• University of Cambridge Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
King’s College London Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Bath Spa University Featured Masters Courses
"aerospace" AND "manufact…×
0 miles

Masters Degrees (Aerospace Manufacturing)

We have 103 Masters Degrees (Aerospace Manufacturing)

  • "aerospace" AND "manufacturing" ×
  • clear all
Showing 1 to 15 of 103
Order by 
The course combines Cranfield's long-standing expertise for delivering high-quality Masters programmes in both aerospace and manufacturing. Read more
The course combines Cranfield's long-standing expertise for delivering high-quality Masters programmes in both aerospace and manufacturing. Courses receive strong support from the global aerospace industry, both the Original Equipment Manufacturers (OEM) such as Airbus and Rolls-Royce, as well as their tiers of suppliers. There is a strong emphasis on applying knowledge in the industrial environment and all teaching is in the context of industrial application. Many features of this course are shared with the Engineering and Management of Manufacturing Systems MSc, but this course specifically prepares graduates to embark on a career particularly in aerospace manufacturing.

Read less
Demand for aerospace engineering graduates is rising, both in the UK and overseas. In fact, the UK aerospace industry is the second biggest in the world after the USA, and it’s home to some of the world’s leading aerospace companies such as Airbus, Astrium, BAE Systems, GKN and Rolls-Royce. Read more

Demand for aerospace engineering graduates is rising, both in the UK and overseas. In fact, the UK aerospace industry is the second biggest in the world after the USA, and it’s home to some of the world’s leading aerospace companies such as Airbus, Astrium, BAE Systems, GKN and Rolls-Royce.

Taught by expert academics in a leading research environment, this programme will equip you with the knowledge and skills to succeed in an exciting and challenging sector. You’ll study aerospace structures and structural analysis, along with optional, specialist modules in areas such as aerodynamics and computational fluid dynamics, aircraft design, systems and optimisation methods, rotary wing aircraft and propulsion.

Our Aerospace Engineering Industrial Advisory Board is actively engaged in ensuring this course meets the needs of industry and reflects trends in the sector. It also provides industrial talks and seminars and advice and support to our students during their professional projects.

In addition to our advanced CAD facilities for design work, we have the latest industry-standard software for computational fluid dynamics and finite element modelling of material stress analysis, programming and structural and multidisciplinary optimisation.

Accreditation

We are currently seeking accreditation from the Institute of Mechanical Engineers (IMechE) and the Royal Aeronautical Society.

Course content

You’ll take a compulsory module in Semester 1 which develops your knowledge of aerospace structures and the theory behind aerospace structural analysis, as well as applying this understanding to real-world problems.

This will inform the rest of your studies, where you’ll select from a wide range of optional modules allowing you to pursue the topics that appeal to your interests or suit your future career plans. You could gain sophisticated knowledge in areas such as aerospace vehicle design, computational methods or materials failure analysis.

Throughout the programme you’ll complete your Professional Project – an independent piece of research on a topic within aerospace engineering that allows you to demonstrate your knowledge and skills. In the two taught semesters you’ll review the literature around your topic and plan the project, before completing the design, analysis, computation, experimentation and writing up in the summer months.

Want to find out more about your modules?

Take a look our Aerospace Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Aerospace Structures 15 credits
  • Professional Project 75 credits

Optional modules

  • Materials Selection and Failure Analysis 15 credits
  • Design Optimisation - MSc 15 credits
  • Aerospace Vehicle Design 20 credits
  • Aerodynamics and Aerospace Propulsion 20 credits
  • Finite Element Methods of Analysis 20 credits
  • Mechatronics and Robotics Applications 15 credits
  • Engineering Computational Methods 15 credits
  • Rotary Wing Aircraft 15 credits
  • Vehicle and Product Systems Design 15 credits
  • Computational Fluid Dynamics Analysis 15 credits

For more information on typical modules, read Aerospace Engineering MSc in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The professional project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Typical projects for MSc Aerospace Engineering students could include:

  • Design of a stiffened titanium aircraft structural component for additive manufacturing
  • Development of software based on Swarm Intelligence Methodologies for Structural Optimisation
  • Circulation control using air jets to improve the performance of aircraft wings and wind turbines
  • Design and optimisation of a Flexible Structural Support for a Mars Rover Umbilical Release Mechanism
  • Aerodynamic analysis of the Bloodhound supersonic car using Computational Fluid Dynamics
  • Computational Fluid Dynamics modelling of turbulent combustion processes
  • The control of flow separation using vortex generators

A proportion of projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

The aerospace industry is one of the most successful parts of UK engineering and is truly global in nature.

You’ll be able apply the skills you gain from this course to numerous areas of the aerospace industry, such as aerospace fundamental research, airline management and operations, satellite operations, aerospace design and manufacture in both the civil and military environments and Formula 1 racing.

Whether you join an aerospace company in the UK, such as Airbus, BAE Systems or Rolls-Royce or choose to work elsewhere in the world, the foundation provided by the MSc will make sure you are prepared for a rewarding and challenging career.

Links with industry

During this course you will meet employers from organisations operating within this sector through seminars and talks and by attending our careers fair. In previous years there have been talks from colleagues at Airbus, Astrium, BAE Systems, Rolls-Royce to provide additional industrial perspectives to the course and career guidance to students. 



