• Swansea University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of York Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Leeds Featured Masters Courses
University of Southampton Featured Masters Courses
Coventry University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
University of Greenwich Featured Masters Courses
Cardiff University Featured Masters Courses
"aerospace" AND "manufact…×
0 miles

Masters Degrees (Aerospace Manufacturing)

  • "aerospace" AND "manufacturing" ×
  • clear all
Showing 1 to 15 of 94
Order by 
The course combines Cranfield's long-standing expertise for delivering high-quality Masters programmes in both aerospace and manufacturing. Read more
The course combines Cranfield's long-standing expertise for delivering high-quality Masters programmes in both aerospace and manufacturing. Courses receive strong support from the global aerospace industry, both the Original Equipment Manufacturers (OEM) such as Airbus and Rolls-Royce, as well as their tiers of suppliers. There is a strong emphasis on applying knowledge in the industrial environment and all teaching is in the context of industrial application. Many features of this course are shared with the Engineering and Management of Manufacturing Systems MSc, but this course specifically prepares graduates to embark on a career particularly in aerospace manufacturing.

Read less
Enhance your knowledge and skills in the rapidly developing field of additive manufacturing (also known as 3D printing) and advanced manufacturing technologies with this MSc course. Read more
Enhance your knowledge and skills in the rapidly developing field of additive manufacturing (also known as 3D printing) and advanced manufacturing technologies with this MSc course. It's aimed at both new graduates and professional mechanical engineers.

The course has been developed to meet the demands of industry and will expose you to cutting-edge manufacturing techniques and applications. You’ll gain practical experience in research, including training in research methods and management.

There are specialist modules in additive manufacturing, state-of-the-art manufacturing technologies, materials and a broad range of modules in advanced mechanical engineering. You'll carry out a research project on additive manufacturing, working with cutting-edge technologies and relevant industrial sectors. Further optional modules are available, allowing you to customise the course based on your interests or career aspirations.

The investigative MSc project takes place within our internationally renowned Centre for Advanced Additive Manufacturing (AdAM) under the guidance of world-leading academics in this field.

The AdAM centre, with its state-of-the art facilities, carries out research in collaboration with industry in areas of process, material and design for aerospace, automotive and medical sectors.

Core modules

Information Management
Additive Manufacturing – Principles and Applications
Additive Manufacturing – Principles and Applications 2
Research Project

Optional modules

Design Innovation Toolbox
Engineering Marketable Solutions: Make a Change!
Aerospace Metals
Advanced Materials Manufacturing: Part I
Engineering Composite Materials
Signal Processing and Instrumentation
Condition Monitoring
Advanced Finite Element Modelling
Advanced Topics in Machining

Teaching

Lectures
Tutorials and example classes
Interactive workshops
Group presentation sessions
Individual research project

Assessment

Exams
Essays
Oral and poster presentations
Research project report

Read less
Manufacturing is at the heart of engineering, as everything in our daily lives needs to be made. Manufacturing engineers therefore play a vital role in the creation of wealth and in sustaining and improving the living standards of society. Read more
Manufacturing is at the heart of engineering, as everything in our daily lives needs to be made. Manufacturing engineers therefore play a vital role in the creation of wealth and in sustaining and improving the living standards of society. The Advanced Manufacturing Technology & Systems Management course is one of the most well-established of its kind in the UK, and it aims to provide our students with the tools, knowledge and understanding of this broad based discipline that demands expertise in many diverse topics.

This course is one of the most well-established of its kind in the UK, having evolved from the very successful MSc course in Machine Tool Technology, and is regularly updated in line with subject developments and changing industrial practices. Advanced Manufacturing Technology and Systems Management has developed into a broad based multi-disciplinary field, demanding expertise in many diverse topics. The structure of the course reflects this by requiring in-depth study of a number of topics ranging from the fundamentals of manufacturing processes to the management of manufacturing systems. More specialised study takes place during the dissertation project where students undertake individual research projects of industrial relevance. The MSc course has a strong practical orientation and it aims to produce engineers with the theoretical and practical experience which will enable them to analyse and investigate problems and to engage in design, development and research involving manufacturing technology. The course also prepares graduates for the management of manufacturing systems. Whilst the course is intended primarily for those wishing to pursue an industrial career, it is equally relevant as preparation for research in advanced manufacturing technology and systems management.

Teaching and learning

The Advanced Manufacturing Technology and Systems Management MSc is a full time course which is studied over 12 months and there is one start date each year in September.

