• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of York Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Imperial College London Featured Masters Courses
King’s College London Featured Masters Courses
University of Kent Featured Masters Courses
University of Sussex Featured Masters Courses
Cardiff University Featured Masters Courses
University of London International Programmes Featured Masters Courses
"aeronautics"×
0 miles

Masters Degrees (Aeronautics)

  • "aeronautics" ×
  • clear all
Showing 1 to 15 of 24
Order by 
This course provides advanced training in computational methods, the underlying physical principles, and appropriate experimental techniques for aeronautics and other sectors. Read more
This course provides advanced training in computational methods, the underlying physical principles, and appropriate experimental techniques for aeronautics and other sectors.

It is suitable for applicants who wish to enhance their engineering training or to convert to an advanced engineering discipline from backgrounds in mathematics, physics or computer science.

You will develop specialist skills that are attractive to a broad spectrum of both aerospace and non-aerospace engineering industries.

Through links with industry, it is possible for projects to be supervised in part by staff from industry or to be carried out in industry.

Some lecture courses are presented as compact (one or two-week) short course modules, making them readily available for attendees from industry and other universities.

For full information on this course please see:

http://www3.imperial.ac.uk/pgprospectus/facultiesanddepartments/aeronautics/computationalmethods

For details on how to apply please see:

http://www3.imperial.ac.uk/pgprospectus/facultiesanddepartments/aeronautics/howtoapply

Or if you have any enquirers contact our team at

For information about bursaries please see:

http://www3.imperial.ac.uk/aeronautics/pg/bursaries

Read less
New aircraft and other challenging engineering applications are becoming increasingly dependent upon the unique capabilities of high performance composite materials. Read more
New aircraft and other challenging engineering applications are becoming increasingly dependent upon the unique capabilities of high performance composite materials.

This course addresses the broad field of advanced composites and is presented by experts in the field from the College, other universities, major aerospace companies and government research organisations.

It will appeal to graduates of engineering, materials science, physics or chemistry.

You will develop an outstanding knowledge of composite technology allowing them to take up specialist roles in industry and research.

For full information on this course please see:

http://www3.imperial.ac.uk/pgprospectus/facultiesanddepartments/aeronautics/composites

For details on making an application and fees please see:

http://www3.imperial.ac.uk/aeronautics/pg/admissions

For information about scholarships and bursaries please see:

http://www3.imperial.ac.uk/aeronautics/pg

Read less
The programme is co-organised by Vrije Universiteit Brussel (VUB) and Universite Libre de Bruxelles (ULB), offering students the possibility to obtain a double master's degree at the end of the programme. Read more

About the programme

The programme is co-organised by Vrije Universiteit Brussel (VUB) and Universite Libre de Bruxelles (ULB), offering students the possibility to obtain a double master's degree at the end of the programme. The first year of courses is taught at the ULB Engineering Campus in Brussels, while the second year is taught at VUB.

This Master offers:

- A broad range of scientific knowledge combining a multidisciplinary engineering training with an in-depth specialisation in the chosen major.
- Students the necessary tools to begin a productive career in engineering practice or research.
- Close contact with highly qualified academic staff and specialists from industry and research institutes.
- The best international context you can think of in Europe. Study in Brussels, the capital of Europe!
- A gateway to a challenging and exciting future.
- Students the opportunity to become an engineer with scientific and technological efficiency

The program trains engineers with scientific and technological efficiency. The program is academic, meaning that it is characterized by close links to scientific research in the related fields as well as the profession.

Students must obtain a scientific balance between thorough, critical knowledge and practical skills, with emphasis on independence, creativity and inventiveness.

The academically educated engineer must be eager to study throughout his/her career in order to be able to assimilate the results of research and learn new skills. He/she must be able to solve problems. In addition, he/she should have both social and language skills.

Specific objectives

- To train engineers specialized in machine construction, the automobile industry, thermal installations, aircraft construction, consulting firms, application of machinery, maintenance of chemical, petrochemical and nuclear companies, production, distribution and application of electric energy (including power electronics and maintenance of industrial installations)
- To specialize in electromechanical engineering while maintaining a broad-based education by balancing the specialization with more general subjects.