Read less
Enhance your knowledge and skills in the rapidly developing field of additive manufacturing (also known as 3D printing) and advanced manufacturing technologies with this MSc course. Read more
Enhance your knowledge and skills in the rapidly developing field of additive manufacturing (also known as 3D printing) and advanced manufacturing technologies with this MSc course. It's aimed at both new graduates and professional mechanical engineers.

The course has been developed to meet the demands of industry and will expose you to cutting-edge manufacturing techniques and applications. You’ll gain practical experience in research, including training in research methods and management.

There are specialist modules in additive manufacturing, state-of-the-art manufacturing technologies, materials and a broad range of modules in advanced mechanical engineering. You'll carry out a research project on additive manufacturing, working with cutting-edge technologies and relevant industrial sectors. Further optional modules are available, allowing you to customise the course based on your interests or career aspirations.

The investigative MSc project takes place within our internationally renowned Centre for Advanced Additive Manufacturing (AdAM) under the guidance of world-leading academics in this field.

The AdAM centre, with its state-of-the art facilities, carries out research in collaboration with industry in areas of process, material and design for aerospace, automotive and medical sectors.

Core modules

Information Management
Additive Manufacturing – Principles and Applications
Additive Manufacturing – Principles and Applications 2
Research Project

Optional modules

Design Innovation Toolbox
Engineering Marketable Solutions: Make a Change!
Aerospace Metals
Advanced Materials Manufacturing: Part I
Engineering Composite Materials
Signal Processing and Instrumentation
Condition Monitoring
Advanced Finite Element Modelling
Advanced Topics in Machining

Teaching

Lectures
Tutorials and example classes
Interactive workshops
Group presentation sessions
Individual research project

Assessment

Exams
Essays
Oral and poster presentations
Research project report

Read less
Manufacturing is at the heart of engineering, as everything in our daily lives needs to be made. Manufacturing engineers therefore play a vital role in the creation of wealth and in sustaining and improving the living standards of society. Read more
Manufacturing is at the heart of engineering, as everything in our daily lives needs to be made. Manufacturing engineers therefore play a vital role in the creation of wealth and in sustaining and improving the living standards of society. The Advanced Manufacturing Technology & Systems Management course is one of the most well-established of its kind in the UK, and it aims to provide our students with the tools, knowledge and understanding of this broad based discipline that demands expertise in many diverse topics.

This course is one of the most well-established of its kind in the UK, having evolved from the very successful MSc course in Machine Tool Technology, and is regularly updated in line with subject developments and changing industrial practices. Advanced Manufacturing Technology and Systems Management has developed into a broad based multi-disciplinary field, demanding expertise in many diverse topics. The structure of the course reflects this by requiring in-depth study of a number of topics ranging from the fundamentals of manufacturing processes to the management of manufacturing systems. More specialised study takes place during the dissertation project where students undertake individual research projects of industrial relevance. The MSc course has a strong practical orientation and it aims to produce engineers with the theoretical and practical experience which will enable them to analyse and investigate problems and to engage in design, development and research involving manufacturing technology. The course also prepares graduates for the management of manufacturing systems. Whilst the course is intended primarily for those wishing to pursue an industrial career, it is equally relevant as preparation for research in advanced manufacturing technology and systems management.

Teaching and learning

The Advanced Manufacturing Technology and Systems Management MSc is a full time course which is studied over 12 months and there is one start date each year in September.

Throughout the course you will develop advanced technical skills in both manufacturing technology and systems management, as well as soft skill such as team working, presenting and report writing, all of which will enable you to pursue a career in both general and specialised engineering industries or develop an in-depth knowledge for a career in research in industry or academia.
During the course you will visit a number of companies, such as Airbus and Jaguar Land Rover, and have the opportunity to attend industrial guest lectures, which will not only further enhance your understanding of manufacturing but also to give you an insight into the practical application of many of the subject areas you will be studying. Moreover, many of the dissertation projects, one of which you will be working on as part of this course, originate from and are run in collaboration with industry.

Career opportunities

The Advanced Manufacturing Technology and Systems Management MSc has a strong focus on employability, which will give you the best chance of securing your ideal job after graduation. Most academics who teach on this course have strong links with industry, which you will benefit from, not only by having the opportunity to visit a number of companies and attend industrial talks but also to work on a dissertation project that is closely related to an industrial problem.

Each year Manchester careers fairs, workshops and presentations attract more than 600 exhibitors and 20,000 visitors illustrating how employers target Manchester graduates.

After graduating with an MSc in Advanced Manufacturing Technology and Systems Management you will be in a strong position to seek employment with companies such as: Rolls Royce, Airbus, BAE Systems, Siemens, Jaguar Land Rover, Bentley Motors, Nissan Motor Company, Bombardier Transportation, to name just a few.

Destination of Leavers Survey
Every year our The University of Manchester conducts a destination of leavers survey with students six months after they have graduated. A small selection of these destinations since 2010 is listed below:
-Rolls Royce (Design Engineer)
-The University of Manchester (PhD Researcher)
-University of Sheffield (PhD Researcher)
-BAE Systems (Design Engineer)
-Airbus UK (Research and Technology Engineer)
-Siemens
-Tata Steel

Accrediting organisations

The Institution of Mechanical Engineers has accredited the Advanced Manufacturing Technology and Systems Management MSc course under license from the UK regulator, the Engineering Council. This allows satisfactory completion of the Advanced Manufacturing Technology and Systems Management MSc to contribute towards the academic requirements for registration with the Institution as a Chartered Engineer.