Throughout the course you will develop advanced technical skills in both manufacturing technology and systems management, as well as soft skill such as team working, presenting and report writing, all of which will enable you to pursue a career in both general and specialised engineering industries or develop an in-depth knowledge for a career in research in industry or academia.
During the course you will visit a number of companies, such as Airbus and Jaguar Land Rover, and have the opportunity to attend industrial guest lectures, which will not only further enhance your understanding of manufacturing but also to give you an insight into the practical application of many of the subject areas you will be studying. Moreover, many of the dissertation projects, one of which you will be working on as part of this course, originate from and are run in collaboration with industry.

Career opportunities

The Advanced Manufacturing Technology and Systems Management MSc has a strong focus on employability, which will give you the best chance of securing your ideal job after graduation. Most academics who teach on this course have strong links with industry, which you will benefit from, not only by having the opportunity to visit a number of companies and attend industrial talks but also to work on a dissertation project that is closely related to an industrial problem.

Each year Manchester careers fairs, workshops and presentations attract more than 600 exhibitors and 20,000 visitors illustrating how employers target Manchester graduates.

After graduating with an MSc in Advanced Manufacturing Technology and Systems Management you will be in a strong position to seek employment with companies such as: Rolls Royce, Airbus, BAE Systems, Siemens, Jaguar Land Rover, Bentley Motors, Nissan Motor Company, Bombardier Transportation, to name just a few.

Destination of Leavers Survey
Every year our The University of Manchester conducts a destination of leavers survey with students six months after they have graduated. A small selection of these destinations since 2010 is listed below:
-Rolls Royce (Design Engineer)
-The University of Manchester (PhD Researcher)
-University of Sheffield (PhD Researcher)
-BAE Systems (Design Engineer)
-Airbus UK (Research and Technology Engineer)
-Siemens
-Tata Steel

Accrediting organisations

The Institution of Mechanical Engineers has accredited the Advanced Manufacturing Technology and Systems Management MSc course under license from the UK regulator, the Engineering Council. This allows satisfactory completion of the Advanced Manufacturing Technology and Systems Management MSc to contribute towards the academic requirements for registration with the Institution as a Chartered Engineer.

Read less
This course is designed to respond to a growing shortage of workforce in manufacturing sector. Read more

Why take this course?

This course is designed to respond to a growing shortage of workforce in manufacturing sector. It intends to equip our students with relevant and up-to-date knowledge and skills of advanced design tools, materials, manufacturing processes and systems in conjunction with developing efficient operation and effective management skills. Integrating these will ensure our students to develop the technological and practical ability to meet manufacturing demand for product, company and market needs.

What will I experience?

On this course you can:

Use simulation and modelling application software for virtual design and manufacturing
Utilise our strong links with companies and investigate real industrial problems to enhance your understanding of the profession
Tie in the topic of your individual project with one of our research groups and benefit from the expertise of our actively researching academics

What opportunities might it lead to?

This course has been accredited by the Institution of Mechanical Engineers (IMechE) meeting the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). It will provide you with some of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng).

Here are some routes our graduates have pursued:

Design
Research and development
Product manufacture
Project management

Module Details

This course aims to provide you with the inter-disciplinary knowledge, attributes and skills necessary to apply the principles of advanced manufacturing systems within the manufacturing industry. You will study several key topics and also complete a four-month individual project tailored to your individual interests that can take place in our own laboratories or, by agreement, in industry.

Here are the units you will study:

Integrated Manufacturing Systems: Systems concepts and techniques are developed in logistics and manufacturing areas with a strong emphasis on simulation techniques and practical case study analysis.

Operations and Quality Management: A strategic approach is used with modern inventory and supply chain management and logistics tools and techniques. Management strategies are developed for quality, including quality systems and quality control.

Advanced Materials: This unit is designed to deal with a wide range of advanced materials for engineering applications. Teaching will address analytical and numerical methods to assess the strength, stiffness, toughness, non-linearity behaviours, vibration and failures of engineering materials for component and structure design.

Supply Chain Management: Supply chain management involves the coordination of production, inventory, location and transportation, among participants in a supply chain. This unit considers the principles and tools of supply chain management, with an emphasis on lean six sigma methods.

Virtual Systems Design and Simulation for Production: This unit is particularly designed to enhance students’ analytical knowledge and practical skills focusing on a sustainable development of systematic approaches and lean production methods to support manufacturing systems analysis, design and performance evaluation with an aid of using advanced computer design and modelling simulation tools.

CAD/CAM Systems: An integrated approach is used towards CAD and CAM. Significant practical hands-on experience is given with commercial level software. Emphasis is placed on case study analysis and system selection and evaluation.