Choose between four majors

This master enables students to build a broad ranging scientific knowledge combined with a multidisciplinary engineering traiwithning an in-depth specialization in the chosen major: Aeronautics, Energy, Mechatronics-Construction or Vehicle Technology and Transport.

Aeronautics: students will become engineers who are competent in the many aspects of cutting-edge technologies in the aeronautics sector and their spin-off possibilities in other industrial sectors. The programme includes all aspects of construction, exploitation and maintenance of aircraft and spacecraft.

Energy: students will become engineers who are specifically well-acquainted with systems for production, transport distribution and electronic conversion of energy, as well as its transformation into mechanical energy. Sustainable energy, rational use of energy and energy management are also covered.

Mechatronics-Construction: students will become engineers who are able to optimally design, produce, maintain and apply complex electromechanical systems..

Vehicle Technology and Transport: students will become engineers who can design systems in which transportation of people and goods are central, with special attention to innovative, environmentally friendly vehicles

Curriculum

Available on http://www.vub.ac.be/en/study/electromechanical-engineering/programme

Read less
With increasing traffic density of civil aircraft, and the need for increased military precision in conflicts around the world, safer aircraft operations require more sophisticated avionic systems. Read more
With increasing traffic density of civil aircraft, and the need for increased military precision in conflicts around the world, safer aircraft operations require more sophisticated avionic systems.

This specialist option of the MSc Aerospace Vehicle Design (http://www.cranfield.ac.uk/courses/taught/aerospace-vehicle-design) provides you with an understanding of avionic systems design, analysis, development, test and airframe integration.

Who is it for?

This course is suitable for students with a background in aeronautical or mechanical engineering or those with relevant industrial experience. It provides a taught engineering programme with a focus on the technical, business and management aspects of aircraft design in the civil and military aerospace sectors.

Why this course?

The Avionic Systems Design option aims to provide an understanding of avionic systems design, analysis, development, test and airframe integration. This includes a detailed look at robust and fault-tolerant flight control, advanced 4D flight management and RNP navigation, self-separation and collision avoidance and advanced digital data communications systems, as well as pilot-friendly and intelligent cockpit displays and situation awareness.

We have been at the forefront of postgraduate education in aerospace engineering since 1946. Aerospace Vehicle Design at Cranfield University was one of the original foundation courses of the College of Aeronautics. Graduates of this course are eligible to join the Cranfield College of Aeronautics Alumni Association (CCAAA), an active community which hold a number of networking and social events throughout the year.

Cranfield University is well located for students from all over the world, and offers a range of library and support facilities to support your studies. This enables students from all over the world to complete this qualification whilst balancing work/life commitments.

Informed by Industry

The course has an Industrial Advisory Committee with senior members from major UK aerospace companies, government bodies, and the military services. The committee meets twice a year to review and advise on course content, acquisition skills and other attributes are desirable from graduates of the course. Panel members include:

- BAE Systems
- Airbus
- Royal Air Force
- Department for Business, Enterprise and Regulatory Reform
- Royal Australian Air Force
- Messier-Dowty
- Department of National Defence and the Canadian Armed Forces.

We also arrange visits to sites such as BAE Systems, Thales, GKN and RAF bases which specialise in the maintenance of military aircraft. This allows you to get up close to the aircraft and components to help with ideas for the group project

Accreditation

Royal Aeronautical Society (RAeS) - http://aerosociety.com/
Institution of Mechanical Engineers (IMechE) - http://www.imeche.org/

Course details

This option is comprised of 14 compulsory modules and a minimum of 60 hours of optional modules, selected from a list of 10 options. You are also required to complete a group design project and an individual research project. Delivered via a combination of structured lectures, industry guest lectures, computer based workshops and private study.

A unique feature of the course is that we have four external examiners; two from industry who assess the group design project and two from academia who assess the individual research project.

Group project

The extensive group design project is a distinctive and unique feature of this course. This teamwork project takes place over six months, usually between October and March; and recreates a virtual industrial environment bringing together students with various experience levels and different nationalities into one integrated design team.