Read less
This course is designed to respond to a growing shortage of workforce in manufacturing sector. Read more

Why take this course?

This course is designed to respond to a growing shortage of workforce in manufacturing sector. It intends to equip our students with relevant and up-to-date knowledge and skills of advanced design tools, materials, manufacturing processes and systems in conjunction with developing efficient operation and effective management skills. Integrating these will ensure our students to develop the technological and practical ability to meet manufacturing demand for product, company and market needs.

What will I experience?

On this course you can:

Use simulation and modelling application software for virtual design and manufacturing
Utilise our strong links with companies and investigate real industrial problems to enhance your understanding of the profession
Tie in the topic of your individual project with one of our research groups and benefit from the expertise of our actively researching academics

What opportunities might it lead to?

This course has been accredited by the Institution of Mechanical Engineers (IMechE) meeting the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). It will provide you with some of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng).

Here are some routes our graduates have pursued:

Design
Research and development
Product manufacture
Project management

Module Details

This course aims to provide you with the inter-disciplinary knowledge, attributes and skills necessary to apply the principles of advanced manufacturing systems within the manufacturing industry. You will study several key topics and also complete a four-month individual project tailored to your individual interests that can take place in our own laboratories or, by agreement, in industry.

Here are the units you will study:

Integrated Manufacturing Systems: Systems concepts and techniques are developed in logistics and manufacturing areas with a strong emphasis on simulation techniques and practical case study analysis.

Operations and Quality Management: A strategic approach is used with modern inventory and supply chain management and logistics tools and techniques. Management strategies are developed for quality, including quality systems and quality control.

Advanced Materials: This unit is designed to deal with a wide range of advanced materials for engineering applications. Teaching will address analytical and numerical methods to assess the strength, stiffness, toughness, non-linearity behaviours, vibration and failures of engineering materials for component and structure design.

Supply Chain Management: Supply chain management involves the coordination of production, inventory, location and transportation, among participants in a supply chain. This unit considers the principles and tools of supply chain management, with an emphasis on lean six sigma methods.

Virtual Systems Design and Simulation for Production: This unit is particularly designed to enhance students’ analytical knowledge and practical skills focusing on a sustainable development of systematic approaches and lean production methods to support manufacturing systems analysis, design and performance evaluation with an aid of using advanced computer design and modelling simulation tools.

CAD/CAM Systems: An integrated approach is used towards CAD and CAM. Significant practical hands-on experience is given with commercial level software. Emphasis is placed on case study analysis and system selection and evaluation.

Individual Project: A strong feature that comprises a third of the course. You will be encouraged to undertake projects where possible in industrial companies. However, we also use our extensive resources and staff skills to undertake them within the University.

Programme Assessment

You will be taught through a mixture of lectures, seminars, tutorials (personal and academic), laboratory sessions and project work. The course has a strong practical emphasis with a significant amount of your time spent our laboratories. We pride ourselves on working at the leading-edge of technology and learning practices.

A range of assessment methods encourages a deeper understanding of engineering and allows you to develop your skills. Here’s how we assess your work:

Written examinations
Coursework
Laboratory-based project work
A major individual project/dissertation

Student Destinations

The demand for more highly skilled manufacturing engineers is always present and it is generally accepted that there is a current shortage of engineers.

This course has a record of almost 100 per cent of our graduates gaining employment in relevant areas such as manufacturing and logistics management, systems engineering, production engineering, design engineering and project management. You could work for a large company, in the Armed Forces or in one of the many small companies within this sector. You could even start your own specialist company.

Roles our graduates have taken on include:

Manufacturing engineer
Product design engineer
Aerospace engineer
Application engineer

Read less
The MSc Aerospace is accredited by the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE). It's aimed at Engineers looking to increase their professional skills and capabilities in the industry through a strategic understanding of major technical, business and environmental factors. Read more
The MSc Aerospace is accredited by the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE). It's aimed at Engineers looking to increase their professional skills and capabilities in the industry through a strategic understanding of major technical, business and environmental factors. It's designed to help develop and broaden technical and business skills in the industry. It is also aimed at enhancing the industry's competitiveness and creating, developing and implementing flexible and innovative research and development opportunities.

Key benefits

The range of optional modules, and flexibility of formats and learning, make this course unique. You can also apply for the Government funded Aerospace MSc Bursary Scheme, created in partnership with employers, to study it.

This course is affiliated to, and accredited by, the Royal Aeronautical Society (RAeS), and has been developed further in conjunction with other awards in the ECCDF.

Course detail

Students on the course come are either full time students completing the award in one year, or industrially based students that from a wide range of different companies within the sector, including primes and throughout the supply chain. This mix of people from different backgrounds, companies and with different roles adds a unique perspective of peer learning, as you network and learn from each other.

However you approach the course, we're here to help support your long-term career professional development, including helping you develop a 'portfolio of evidence' to support your application to become a Chartered Engineer.

Modules

Full-time students will study the following modules:

• Advanced Manufacturing
• Airworthiness
• Aerospace Design Process
• Aerospace Business Context and Environment
• Lean Engineering
• Professional Development Appraisal and Review
• Aircraft Structural Design and Stress Analysis
• Foundations of Systems Engineering
• Dissertation

For students studying on a flexible basis, whilst there is flexibility to your studies, the course has four core modules:

• Professional Development Appraisal and Continuous Review
• Advanced Manufacture
• Aerospace Design Process
• Airworthiness

Structure

The full Master's course comprises 180 credits divided into three 60 credits stages: Postgraduate Certificate, Postgraduate Diploma, and Masters. Students work incrementally through the three stages and must pass all modules at each stage in order to progress to the next.