Individual Project: A strong feature that comprises a third of the course. You will be encouraged to undertake projects where possible in industrial companies. However, we also use our extensive resources and staff skills to undertake them within the University.

Programme Assessment

You will be taught through a mixture of lectures, seminars, tutorials (personal and academic), laboratory sessions and project work. The course has a strong practical emphasis with a significant amount of your time spent our laboratories. We pride ourselves on working at the leading-edge of technology and learning practices.

A range of assessment methods encourages a deeper understanding of engineering and allows you to develop your skills. Here’s how we assess your work:

Written examinations
Coursework
Laboratory-based project work
A major individual project/dissertation

Student Destinations

The demand for more highly skilled manufacturing engineers is always present and it is generally accepted that there is a current shortage of engineers.

This course has a record of almost 100 per cent of our graduates gaining employment in relevant areas such as manufacturing and logistics management, systems engineering, production engineering, design engineering and project management. You could work for a large company, in the Armed Forces or in one of the many small companies within this sector. You could even start your own specialist company.

Roles our graduates have taken on include:

Manufacturing engineer
Product design engineer
Aerospace engineer
Application engineer

Read less
The aerospace industry is at the forefront of modern engineering and manufacturing technology and there is an expanding need for highly skilled chartered Aerospace Engineers. Read more
The aerospace industry is at the forefront of modern engineering and manufacturing technology and there is an expanding need for highly skilled chartered Aerospace Engineers.

If you are looking to pursue a career in aerospace engineering this course will enable you to apply your skills and knowledge of engineering devices and associated components used in the production of civil and military aircraft, spacecraft and weapons systems.

Key benefits:

• accredited by the Institution of Mechanical Engineers.
• Access to excellent facilities including over 20 wind tunnels and a DC10 jet engine

Visit the website: http://www.salford.ac.uk/pgt-courses/aerospace-engineering2

Suitable for

Suitable for graduates from an engineering or numerate science discipline such as aeronautical, mechanical or electrical/ electronic engineering or physics.

Programme details

On graduation you be able to work towards Chartered Aerospace Engineer status which is an independent verification of your skills and demonstrates to your colleagues and employers your commitment and credentials as an engineering professional.

Format

The course will be taught by a series of lectures, tutorials, computer workshops and laboratory activities. Some modules will include a structured factory visit to illustrate the processes and techniques and to enable investigations to be conducted. Engineers from the industry will contribute to the specialist areas of the syllabus as guest lecturers.

Semester 1

• Aerodynamics
• Finite Element Analysis

Semester 2

• Aerospace Assembly
• Flight Dynamics and Control
• Flight Simulation
• MSc Project and Dissertation

Assessment

The coursework consists of one assignment, and two laboratory exercises.

• Assignment 1: Control design skills. (30%)
• Laboratory 1: Feedback control design skills and system modelling skills. (10%)
• Laboratory 2: Flight dynamics (10%)
• The first 5 assignments are of equal weighting of 10%, assignment 6 has a weighting of 20%
• Assignment1: Matlab programming skills assessed.
• Assignment2: Simulink/ Matlab for control programming skills assessed.
• Assignment3: Matlab simulation skills assessed.
• Assignment4: Matlab integration skills assessed.
• Assignment5: Matlab matrix manipulation knowledge assessed.
• Assignment 6: Aerospace assembly techniques.

Career potential

This highly valued qualification will open doors to careers in global organisations, including aerospace companies and their suppliers, governmental bodies and research institutions.
The aerospace industry is at the forefront of modern engineering and manufacturing technology, and there’s a growing demand for highly skilled chartered aerospace engineers.

How to apply: http://www.salford.ac.uk/study/postgraduate/applying

Read less
The MSc Aerospace is accredited by the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE). It's aimed at Engineers looking to increase their professional skills and capabilities in the industry through a strategic understanding of major technical, business and environmental factors. Read more
The MSc Aerospace is accredited by the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE). It's aimed at Engineers looking to increase their professional skills and capabilities in the industry through a strategic understanding of major technical, business and environmental factors. It's designed to help develop and broaden technical and business skills in the industry. It is also aimed at enhancing the industry's competitiveness and creating, developing and implementing flexible and innovative research and development opportunities.

Key benefits

The range of optional modules, and flexibility of formats and learning, make this course unique. You can also apply for the Government funded Aerospace MSc Bursary Scheme, created in partnership with employers, to study it.

This course is affiliated to, and accredited by, the Royal Aeronautical Society (RAeS), and has been developed further in conjunction with other awards in the ECCDF.

Course detail

Students on the course come are either full time students completing the award in one year, or industrially based students that from a wide range of different companies within the sector, including primes and throughout the supply chain. This mix of people from different backgrounds, companies and with different roles adds a unique perspective of peer learning, as you network and learn from each other.