You will be given responsibility for the detailed design of a significant part of the aircraft, for example, forward fuselage, fuel system, or navigation system. The project will progress from the conceptual phase through to the preliminary and detail design phases. You are required to run project meetings, produce engineering drawings and detailed analyses of their design. Problem solving and project coordination must be undertaken on a team and individual basis. At the end of the project, groups are required to report and present findings to a panel of 200 senior engineers from industry.

This element of the course is both real and engaging, and places the student group in a professional role as aerospace design engineers. Students testify that working as an integrated team on real problems is invaluable and prepares them well for careers in a highly competitive industry.

Watch past presentation YouTube videos to give you a taster of our innovative and exciting group projects:

- Blended Wing Body Aircraft - https://www.youtube.com/watch?v=UfD0CIAscOI
- A9 Dragonfly Box Wing Aircraft - https://www.youtube.com/watch?v=C4LQzXBJInw
- MRT7 Tanker Aircraft - https://www.youtube.com/watch?v=bNfQM2ELXvg
- A-13 Voyager - https://www.youtube.com/watch?v=LS6Wq7lpmDw
- SL-12 Vimana - https://www.youtube.com/watch?v=HjEEazsVtSc

Individual project

The individual research project aims to provide the training necessary for you to apply knowledge from the taught element to research, and takes place over six months. The project may be theoretical and/or experimental and drawn from a range of topics related to the course and suggested by teaching staff, your employer or focused on your own area of interest.

Recent Individual Research Projects include:

• Analysis and Design of Stability and Flight Control System of Unconventional Aircraft/ Rotorcraft
• Advanced Control System Design of VTOL Aircraft in Hybrid Flight Mode During Take-off and Landing
• Analysis of Airframe Noise of Hybrid-Wing-Body-Type Aircraft in the Terminal Area
• Simulation of Optimised TMA Manoeuvring, Stand Instrument Departure (SID) and Standard Arrival (STAR) under CNS/ATM Constraints
• Design of Autopilot Flight Control Systems of Unconventional Aircraft/ Rotorcraft.

Assessment

Taught modules 10%, Group project 50%, Individual research project 40%

Your career

The Avionic Systems Design option is valued and respected by employers worldwide. The applied nature of this course ensures that our graduates are ready to be of immediate use to their future employer and has provided sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression.

This course prepares graduates for careers as project design engineers, systems design, structural design or avionic engineers in aerospace or related industries, with the aim of progressing to technical management/chief engineer. Graduates from the MSc in Avionic Systems Design can therefore look forward to a varied choice of challenging career opportunities in the above disciplines.

Many of our graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry. Typical student destinations include BAE Systems, Airbus, Dassault and Rolls-Royce plc

Read less
NOTE. Are you a student from outside the EU? If you are an International student we have designed a version of this award especially for you! It is called the Extended International Master in Aeronautical Engineering. Read more
NOTE: Are you a student from outside the EU? If you are an International student we have designed a version of this award especially for you! It is called the Extended International Master in Aeronautical Engineering. It includes an extra semester of preliminary study to prepare you for postgraduate learning in the UK. We strongly recommend that all international students take this option as it is proven to improve your chances of success. Take a look at this alternative course here.

About the Course A focus on the practical application of the advanced theories learnt. Familiarisation with a range of industry standard design and analysis software. The opportunity to undertake low cost gliding, with reduced price club membership for students. Good career prospects. The aerospace industry is one of the UK's most successful industrial sectors, with its involvement in major international project groups including Airbus, Rolls Royce, British Aerospace to name but a few. Not every university that teaches engineering includes Aeronautical Engineering in its portfolio, but Staffordshire University is proud to be running a new and innovative MSc award in this area which started September 2012.

The MSc in Aeronautical Engineering builds upon the success of the undergraduate Aeronautical programme which has been running at Staffordshire for over ten years. The MSc is an award for the graduate engineer (who will have usually studied a BEng(hons) in Mechanical or Aeronautical Engineering or equivalent, or possibly a BSc(hons) in Aeronautical Technology) and who wishes to expand and deepen their knowledge of aeronautical engineering.