Format

We usually hold taught modules over three to five consecutive days. In some cases we use other teaching methods, including distance and work-based learning. You'll organise your work-based learning with your module leader, this ensures it's tailored to your needs and the learning outcomes are achievable.

Assessment

Assessment is normally by assignment. At this level, we do not need to test your understanding, but rather your ability to implement your newfound skills and knowledge. Assignments will normally be about a real industrial case study, or a live project in your workplace.

Careers / Further study

The MSc Aerospace is excellent for developing technical and business knowledge and skills for the Aerospace sector. The breadth of optional learning allows you to steer your own academic progress, develop personal career objectives and show competencies required for professional recognition.

This makes the course ideal for engineers who want to mix technical and business learning with one customisable course. Successful graduates are suited to work across a range of roles.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
The aim of this programme is to equip you to meet the stringent demands of today's highly competitive industrial environment. The programme provides a balance of theory, practice and participation and includes visits to a range of organisations within the manufacturing sector. Read more
The aim of this programme is to equip you to meet the stringent demands of today's highly competitive industrial environment. The programme provides a balance of theory, practice and participation and includes visits to a range of organisations within the manufacturing sector. It provides an excellent basis for employment which has resulted in student employment rates upon graduation of over 95%. The programme is taught by staff from the School of Aerospace, Automotive and Design Engineering which was recently awarded an excellent grading in the HEFCE auditors' report. All study is assessed through continuous assessment. You have the choice of two specialised degrees within the programme. For Semester A, the modules are common to both degrees to provide a broad basis in manufacturing and management disciplines. Semester B offers the specialist modules for your chosen degree title.

Why choose this course?

-This Master's degree is for those interested in manufacturing within the business context.
-It emphasises a broad understanding of manufacturing with reference to the whole organisation.
-This is one of two specialised manufacturing degrees which share the same modules in Semester A, hence giving you the flexibility to make your final choice at the end of Semester A.

Careers

Graduates of this programme are employed worldwide in a wide range of technical and managerial roles, including quality engineering, supply chain and works management.

Teaching methods

The School of Engineering and Technology has a reputation for innovation in teaching and learning, where nearly all MSc modules are delivered through a combination of traditional face-to-face teaching and backup tutorial's using the University's StudyNet web based facility. StudyNet allows students to access electronic teaching and learning resources, and conduct electronic discussion's with staff and other students. A heavy emphasis is placed on theory and practice, and the School has a policy of using industrial standard software wherever possible. The School also operate an open access laboratory, and computer policy, that will help students complete coursework and assignments, at a scheduled pace and on time.

Structure

Modules
-Financial Control
-Integrated Product Engineering
-MSc Project
-Manufacturing Information Systems
-Manufacturing Strategy
-Operations Management
-Operations Research
-Procurement & Supply Chain Management
-Quality Reliability & Maintenance

Professional Accreditations

Accredited for Chartered Engineer (CEng) status by the Institution of Engineering and Technology (IET).

Read less
In the last decade, it has become clear that companies must reinvent their advanced manufacturing capabilities to remain globally competitive. Read more

In the last decade, it has become clear that companies must reinvent their advanced manufacturing capabilities to remain globally competitive. There is a growing need across multiple industries for engineers with the technical skills and expertise to research, develop, test and optimize these next-generation manufacturing solutions. This is a rapidly evolving field, and companies are challenged to find engineers who have the sector-relevant cross-disciplinary technical expertise to develop innovative solutions.

The Master of Engineering Leadership (MEL) in Advanced Materials Manufacturing is an intensive one-year degree program for engineers who want to advance their careers in the automotive, aerospace and manufacturing sectors. The project-based curriculum covers all stages of the industry value chain and incorporates advanced simulation tools and case studies. You will work in world-class facilities, including the Advanced Materials and Process Engineering Laboratory – a multidisciplinary research centre where engineers, scientists and health scientists collaborate – and the Centre for Metallurgical Process Engineering, an internationally recognized interdisciplinary research centre.

While 60 per cent of your classes will focus on your technical specialization, the remaining 40 per cent are leadership development courses that will enhance your business, communication and people skills. Delivery of the management and leadership courses are in partnership with UBC's Sauder School of Business.

What Makes The Program Unique?

The MEL in Advanced Materials Manufacturing degree was developed in close collaboration with industry partners, who told us they need to hire leaders with cross-functional technical and business skills to develop innovative solutions, manage teams and direct projects.

The MEL in Advanced Materials Manufacturing degree is a unique graduate program that empowers you to develop the sector-relevant cross-disciplinary technical skills in demand by top employers. The combination of technical expertise and leadership development makes the MEL in Advanced Materials Manufacturing program unique and highly relevant in today’s business environment.

To complement your academic studies, professional development workshops, delivered by industry leaders, are offered throughout the year-long program. These extra-curricular sessions cover a range of topics such as:

-Leadership fundamentals

-Giving and receiving feedback

-Learning how to deliver a successful pitch

-Effective presenting

The workshops also provide opportunities to network with professionals from a wide range of industries, UBC faculty and students in the MEL and MHLP programs.