However you approach the course, we're here to help support your long-term career professional development, including helping you develop a 'portfolio of evidence' to support your application to become a Chartered Engineer.

Modules

Full-time students will study the following modules:

• Advanced Manufacturing
• Airworthiness
• Aerospace Design Process
• Aerospace Business Context and Environment
• Lean Engineering
• Professional Development Appraisal and Review
• Aircraft Structural Design and Stress Analysis
• Foundations of Systems Engineering
• Dissertation

For students studying on a flexible basis, whilst there is flexibility to your studies, the course has four core modules:

• Professional Development Appraisal and Continuous Review
• Advanced Manufacture
• Aerospace Design Process
• Airworthiness

Structure

The full Master's course comprises 180 credits divided into three 60 credits stages: Postgraduate Certificate, Postgraduate Diploma, and Masters. Students work incrementally through the three stages and must pass all modules at each stage in order to progress to the next.

Format

We usually hold taught modules over three to five consecutive days. In some cases we use other teaching methods, including distance and work-based learning. You'll organise your work-based learning with your module leader, this ensures it's tailored to your needs and the learning outcomes are achievable.

Assessment

Assessment is normally by assignment. At this level, we do not need to test your understanding, but rather your ability to implement your newfound skills and knowledge. Assignments will normally be about a real industrial case study, or a live project in your workplace.

Careers / Further study

The MSc Aerospace is excellent for developing technical and business knowledge and skills for the Aerospace sector. The breadth of optional learning allows you to steer your own academic progress, develop personal career objectives and show competencies required for professional recognition.

This makes the course ideal for engineers who want to mix technical and business learning with one customisable course. Successful graduates are suited to work across a range of roles.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
The aim of this programme is to equip you to meet the stringent demands of today's highly competitive industrial environment. The programme provides a balance of theory, practice and participation and includes visits to a range of organisations within the manufacturing sector. Read more
The aim of this programme is to equip you to meet the stringent demands of today's highly competitive industrial environment. The programme provides a balance of theory, practice and participation and includes visits to a range of organisations within the manufacturing sector. It provides an excellent basis for employment which has resulted in student employment rates upon graduation of over 95%. The programme is taught by staff from the School of Aerospace, Automotive and Design Engineering which was recently awarded an excellent grading in the HEFCE auditors' report. All study is assessed through continuous assessment. You have the choice of two specialised degrees within the programme. For Semester A, the modules are common to both degrees to provide a broad basis in manufacturing and management disciplines. Semester B offers the specialist modules for your chosen degree title.

Why choose this course?

-This Master's degree is for those interested in manufacturing within the business context.
-It emphasises a broad understanding of manufacturing with reference to the whole organisation.
-This is one of two specialised manufacturing degrees which share the same modules in Semester A, hence giving you the flexibility to make your final choice at the end of Semester A.

Careers

Graduates of this programme are employed worldwide in a wide range of technical and managerial roles, including quality engineering, supply chain and works management.

Teaching methods

The School of Engineering and Technology has a reputation for innovation in teaching and learning, where nearly all MSc modules are delivered through a combination of traditional face-to-face teaching and backup tutorial's using the University's StudyNet web based facility. StudyNet allows students to access electronic teaching and learning resources, and conduct electronic discussion's with staff and other students. A heavy emphasis is placed on theory and practice, and the School has a policy of using industrial standard software wherever possible. The School also operate an open access laboratory, and computer policy, that will help students complete coursework and assignments, at a scheduled pace and on time.

Structure

Modules
-Financial Control
-Integrated Product Engineering
-MSc Project
-Manufacturing Information Systems
-Manufacturing Strategy
-Operations Management
-Operations Research
-Procurement & Supply Chain Management
-Quality Reliability & Maintenance

Professional Accreditations

Accredited for Chartered Engineer (CEng) status by the Institution of Engineering and Technology (IET).

Read less
In the last decade, it has become clear that companies must reinvent their advanced manufacturing capabilities to remain globally competitive. Read more
In the last decade, it has become clear that companies must reinvent their advanced manufacturing capabilities to remain globally competitive. There is a growing need across multiple industries for engineers with the technical skills and expertise to research, develop, test and optimize these next-generation manufacturing solutions. This is a rapidly evolving field, and companies are challenged to find engineers who have the sector-relevant cross-disciplinary technical expertise to develop innovative solutions.

