreditation from the Institute of Mechanical Engineers (IMechE) and the Royal Aeronautical Society.



Read less
This course covers all aspects of the gas turbine and other industrial prime movers. It aims to provide you with a thorough knowledge of, and the ability to, assess anthropogenic emissions. . Read more

This course covers all aspects of the gas turbine and other industrial prime movers. It aims to provide you with a thorough knowledge of, and the ability to, assess anthropogenic emissions. 

Power, Propulsion and the Environment is a specialist option of the MSc in Thermal Power.

Who is it for?

This course is suitable for graduates seeking a challenging and rewarding career in an growing international industry. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand.

Why this course?

The MSc option in Power, Propulsion and the Environment is structured to enable you to pursue your own specific interests and career aspirations. You may choose from a wide range of modules and select an appropriate research project. An intensive industrial management course is offered which assists in achieving exemptions from some engineering council requirements. You will receive a thorough grounding in the operation of different types of rotating machinery for aeronautical, marine and industrial applications plus environmental management.

We have been at the forefront of postgraduate education in thermal power and gas turbine technology at Cranfield since 1946. We have a global reputation for our advanced postgraduate education, extensive research and applied continuing professional development. 

This MSc programme benefits from a wide range of cultural backgrounds which significantly enhances the learning experience for both staff and students.

Informed by Industry

Our industry partners help support our students in a number of ways - through guest lectures, awarding student prizes, recruiting course graduates and ensuring course content remains relevant to leading employers.

The Industrial Advisory Panel meets annually to maintain course relevancy and ensure that graduates are equipped with the skills and knowledge required by leading employers. Knowledge gained from our extensive research and consultancy activity is also constantly fed back into the MSc programme. The Thermal Power MSc Industrial Advisory Panel is comprised of senior engineers from companies such as:

  • Alstom
  • Canadian Forces
  • EASA
  • EasyJet
  • E-ON
  • RMC
  • Rolls-Royce
  • Royal Air Force (RAF).

Accreditation

Re-accreditation for the MSc in Thermal Power is currently being sought with the Institution of Mechanical Engineers (IMechE), and the Royal Aeronautical Society (RAeS) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Course details

The course is comprised of up to 12 taught modules, depending on the course option chosen. Modules for each option vary; please see individual descriptions for compulsory modules which must be undertaken. There is also an opportunity to choose from an extensive choice of optional modules to match specific interests.

Individual project

You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner.

Previous Individual Research Projects have included:

  • Benchmark of methods to measure the density of atmospheric ice
  • Green runway: investigation of emissions and noise for large aircraft operation within an airport
  • Techno economic environmental risk assessment on marine propulsion.

Assessment

Taught modules 50%, Individual research project 50%

Your career

Over 90% of the graduates of the course have found employment within the first year of course completion. Many of our graduates are employed in the following industries:

  • Gas turbine engine manufacturers
  • Airframe manufacturers
  • Airline operators
  • Regulatory bodies
  • Aerospace/Energy consultancies
  • Power production industries
  • Academia: doctoral studies.


Read less
Why this course?. This course is accredited by the Institution of Mechanical Engineers (IMechE) and provides a route for you to achieve Chartered Engineer (CEng) status. Read more

Why this course?

This course is accredited by the Institution of Mechanical Engineers (IMechE) and provides a route for you to achieve Chartered Engineer (CEng) status.

It has been developed to provide high-calibre mechanical engineering graduates with an in-depth technical understanding of advanced mechanical engineering topics together with generic skills that will allow them to contribute effectively post graduation.

The course helps you to become a specialist in the area of aerospace. You'll also have the opportunity to take modules in general skills such as project management and risk analysis. These are necessary skills for any professional aerospace engineer.

You’ll study

You'll study three compulsory modules:

  • Aerodynamics Performance
  • Aerodynamic Propulsion Systems
  • Spaceflight Mechanics

You'll select a number of specialist instructional classes in your chosen area. You'll also choose three generic skill modules from the following topics:

  • Design Management
  • Project Management
  • Sustainability
  • Information Management
  • Finance
  • Risk Management
  • Environmental Impact Assessment
  • Knowledge Engineering & Management for Engineers

MSc students take on an individual project which allows study of a selected topic in-depth. This may be an industry-themed project or one aligned to engineering research at Strathclyde.

Facilities

Our facilities include many laboratories and research centres including:

We have local access to a 3500-node region supercomputer.

Accreditation

This course is accredited by the Institution of Mechanical Engineers and meets requirements for Chartered Engineer (CEng) status.