Career Options

Our graduates will be in demand locally, nationally and internationally in industries where the latest design solutions depend upon multi-material solutions. Graduates are expected to be employed in diverse engineering roles as well as other fields, including project manager, R&D consultant, senior project engineer, lab manager, metallurgist, R&D portfolio manager, quality manager and senior packaging engineer.



Read less
PROVIDING SOLUTIONS TO THE CHALLENGES CURRENTLY FACING THE AEROSPACE INDUSTRY. Improve graduate employability by developing the postgraduate skills required for a successful transition to industry. Read more
PROVIDING SOLUTIONS TO THE CHALLENGES CURRENTLY FACING THE AEROSPACE INDUSTRY

THE AIMS OF THIS PROGRAMME ARE TO:

Improve graduate employability by developing the postgraduate skills required for a successful transition to industry
Develop and enhance the skills of professional engineers already practising in industry
Enable disciplinary transfer to aerospace for maths & physics graduates
Equip graduate with the skill sets required for a research role in industry or academia.

COURSE CONTENT

THE SUBJECT

Even in the current economic climate, the demand for Masters level Aerospace Engineering graduates has remained strong and continues to grow.

To facilitate postgraduate education in an era of rapidly evolving technology an MSc in Advanced Aerospace Engineering will be delivered by the School of Mechanical and Aerospace Engineering at Queen's.

This novel program will augment the undergraduate education of those who complete it through a combination of advanced scientific knowledge, interpersonal, research and management skills. It will provide postgraduate training for Bachelors degree and PhD students and will provide a pool of highly-qualified MSc graduates for recruitment into industry and to PhD study.

This will be achieved through the delivery of masters level taught elements as well as the completion of novel, industrially relevant research projects.

PROGRAMME DETAILS

Students must take and pass taught modules equivalent to 120 CAtS points and complete a dissertation, which is equivalent to 60 CATS points.

Taught elements may be selected from a list which includes novel modules on aircraft maintenance management and digital manufacturing. The normal load is 60 CATS points per semester.

The programme is available for both full-time and part-time modes of study. Part-time students will take 2 or 3 modules per semester, with all 120 CATS points being completed within 3 years.

PROGRAMME DELIVERY

Formal lectures are presented, but students will also acquire knowledge and understanding experientially through assignments as well as individual and group project work.

Assessment is based on written examinations, coursework and oral presentations by both individuals and groups.

The School provides a supportive learning environment with an emphasis on IT provision and the use of advanced engineering simulation platforms.

OPPORTUNITIES

Employment prospects for aerospace engineers with Masters level qualifications are excellent with salary levels remaining above the UK average.

Our programme is fully accredited by the Royal Aeronautical Society meaning that it 'provides the exemplifying level of understanding, knowledge and skills to underpin professional competence to help graduates on their way to registration as Chartered Engineers (CEng) or as Incorporated Engineers (IEng)'. Benefits for professionally registered graduates include improved career prospects and employability, higher earning potential and international recognition of their commitment to their discipline.

Read less
The programme has been designed to provide postgraduate education and training in Manufacturing Management. The course includes modules in topics such as Computer Aided Engineering, Quality and Manufacturing Systems. Read more
The programme has been designed to provide postgraduate education and training in Manufacturing Management. The course includes modules in topics such as Computer Aided Engineering, Quality and Manufacturing Systems. A significant proportion of the students on the course come from local engineering companies and study in a part-time mode. Both the MSc and PgDIP versions of the course are also suitable for engineering or science graduates wishing to up skill in order to improve their employment prospects.

Key benefits

- Accredited by the Institution of Engineering and Technology on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.

- Accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.

- Work placement available

Visit the website: https://www.ulster.ac.uk/course/msc-manufacturing-management-ft-j

Course detail

- Description -

The course draws upon the internationally recognised research within the school in areas such as Aerospace Composites, Polymers, Advanced Metal Forming, Medical Devices, Biomedical Engineering, and Nanotechnology. Such research within the school has led to several successful spinout companies. Staff teaching on the course also have a wealth of industrial experience with many have decades of experience working with a wide range of companies. The following represent some of the available taught modules: Core modules, Manufacturing Systems • Computer Aided Engineering for Engineers.

- Teaching and learning assessment -

The course is delivered through lectures, tutorials and laboratory classes and is supported with extensive online content. The small class sizes provide an excellent learning environment and the material is assessed thorough formal examinations, coursework, class tests and presentations.

- Work placement / study abroad -

Part-time students can undertake work based learning modules.

Career options

Upon successful completion of the programme students will be more employable within a wide range of manufacturing industries. The wide range of optional modules available in areas such as Biomedical Engineering, Nanotechnology, Aerospace and Materials allows students to tailor the course towards their particular interests. Another important opportunity for MSc students is the academic/research career through a PhD programme such as those offered in the Engineering Research Institute (ERI) which hosts the MSc programme.

How to apply: https://www.ulster.ac.uk/apply/how-to-apply#pg

Why Choose Ulster University ?

1. Over 92% of our graduates are in work or further study six months after graduation.
2. We are a top UK university for providing courses with a period of work placement.
3. Our teaching and the learning experience we deliver are rated at the highest level by the Quality Assurance Agency.
4. We recruit international students from more than 100 different countries.
5. More than 4,000 students from over 50 countries have successfully completed eLearning courses at Ulster University.