The Master of Engineering Leadership (MEL) in Advanced Materials Manufacturing is an intensive one-year degree program for engineers who want to advance their careers in the automotive, aerospace and manufacturing sectors. The project-based curriculum covers all stages of the industry value chain and incorporates advanced simulation tools and case studies. You will work in world-class facilities, including the Advanced Materials and Process Engineering Laboratory – a multidisciplinary research centre where engineers, scientists and health scientists collaborate – and the Centre for Metallurgical Process Engineering, an internationally recognized interdisciplinary research centre.

While 60 per cent of your classes will focus on your technical specialization, the remaining 40 per cent are leadership development courses that will enhance your business, communication and people skills. Delivery of the management and leadership courses are in partnership with UBC's Sauder School of Business.

What Makes The Program Unique?

The MEL in Advanced Materials Manufacturing degree was developed in close collaboration with industry partners, who told us they need to hire leaders with cross-functional technical and business skills to develop innovative solutions, manage teams and direct projects.

The MEL in Advanced Materials Manufacturing degree is a unique graduate program that empowers you to develop the sector-relevant cross-disciplinary technical skills in demand by top employers. The combination of technical expertise and leadership development makes the MEL in Advanced Materials Manufacturing program unique and highly relevant in today’s business environment.

To complement your academic studies, professional development workshops, delivered by industry leaders, are offered throughout the year-long program. These extra-curricular sessions cover a range of topics such as:
-Leadership fundamentals
-Giving and receiving feedback
-Learning how to deliver a successful pitch
-Effective presenting

The workshops also provide opportunities to network with professionals from a wide range of industries, UBC faculty and students in the MEL and MHLP programs.

Funding Sources

The Faculty of Applied Science offers a limited number of $5,000 merit-based awards to MEL and MHLP students. All applicants who submitted their application before July 1 are automatically considered for this award. You do not need to submit a separate application. The merit-based awards are given to selected applicants and only the successful recipients will be notified before the program starts in January.

Aside from the merit-based award, there no other scholarships, grants or funding offered by UBC for MEL students.

Career Options

Our graduates will be in demand locally, nationally and internationally in industries where the latest design solutions depend upon multi-material solutions. Graduates are expected to be employed in diverse engineering roles as well as other fields, including project manager, R&D consultant, senior project engineer, lab manager, metallurgist, R&D portfolio manager, quality manager and senior packaging engineer.

Read less
PROVIDING SOLUTIONS TO THE CHALLENGES CURRENTLY FACING THE AEROSPACE INDUSTRY. Improve graduate employability by developing the postgraduate skills required for a successful transition to industry. Read more
PROVIDING SOLUTIONS TO THE CHALLENGES CURRENTLY FACING THE AEROSPACE INDUSTRY

THE AIMS OF THIS PROGRAMME ARE TO:

Improve graduate employability by developing the postgraduate skills required for a successful transition to industry
Develop and enhance the skills of professional engineers already practising in industry
Enable disciplinary transfer to aerospace for maths & physics graduates
Equip graduate with the skill sets required for a research role in industry or academia.

COURSE CONTENT

THE SUBJECT

Even in the current economic climate, the demand for Masters level Aerospace Engineering graduates has remained strong and continues to grow.

To facilitate postgraduate education in an era of rapidly evolving technology an MSc in Advanced Aerospace Engineering will be delivered by the School of Mechanical and Aerospace Engineering at Queen's.

This novel program will augment the undergraduate education of those who complete it through a combination of advanced scientific knowledge, interpersonal, research and management skills. It will provide postgraduate training for Bachelors degree and PhD students and will provide a pool of highly-qualified MSc graduates for recruitment into industry and to PhD study.

This will be achieved through the delivery of masters level taught elements as well as the completion of novel, industrially relevant research projects.

PROGRAMME DETAILS

Students must take and pass taught modules equivalent to 120 CAtS points and complete a dissertation, which is equivalent to 60 CATS points.

Taught elements may be selected from a list which includes novel modules on aircraft maintenance management and digital manufacturing. The normal load is 60 CATS points per semester.

The programme is available for both full-time and part-time modes of study. Part-time students will take 2 or 3 modules per semester, with all 120 CATS points being completed within 3 years.

PROGRAMME DELIVERY

Formal lectures are presented, but students will also acquire knowledge and understanding experientially through assignments as well as individual and group project work.

Assessment is based on written examinations, coursework and oral presentations by both individuals and groups.

The School provides a supportive learning environment with an emphasis on IT provision and the use of advanced engineering simulation platforms.

OPPORTUNITIES

Employment prospects for aerospace engineers with Masters level qualifications are excellent with salary levels remaining above the UK average.