Learning & teaching

Students take three compulsory modules and a selection of specialist and generic modules.

To qualify for the MSc, students undertake an individual project which allows study of a selected topic in depth, normally industry-themed or aligned to engineering research at Strathclyde.

Assessment

Assessment is by written assignments, exams and the individual project.

Careers

This course is particularly suitable for graduate engineers in these sectors:

  • chemical, petrochemical & process engineering
  • design engineering
  • power generation
  • manufacturing
  • oil & gas
  • renewable energy


Read less
The master's degree in Space and Aeronautical Engineering is aimed at graduates in aerospace engineering or related physical sciences and engineering who wish to improve their skills and knowledge. Read more

The master's degree in Space and Aeronautical Engineering is aimed at graduates in aerospace engineering or related physical sciences and engineering who wish to improve their skills and knowledge. It provides advanced training in the field of space systems and aeronautical engineering that is scientific, technical and practical in nature and will allow students to work towards a professional and/or research career in the aerospace industry. The master's degree is aimed graduates who will go on to seek employment in the aerospace industry or to pursue a research career in this field.

Professional opportunities

The master's degree allows students to plan their training and to focus their professional careers in the aerospace industry on areas such as space missions, space propulsion, aircraft propulsion, aircraft design, aircraft maintenance, fluid mechanics, materials research, airport infrastructure , air traffic management, wind energy, aerodynamics, civil engineering aerodynamics, automotive engineering and the design and civil applications of UAVs.

The training graduates receive will enable them to join R&D departments in the aerospace industry and related industries.

Competencies

Generic competencies

Generic competencies are the skills that graduates acquire regardless of the specific course or field of study. The generic competencies established by the UPC are capacity for innovation and entrepreneurship, sustainability and social commitment, knowledge of a foreign language (preferably English), teamwork and proper use of information resources.

Specific competencies

  • The ability to manage activities that involve projects and/or operations in which technology and organization have interacted effectively and efficiently.
  • The ability to plan, organize and control projects in the aerospace industry, especially innovation (R&D) and process improvement projects.
  • The ability to develop and submit a research proposal according to the criteria of the international scientific community.
  • The ability to analyze and synthesize cross-disciplinary aerospace knowledge applied to aeronautical projects.
  • The ability to use knowledge of applied computational fluid mechanics appropriately in solving compressible aerodynamics problems.
  • The ability to identify the laws of aerodynamics with regard to external flow and flight regimes and apply them in numerical and experimental aerodynamics.
  • The ability to apply knowledge appropriately in processing large quantities of results of numerical calculations applied to analysis and design of aeroelasticity and aerodynamics.
  • The ability to apply knowledge appropriately in the areas of advanced aerodynamics and aeroelasticity applied to analysis and design of aerospace structures.
  • The ability to write a master's thesis and present and defend it to an examination committee.


Read less
The objective of the Space Engineering MSc is to educate highly skilled professionals, qualified to develop and manage technical activities related to research and design in the space sector. Read more

Mission and goals

The objective of the Space Engineering MSc is to educate highly skilled professionals, qualified to develop and manage technical activities related to research and design in the space sector. Space Engineering graduates have all the competences to fully develop activities related to the design, technical analysis and verification of a space mission. Within these activities, in particular, graduates from Politecnico di Milano can develop specific skills in the areas of: mission analysis, thermal and structural design of space components, design of the space propulsion and power generation system, design of the orbit and attitude control systems, space systems integration and testing.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/space-engineering/

Professional opportunities

The knowledge gained through the degree in Space Engineering is suited to responsibility positions where working autonomy is required. As an example, positions offered by the space industry, research centres, private or public companies involved in the design, manufacturing and testing of space components. Furthermore, the skills and competences of the space engineer are well suited to companies involved in the design and manufacturing of products characterized by lightweight structures and autonomous operation capacity, and more in general where advanced design tools and technologies are adopted.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Space_Engineering_02.pdf
The Master of Science programme in Space Engineering aims at training professionals able to develop and manage technical activities related to research and design in the space sector. Within these activities, students can develop specific skills in the following areas: mission analysis, thermal and structural design of space components, design of the space propulsion and power generation system, design of the orbit and attitude control systems, and space systems integration/testing. Space engineers are suitable for positions offered by the space industry, research centres, private or public companies involved in the design, manufacturing and testing of space components, or generally in the design of advanced technologies. The programme is taught in English.