Flexible payment

To help spread the cost of your studies, tuition fees can be paid back in monthly instalments while you learn. If you study for a one-year, full-time master’s, you can pay your fees up-front, in one lump sum, or in either five* or ten* equal monthly payments. If you study for a master’s on a part-time basis (e.g. over three years), you can pay each year’s fees up-front or in five or ten equal monthly payments each year. This flexibility allows you to spread the payment of your fees over each academic year. Find out more by visiting https://www.ulster.ac.uk/apply/fees-and-finance/postgraduate

Scholarships

A comprehensive range of financial scholarships, awards and prizes are available to undergraduate, postgraduate and research students. Scholarships recognise the many ways in which our students are outstanding in their subject. Individuals may be able to apply directly or may automatically be nominated for awards. Visit the website: https://www.ulster.ac.uk/apply/fees-and-finance/scholarships

English Language Tuition

CELT offers courses and consultations in English language and study skills to Ulster University students of all subjects, levels and nationalities. Students and researchers for whom English is an additional language can access free CELT support throughout the academic year: https://www.ulster.ac.uk/international/english-language-support

Read less
The Aircraft Design option of the MSc in Aerospace Vehicle Design (AVD) aims to provide a comprehensive overview of aircraft performance, structures and systems. Read more

Course Description

The Aircraft Design option of the MSc in Aerospace Vehicle Design (AVD) aims to provide a comprehensive overview of aircraft performance, structures and systems. A holistic teaching approach is taken to explore how the individual elements of an aircraft can be designed and integrated using up-to-date methods and techniques. You will learn to understand how to select specific systems such as fuel systems, and their effect on the aircraft as a whole.
This course is suitable for students with a background in aeronautical or mechanical engineering or those with relevant industrial experience.

Overview

Modern aircraft design focuses on the integration of new technologies and systems, with current and advanced configurations to lead us towards environmentally friendly and cost effective aviation in the civil arena and high performance and effective aviation in the military arena. This includes new structures, materials and manufacturing processes. New aircraft design is essential to address issues such as carbon footprint reduction, lower noise pollution and improved passenger comfort as well as contributing to national security.

Our work in this field covers all flying vehicles including civil and military aircraft, helicopters, Unmanned Aerial Vehicle Systems (UAVS), ultra-high capacity airlines and space vehicles. Current research being undertaken includes:

Advanced Configurations – such as blended wing and morphing wing aircraft design. This includes both fixed wing and rotorcraft vehicles.

Advanced Systems Integration – such as Distributed Propulsion using hydrogen or alternative fuels for power and high temperature superconducting materials technology.

Advanced Materials and Manufacturing Processes – exploring the benefits achieved through the application of advanced composite materials.

Advanced Design Methodologies – developing techniques to ensure that optimum designs are achieved.

Airworthiness Compliance – ensuring new designs demonstrate the same safety requirements as traditional aircraft.

Operational Aspects – cost, performance, reliability and maintainability are important features of aircraft design as well as advanced techniques such as Integrated Vehicle Health Management (IVHM). Vulnerability and susceptibility also have a major impact.

Biomimetics – taking lessons from nature for example insects and birds, and their application in aviation such as launch, recovery and flight.

English Language Requirements

If you are an international student you will need to provide evidence that you have achieved a satisfactory test result in an English qualification. The minimum standard expected from a number of accepted courses are as follows:

IELTS - 6.5
TOEFL - 92
Pearson PTE Academic - 65
Cambridge English Scale - 180
Cambridge English: Advanced - C
Cambridge English: Proficiency - C

In addition to these minimum scores you are also expected to achieve a balanced score across all elements of the test. We reserve the right to reject any test score if any one element of the test score is too low.

Structure

The Aircraft Design option consists of a taught component, a group design project and an individual research project.

Individual Project

The individual research project aims to provide the training necessary for you to apply knowledge from the taught element to research, and takes place from March to September. The project may be theoretical and/or experimental and drawn from a range of topics related to the course and suggested by teaching staff, your employer or focused on your own area of interest.

Group Project

The extensive group design project is a distinctive and unique feature of this course. This teamwork project takes place from October to March, and recreates a virtual industrial environment bringing together students with various experience levels and different nationalities into one integrated design team.

Each team member is given responsibility for the detailed design of a significant part of the aircraft, for example, forward fuselage, fuel system, or navigation system. The project will progress from the conceptual phase through to the preliminary and detail design phases. You will be required to run project meetings, produce engineering drawings and detailed analyses of your design. Problem solving and project coordination must be undertaken on a team and individual basis. At the end of the project, groups are required to report and present findings to a panel of 200 senior engineers from industry.

This element of the course is both realistic and engaging, and places the student group in a professional role as aerospace design engineers. Students testify that working as an integrated team on real problems is invaluable and prepares them well for careers in a highly competitive industry.

Assessment

The taught modules (10%) are assessed by an examination and/or assignment. The Group Project (50%) is assessed by a written technical report and oral presentations. The Individual Research Project (40%) forms the remainder of the course.

Career opportunities

The MSc in Aircraft Design is valued and respected by employers worldwide. The applied nature of this course ensures that our graduates are ready to be of immediate use to their future employer and has provided sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression.