Our programme is fully accredited by the Royal Aeronautical Society meaning that it 'provides the exemplifying level of understanding, knowledge and skills to underpin professional competence to help graduates on their way to registration as Chartered Engineers (CEng) or as Incorporated Engineers (IEng)'. Benefits for professionally registered graduates include improved career prospects and employability, higher earning potential and international recognition of their commitment to their discipline.

Read less
The programme has been designed to provide postgraduate education and training in Manufacturing Management. The course includes modules in topics such as Computer Aided Engineering, Quality and Manufacturing Systems. Read more
The programme has been designed to provide postgraduate education and training in Manufacturing Management. The course includes modules in topics such as Computer Aided Engineering, Quality and Manufacturing Systems. A significant proportion of the students on the course come from local engineering companies and study in a part-time mode. Both the MSc and PgDIP versions of the course are also suitable for engineering or science graduates wishing to up skill in order to improve their employment prospects.

Key benefits

- Accredited by the Institution of Engineering and Technology on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.

- Accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.

- Work placement available

Visit the website: https://www.ulster.ac.uk/course/msc-manufacturing-management-ft-j

Course detail

- Description -

The course draws upon the internationally recognised research within the school in areas such as Aerospace Composites, Polymers, Advanced Metal Forming, Medical Devices, Biomedical Engineering, and Nanotechnology. Such research within the school has led to several successful spinout companies. Staff teaching on the course also have a wealth of industrial experience with many have decades of experience working with a wide range of companies. The following represent some of the available taught modules: Core modules, Manufacturing Systems • Computer Aided Engineering for Engineers.

- Teaching and learning assessment -

The course is delivered through lectures, tutorials and laboratory classes and is supported with extensive online content. The small class sizes provide an excellent learning environment and the material is assessed thorough formal examinations, coursework, class tests and presentations.

- Work placement / study abroad -

Part-time students can undertake work based learning modules.

Career options

Upon successful completion of the programme students will be more employable within a wide range of manufacturing industries. The wide range of optional modules available in areas such as Biomedical Engineering, Nanotechnology, Aerospace and Materials allows students to tailor the course towards their particular interests. Another important opportunity for MSc students is the academic/research career through a PhD programme such as those offered in the Engineering Research Institute (ERI) which hosts the MSc programme.

How to apply: https://www.ulster.ac.uk/apply/how-to-apply#pg

Why Choose Ulster University ?

1. Over 92% of our graduates are in work or further study six months after graduation.
2. We are a top UK university for providing courses with a period of work placement.
3. Our teaching and the learning experience we deliver are rated at the highest level by the Quality Assurance Agency.
4. We recruit international students from more than 100 different countries.
5. More than 4,000 students from over 50 countries have successfully completed eLearning courses at Ulster University.

Flexible payment

To help spread the cost of your studies, tuition fees can be paid back in monthly instalments while you learn. If you study for a one-year, full-time master’s, you can pay your fees up-front, in one lump sum, or in either five* or ten* equal monthly payments. If you study for a master’s on a part-time basis (e.g. over three years), you can pay each year’s fees up-front or in five or ten equal monthly payments each year. This flexibility allows you to spread the payment of your fees over each academic year. Find out more by visiting https://www.ulster.ac.uk/apply/fees-and-finance/postgraduate

Scholarships

A comprehensive range of financial scholarships, awards and prizes are available to undergraduate, postgraduate and research students. Scholarships recognise the many ways in which our students are outstanding in their subject. Individuals may be able to apply directly or may automatically be nominated for awards. Visit the website: https://www.ulster.ac.uk/apply/fees-and-finance/scholarships

English Language Tuition

CELT offers courses and consultations in English language and study skills to Ulster University students of all subjects, levels and nationalities. Students and researchers for whom English is an additional language can access free CELT support throughout the academic year: https://www.ulster.ac.uk/international/english-language-support

Read less
A manufacturing engineer produces high quality goods using the most cost effective methods while being conscious of any environmental impacts. Read more
A manufacturing engineer produces high quality goods using the most cost effective methods while being conscious of any environmental impacts. They need to be both analytical and creative, be able to work on their own intiative but also as part of a multi-displinary team. This course demonstrates how advanced manufacturing technology and operations management are integrated to improve productivity, reduce the costs of manufacture, and the delivery of products and services can be ensured.

The course covers many aspects of Industrial Engineering and Industrial Management. The wide range of optional modules will enable you to develop your interests in specific areas of technology including flexible manufacturing, rapid product development, and process capability, operations management including quality and supply chain management and also ergonomics and human factors.