Subjects

- 1st year
Aerothermodynamics, Orbital Mechanics, Aerospace Structures, Dynamics and Control of Aerospace Structures with Fundamentals of Aeroelasticity, Fundamentals of Thermochemical Propulsion, Heat Transfer and Thermal Analysis, Communications Skills.

- 2nd year
Spacecraft Attitude Dynamics and Control, Space Propulsion and Power Systems, Space Physics, Numerical Modeling of Aerospace Systems, Experimental Techniques in Aerospace Engineering, Aerospace Technologies and Materials, Telecommunication Systems, Space Mission Analysis and Design, Graduation Thesis and Final Work.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/space-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/space-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The UK continues to lead the world in power and propulsion technology. In addition to its established aerospace role, the gas turbine is finding increasing application in power generation, oil and gas pumping, chemical processing and power plants for ships and other large vehicles. Read more

The UK continues to lead the world in power and propulsion technology. In addition to its established aerospace role, the gas turbine is finding increasing application in power generation, oil and gas pumping, chemical processing and power plants for ships and other large vehicles.

Gas Turbine Technology is a specialist option of the MSc in Thermal Power providing a comprehensive background in the design and operation of different types of gas turbines for all applications.

Who is it for?

This course is designed for those seeking a career in the design, development, operations and maintenance of power and propulsion systems. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand.

Suitable for graduates seeking a challenging and rewarding career in an international growth industry.

Why this course?

The MSc option in Gas Turbine Technology is structured to enable you to pursue your own specific interests and career aspirations. You may choose from a wide range of modules and select an appropriate research project. An intensive industrial management course is offered which assists in achieving exemptions from some engineering council requirements. You will receive a thorough grounding in gas turbine design principles for aerospace, marine and industrial applications. 

We have been at the forefront of postgraduate education in thermal power and gas turbine technology at Cranfield since 1946. We have a global reputation for our advanced postgraduate education, extensive research and applied continuing professional development. 

This MSc programme benefits from a wide range of cultural backgrounds which significantly enhances the learning experience for both staff and students.

Informed by Industry

Our industry partners help support our students in a number of ways - through guest lectures, awarding student prizes, recruiting course graduates and ensuring course content remains relevant to leading employers.

The Industrial Advisory Panel meets annually to maintain course relevancy and ensure that graduates are equipped with the skills and knowledge required by leading employers. Knowledge gained from our extensive research and consultancy activity is also constantly fed back into the MSc programme. The Thermal Power MSc Industrial Advisory Panel is comprised of senior engineers from companies such as:

  • Alstom
  • Canadian Forces
  • EASA
  • EasyJet
  • E-ON
  • RMC
  • Rolls-Royce
  • Royal Air Force (RAF).

Accreditation

Re-accreditation for the MSc in Thermal Power is currently being sought with the Institution of Mechanical Engineers (IMechE), and the Royal Aeronautical Society (RAeS) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Course details

The course is comprised of up to 12 taught modules, depending on the course option chosen. Modules for each option vary; please see individual descriptions for compulsory modules which must be undertaken. There is also an opportunity to choose from an extensive choice of optional modules to match specific interests.

Individual project

You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner.

Previous Individual Research Projects have included:

  • S-duct aerodynamic shape multi-objective optimisation
  • Performance modelling of evaporative gas turbine cycles for marine applications
  • Mechanical integrity/stress analysis of the high pressure compressor of a new engine
  • High pressure turbine blade life analysis for a civilian derivative aircraft conducting military operations
  • Engine performance degradation due to foulants in the environment
  • Effects of manufacturing tolerances on gas turbine performance and components
  • Development of a transient combustion model
  • Numerical fan modelling and aerodynamic analysis of a high bp ratio turbofan engine
  • Combustor modelling
  • Impact of water ingestion on large jet engine performance and emissions
  • Windmilling compressor and fan aerodynamics
  • Neural networks based sensor fault diagnostics for industrial gas turbine engines
  • Boundary layer ingestion for novel aircraft
  • Multidisciplinary design optimisation for axial compressors
  • Non-linear off design performance adaptation for a twin spool turbofan engine
  • Engine degradation analysis and washing effect on performance using measured data.

Assessment

Taught modules 50%, Individual research project 50%

Your career

Over 90% of the graduates of the course have found employment within the first year of course completion. Many of our graduates are employed in the following industries:

  • Gas turbine engine manufacturers
  • Airframe manufacturers
  • Airline operators
  • Regulatory bodies
  • Aerospace/Energy consultancies
  • Power production industries
  • Academia: doctoral studies.


Read less

Show 10 15 30 per page



Cookie Policy    X