This course prepares graduates for careers as project design engineers, systems design, structural design or avionic engineers in aerospace or related industries, with the aim of progressing to technical management/chief engineer. Graduates from the MSc in Aircraft Design can therefore look forward to a varied choice of challenging career opportunities in the above disciplines.

Many of our graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry. Typical student destinations include BAE Systems, Airbus, Dassault and Rolls-Royce.

For further information

on this course, please visit our course webpage http://www.cranfield.ac.uk/Courses/Masters/AVD-Option-Aircraft-Design

Read less
IN BRIEF. Great employer demand for graduates of this course. Access to excellent facilities including over 20 wind tunnels and a DC10 jet engine. Read more

IN BRIEF:

  • Great employer demand for graduates of this course
  • Access to excellent facilities including over 20 wind tunnels and a DC10 jet engine
  • Accredited course by the Institute of Mechanical Engineers, giving you the opportunity to achieve chartered engineer status
  • International students can apply

COURSE SUMMARY

The aerospace industry is at the forefront of modern engineering and manufacturing technology and there is an expanding need for highly skilled chartered Aerospace Engineers.

If you are looking to pursue a career in aerospace engineering this course will enable you to apply your skills and knowledge of engineering devices and associated components used in the production of civil and military aircraft, spacecraft and weapons systems.

This module has been accredited by the Institution of Mechanical Engineers. On graduation you be able to work towards Chartered Aerospace Engineer status which is an independent verification of your skills and demonstrates to your colleagues and employers your commitment and credentials as an engineering professional.

TEACHING

The course will be taught by a series of lectures, tutorials, computer workshops and laboratory activities.

Some modules will include a structured factory visit to illustrate the processes and techniques and to enable investigations to be conducted.

Engineers from the industry will contribute to the specialist areas of the syllabus as guest lecturers.

ASSESSMENT

The coursework consists of one assignment, and two laboratory exercises.

  • Assignment 1: Control design skills. (30%)
  • Laboratory 1: Feedback control design skills and system modelling skills. (10%)
  • Laboratory 2: Flight dynamics (10%)
  • The first 5 assignments are of equal weighting of 10%, assignment 6 has a weighting of 20%
  • Assignment1: Matlab programming skills assessed.
  • Assignment2: Simulink/ Matlab for control programming skills assessed.
  • Assignment3: Matlab simulation skills assessed.
  • Assignment4: Matlab integration skills assessed.
  • Assignment5: Matlab matrix manipulation knowledge assessed.
  • Assignment 6: Aerospace assembly techniques.

FACILITIES

Mechanical Lab – This lab is used to understand material behaviour under different loading conditions and contains a tensile test machine and static loading experiments – typical laboratory sessions would include tensile testing of materials and investigation into the bending and buckling behaviour of beams.

Aerodynamics Lab – Contains low speed and supersonic wind tunnels – typical laboratory experiments would include determining the aerodynamic properties of an aerofoil section and influence of wing sweep on the lift and drag characteristics of a tapered wing section.

Composite Material Lab – This lab contains wet lay-up and pre-preg facilities for fabrication of composite material test sections. The facility is particularly utilised for final year project work.

Control Dynamics Lab – Contains flight simulators (see details below) and programmable control experiments – typical laboratory sessions would include studying the effects of damping and short period oscillation analysis, forced vibration due to rotating imbalance, and understanding the design and performance of proportional and integral controllers.

Flight Simulators

Merlin MP520-T Engineering Simulator    

  • This simulator is used to support engineering design modules, such as those involving aerodynamics and control systems by giving a more practical experience of aircraft design than a traditional theory and laboratory approach. As a student, you'll design and input your own aircraft parameters into the simulator before then assessing the flight characteristics.
  • The simulator is a fully-enclosed single seat capsule mounted on a moving 2-degree of freedom platform which incorporates cockpit controls, integrated main head-up display and two secondary instrumentation display panels.
  • An external instructor console also accompanies the simulator and is equipped with a comprehensive set of displays, override facilities and a two-way voice link to the pilot.

Elite Flight Training System    

  • The Elite is a fixed base Piper PA-34 Seneca III aircraft simulator used for flight operations training and is certified by the CAA as a FNPT II-MCC Multi-Crew Cockpit training environment. It has two seats, each with a full set of instrumentation and controls, and European Visuals, so you see a projection of the terrain that you're flying through, based on real geographic models of general terrain and specific airports in Europe.

EMPLOYABILITY

This is a highly valued qualification and as a graduate you can expect to pursue careers in a range of organizations around the world such as in aerospace companies and their suppliers, governments and research institutions.

FURTHER STUDY

You may consider going on to further study in our Engineering 2050 Research Centre which brings together a wealth of expertise and international reputation in three focussed subject areas.

Research at the centre is well funded, with support from EPSRC, TSB, DoH, MoD, Royal Society, European Commission, as well as excellent links with and direct funding from industry. Our research excellence means that we have not only the highest calibre academics but also the first class facilities to support the leading edge research projects for both post-graduate studies and post-doctoral research.

Visit http://www.cse.salford.ac.uk/research/engineering-2050/ for further details.




Read less
A manufacturing engineer produces high quality goods using the most cost effective methods while being conscious of any environmental impacts. Read more
A manufacturing engineer produces high quality goods using the most cost effective methods while being conscious of any environmental impacts. They need to be both analytical and creative, be able to work on their own intiative but also as part of a multi-displinary team. This course demonstrates how advanced manufacturing technology and operations management are integrated to improve productivity, reduce the costs of manufacture, and the delivery of products and services can be ensured.