Students will develop: the ability to communicate ideas effectively in written reports, verbally and by means of presentations to groups knowledge and understanding of industrial methods and the needs of manufacturing industries the ability to plan and undertake an individual project interpersonal, communication and professional skills.

Previous projects have included:
Evaluation of micromachining systems
Design for microassembly
Laser deposition in manufacturing
Lean applications in a local aeroengine manufacturer
Production of AI/TiC metal matrix composites
Electrical Discharge Machining Study of a machining allow for Aerospace Applications
Design of an innovative holding device for enabling the walking of a free-leg hexapod

Read less
A fantastic time to be a specialist in aerospace materials, Sheffield is in the heartland of the UK aerospace industry, meaning many international aerospace companies look to the Department to discover ways to improve both materials and processes for use in their products. Read more

About the course

A fantastic time to be a specialist in aerospace materials, Sheffield is in the heartland of the UK aerospace industry, meaning many international aerospace companies look to the Department to discover ways to improve both materials and processes for use in their products.

You’ll develop knowledge of the manufacturing, processing and properties of the metals and composite materials used in airframes and aeroengines. You’ll also be trained in the fundamentals of thermodynamics, structure and mechanical behaviour.

A welcoming department

A friendly, forward-thinking community, our students and staff are on hand to welcome you to the department and ensure you settle into student life.

Your project supervisor will support you throughout your course. Plus you’ll have access to our extensive network of alumni, offering industry insight and valuable career advice to support your own career pathway.

Your career

Prospective employers recognise the value of our courses, and know that our students can apply their knowledge to industry. Our graduates work for organisations including Airbus, Rolls-Royce, the National Nuclear Laboratory and Saint-Gobain. Roles include materials development engineer, reactor engineer and research manager. They also work in academia in the UK and abroad.

90 per cent of our graduates are employed or in further study 6 months after graduating, with an average starting salary of £27,000, the highest being £50,000.

Equipment and facilities

We have invested in extensive, world-class equipment and facilities to provide a stimulating learning environment. Our laboratories are equipped to a high standard, with specialist facilities for each area of research.

Materials processing

Tools and production facilities for materials processing, fabrication and testing, including wet chemical processing for ceramics and polymers, rapid solidification and water atomisation for nanoscale metallic materials, and extensive facilities for deposition of functional and structural coatings.

Radioactive nuclear waste and disposal

Our £3million advanced nuclear materials research facility provides a high-quality environment for research on radioactive waste and disposal. Our unique thermomechanical compression and arbitrary strain path equipment is used for simulation of hot deformation.

Characterisation

You’ll have access to newly refurbished array of microscopy and analysis equipment, x-ray facilities, and surface analysis techniques covering state-of-the-art XPS and SIMS. There are also laboratories for cell and tissue culture, and facilities for measuring electrical, magnetic and mechanical properties.

The Kroto Research Institute and the Nanoscience and Technology Centre enhance our capabilities in materials fabrication and characterisation, and we have a computer cluster for modelling from the atomistic through nano and mesoscopic to the macroscopic.

Stimulating learning environment

An interdisciplinary research-led department; our network of world leading academics at the cutting edge of their research inform our courses providing a stimulating, dynamic environment in which to study.

Teaching and assessment

Working alongside students and staff from across the globe, you’ll tackle real-world projects, and attend lectures, seminars and laboratory classes delivered by academic and industry experts.

You’ll be assessed by formal examinations, coursework assignments and a dissertation.

Core modules

Aerospace Metals; Design and Manufacture of Composites; Science of Materials; Materials Processing and Characterisation; Materials Selection, Properties and Applications; Technical Skills Development; Heat and Materials with Application; Advanced Materials Manufacturing; Deformation, Fracture and Fatigue; Research project in an area of your choice.

Read less
This course aims to develop your skills and knowledge in areas such as automotive, aerospace, scientific and manufacturing applications. Read more

About this course

This course aims to develop your skills and knowledge in areas such as automotive, aerospace, scientific and manufacturing applications.

You'll specialise in mechanical and manufacturing engineering, together with broader engineering topics, to gain the knowledge needed for registration as a Chartered Engineer (CEng). This course is flexible, so you'll have lots of choice in the specialist subject modules you take and the ways you learn. You'll study some modules through lectures, tutorials and also online. There is time given to both independent study and group work and your assignment will give you valuable experience of teamwork.

Our close links with local companies such as Toyota, Balfour Beatty and Bombardier, as well as professional bodies, will help you stay up to date with current developments in industry. The overarching aim is to make sure you develop the skills employers are looking for.

You’ll study modules such as:

Research Methods: Application and Evaluation
Advanced Mechanical Modelling and E-manufacturing
Forensic Engineering, Failure Analysis and Prevention
CPD and Strategic Management
Advanced Mechanical Design and Manufacturing Engineering
Environmental Risk and Responsibility
Robotics and Manufacturing Control Systems
Negotiated Module
Independent Scholarship

Read less
The Master's degree in Aerospace Engineering is a new graduate program of the Université de Lyon, operated by the École Centrale de Lyon. Read more
The Master's degree in Aerospace Engineering is a new graduate program of the Université de Lyon, operated by the École Centrale de Lyon. It offers a two-year program in Master 1 (M1) and Master 2 (M2). It will be set up progressively starting from September 2016, with only one M2 option "Aerospace Propulsion (PAS)" opened. Then from September 2017, a second M2 option "Dynamic and Sustainability of Composite Materials (DDC)" and the M1 common-core syllabus will be opened.

The concerned disciplinary fields are fluid mechanics and energy, solid and structural mechanics, materials, and control engineering, in relation with three renowned research laboratories of Lyon: LMFA, LTDS and Ampère.

The Master is in line with the strategic axis "Science and engineering for a sustainable society" defined by the Université de Lyon, as well as with two social challenges identified by the École Centrale de Lyon, "Aeronautics and space" and "Increasing the competitiveness of the industrial economy through innovation and entrepreneurship".

The purpose is to train future technical leaders and researchers for all aspects of the aerospace industry from major constructors like SAFRAN and Airbus, to component suppliers. A special attention is paid to make students aware of codes, languages and common practice in the industry. Furthermore, this industry is intrinsically transnational, with numerous opportunities to work abroad with connections to France or to work in France with connections to other countries. So the students are given the opportunity to develop international/intercultural skills.

It is to notice that the aerospace industry is subjected to long-term cycles. A "design" dominated stage with ambitious projects (A380, A350, A400M, EC 175, LEAP, …) is ending, while a "production" dominated stage is starting for the next decade. The problematic is thus moving from the design of large complex systems to the continuous optimisation of components, taking into account manufacturing and maintainability constraints, in particular with the increasing implementation of composite materials. The provided training is supporting such a change.

More specifically, the M2 option "Aerospace Propulsion" is focusing on the design process of an aircraft or a rocket engine, providing a practical understanding of all aspects of the industry, from design to manufacture and maintenance. Graduates should drive components redesign, for optimisation for new purposes or for adaptation to new production processes or maintenance procedures.

Read less
This is an integrated degree programme that brings together the key generic skills of management and research methods with specific modules focusing on aerodynamics and flight mechanics. Read more
This is an integrated degree programme that brings together the key generic skills of management and research methods with specific modules focusing on aerodynamics and flight mechanics. This approach will help you to develop your critical thinking skills as a future engineering manager, or technical specialist enabling you effectively to analyse technical and or management issues. The programme aims to:
-Equip you with the theory and the practice of relevant subjects, technologies and analytical tools to provide solutions for aerospace and related manufacturing problems
-Provide a blend of knowledge and application experience through case studies and project work
-Focus on the links between analysis and design and the supporting skills of management
-Provide education and experience which enhances prospects of professional employment within the industry

Why choose this course?

-The School has over 50 years' experience of teaching aerospace, and has established an excellent international reputation in this field
-We offer extensive lab facilities for aerospace engineering students, including a flight simulator, the latest software packages and windtunnels
-This MSc combines analysis and design with management skills to produce highly-employable postgraduates.

Professional Accreditations

Accredited for Chartered Engineer (CEng) status by the Institution of Engineering and Technology (IET) and by the Royal Aeronautical Society (RAeS).

Careers

This programme will help you to develop your critical thinking skills as a future engineering manager or technical specialist as it will enable you to effectively analyse technical and management issues. This blend of technical and managerial content is invaluable in job applications as well as helping to fast-track your career in the industry.

Teaching methods

The School has a reputation for innovation in teaching and learning, where nearly all MSc modules are delivered through a combination of traditional face-to-face teaching and backup tutorial's using the University's StudyNet web based facility. StudyNet allows students to access electronic teaching and learning resources, and conduct electronic discussion's with staff and other students. A heavy emphasis is placed on theory and practice, and the School has a policy of using industrial standard software wherever possible. The School also operate an open access laboratory, and computer policy, that will help students complete coursework and assignments, at a scheduled pace and on time.

Structure

Core Modules
-Aeroelasticity
-CFD Analysis for Aerospace Applications
-CFD Techniques
-Control of Engineering Systems
-FEA & Applications
-Flight Mechanics
-MSc Project
-Operations Management
-Operations Research

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X