The course covers many aspects of Industrial Engineering and Industrial Management. The wide range of optional modules will enable you to develop your interests in specific areas of technology including flexible manufacturing, rapid product development, and process capability, operations management including quality and supply chain management and also ergonomics and human factors.

Students will develop: the ability to communicate ideas effectively in written reports, verbally and by means of presentations to groups knowledge and understanding of industrial methods and the needs of manufacturing industries the ability to plan and undertake an individual project interpersonal, communication and professional skills.

Previous projects have included:
Evaluation of micromachining systems
Design for microassembly
Laser deposition in manufacturing
Lean applications in a local aeroengine manufacturer
Production of AI/TiC metal matrix composites
Electrical Discharge Machining Study of a machining allow for Aerospace Applications
Design of an innovative holding device for enabling the walking of a free-leg hexapod

Read less
A fantastic time to be a specialist in aerospace materials, Sheffield is in the heartland of the UK aerospace industry, meaning many international aerospace companies look to the Department to discover ways to improve both materials and processes for use in their products. Read more

About the course

A fantastic time to be a specialist in aerospace materials, Sheffield is in the heartland of the UK aerospace industry, meaning many international aerospace companies look to the Department to discover ways to improve both materials and processes for use in their products.

You’ll develop knowledge of the manufacturing, processing and properties of the metals and composite materials used in airframes and aeroengines. You’ll also be trained in the fundamentals of thermodynamics, structure and mechanical behaviour.

A welcoming department

A friendly, forward-thinking community, our students and staff are on hand to welcome you to the department and ensure you settle into student life.

Your project supervisor will support you throughout your course. Plus you’ll have access to our extensive network of alumni, offering industry insight and valuable career advice to support your own career pathway.

Your career

Prospective employers recognise the value of our courses, and know that our students can apply their knowledge to industry. Our graduates work for organisations including Airbus, Rolls-Royce, the National Nuclear Laboratory and Saint-Gobain. Roles include materials development engineer, reactor engineer and research manager. They also work in academia in the UK and abroad.

90 per cent of our graduates are employed or in further study 6 months after graduating, with an average starting salary of £27,000, the highest being £50,000.

Equipment and facilities

We have invested in extensive, world-class equipment and facilities to provide a stimulating learning environment. Our laboratories are equipped to a high standard, with specialist facilities for each area of research.

Materials processing

Tools and production facilities for materials processing, fabrication and testing, including wet chemical processing for ceramics and polymers, rapid solidification and water atomisation for nanoscale metallic materials, and extensive facilities for deposition of functional and structural coatings.

Radioactive nuclear waste and disposal

Our £3million advanced nuclear materials research facility provides a high-quality environment for research on radioactive waste and disposal. Our unique thermomechanical compression and arbitrary strain path equipment is used for simulation of hot deformation.

Characterisation

You’ll have access to newly refurbished array of microscopy and analysis equipment, x-ray facilities, and surface analysis techniques covering state-of-the-art XPS and SIMS. There are also laboratories for cell and tissue culture, and facilities for measuring electrical, magnetic and mechanical properties.

The Kroto Research Institute and the Nanoscience and Technology Centre enhance our capabilities in materials fabrication and characterisation, and we have a computer cluster for modelling from the atomistic through nano and mesoscopic to the macroscopic.

Stimulating learning environment

An interdisciplinary research-led department; our network of world leading academics at the cutting edge of their research inform our courses providing a stimulating, dynamic environment in which to study.

Teaching and assessment

Working alongside students and staff from across the globe, you’ll tackle real-world projects, and attend lectures, seminars and laboratory classes delivered by academic and industry experts.

You’ll be assessed by formal examinations, coursework assignments and a dissertation.

Core modules

Aerospace Metals; Design and Manufacture of Composites; Science of Materials; Materials Processing and Characterisation; Materials Selection, Properties and Applications; Technical Skills Development; Heat and Materials with Application; Advanced Materials Manufacturing; Deformation, Fracture and Fatigue; Research project in an area of your choice.

Read less
This course aims to develop your skills and knowledge in areas such as automotive, aerospace, scientific and manufacturing applications. Read more

About this course

This course aims to develop your skills and knowledge in areas such as automotive, aerospace, scientific and manufacturing applications.

You'll specialise in mechanical and manufacturing engineering, together with broader engineering topics, to gain the knowledge needed for registration as a Chartered Engineer (CEng). This course is flexible, so you'll have lots of choice in the specialist subject modules you take and the ways you learn. You'll study some modules through lectures, tutorials and also online. There is time given to both independent study and group work and your assignment will give you valuable experience of teamwork.

Our close links with local companies such as Toyota, Balfour Beatty and Bombardier, as well as professional bodies, will help you stay up to date with current developments in industry. The overarching aim is to make sure you develop the skills employers are looking for.

You’ll study modules such as:

Research Methods: Application and Evaluation
Advanced Mechanical Modelling and E-manufacturing
Forensic Engineering, Failure Analysis and Prevention
CPD and Strategic Management
Advanced Mechanical Design and Manufacturing Engineering
Environmental Risk and Responsibility
Robotics and Manufacturing Control Systems
Negotiated Module
Independent Scholarship

Read less

Show 10 15 30 per page



Cookie Policy    X