The MSc covers a broad range of areas including fixed wing and rotary aircraft, subsonic and supersonic flight regimes, aircraft propulsion systems, aircraft control systems, materials, etc. As well as taught classes, students use our extensive range of laboratories which include industry standard design and analysis software, including Pro Engineer, Phoenix CFD, ANSYS FEA, etc.

Course content

Students study eight taught modules then undertake a research-based dissertation, the length of the course being about 12 months in total.

Modules studied include: ​​​
-Technical and Study Skills
-Research Methods and Project Management
-Control Systems for Aeronautics
-Structural Integrity
-Aircraft Propulsion Systems
-Advanced Aeronautics
-Advanced Vehicle Aerodynamics
-MSc Project the 60 credit dissertation module, student centred but with close staff guidance.

Options include:
-MSc Project by Distance Learning (as an alternative to the MSc Project)
-Advanced Engineering Materials
-Technical Paper Authoring
-Industrial Responsibility

Employment opportunities

It is envisaged that graduates from the MSc in Aeronautical Engineering will be in a position to apply for a large range of technical, engineering, analytical, operation or management jobs within the aerospace and airline industries.

Read less
Executives in aeronautical industry must have technical knowledge, managerial skills and a thorough understanding of the regulatory context associated with air transport. Read more
Executives in aeronautical industry must have technical knowledge, managerial skills and a thorough understanding of the regulatory context associated with air transport. This multidisciplinary system creates major challenges that call for improvements of their capabilities and skills in developing and managing effectively and efficiently their respective domains.

In order to respond to these challenges, MSc program in International Air Transport Operations Management (IATOM) is developed. It is jointly offered by the Department of Mechanical and Aerospace Engineering of HKUST, in partnership with Ecole Nationale de l'Aviation Civile (ENAC), which is currently the largest aeronautical university in Europe and the only aviation-oriented university in France offering a wide and complete panel of aeronautics-oriented degree bearing programs and continuing & professional education programs, serving the aeronautical world, and particularly the air transport sector.

Upon graduation, each student shall receive a joint institutional Master of Science in International Air Transport Operations Management (MSc IATOM) degree certificate from ENAC and HKUST. Since the IATOM degree is accredited and recognized by the French Ministry of Higher Education, a separate certificate recognized by the French Ministry of Higher Education will be issued by ENAC.

This is an exempted program under the Non-local Higher and Professional Education (Regulation) Ordinance in Hong Kong. It is a matter of discretion for individual employers to recognize any qualifications to which this program may lead.

Program Objectives

Master of Science in International Air Transport Operations Management aims to equip those who want to enter the positions for versatile managers, air transport professional or to enhance the knowledge of those who have already been working in the sector.

This program combines the technical, economic and managerial skills that are specific to air transport which will improve and enhance the capabilities of students supporting engineering work for the aeronautics and air transport. It will allow students to get exposure to the various core aspects of air transport and how they are integrated with the technology development in the real world.

Curriculum

In order to graduate with the 2-year MSc(IATOM) degree, each student has to complete total of 120 ECTS (i.e., equivalent to 60 HKUST credits), including the 30 ECTS (i.e., equivalent to 15 HKUST credits) of internship.

Students are required to complete the first term at HKUST in Hong Kong (HK), the second and third terms at ENAC in Toulouse (TLS), France, and then a 6-month internship in the air transport industry in the last term. In order to start the third term at ENAC, each student has to complete 60 ECTS (i.e. equivalent to 30 HKUST credits).

1st term at HKUST (18 HKUST credits / 36 ECTS)
Students are required to take at least 9 credits of foundation courses in the first term at HKUST, to fulfill the graduation requirement. The remaining credits can be taken from the foundation or elective courses. Subject to the approval of the Program Director, students may take a maximum of 9 credits of MSc courses from outside the following course lists offered in School of Engineering.

Foundation Courses (HKUST):
-AESF 5210 Fluid Dynamics
-AESF 5310 Advanced Aerodynamics
-AESF 5320 Advanced Aircraft Structures
-AESF 5330 Advanced Aircraft Design
-AESF 5340 Aircraft Flight Dynamics
-AESF 5350 Aircraft Propulsion
-AESF 6950 Aeronautical Independent Project
-EEMT 5220 Six Sigma Quality Management

Elective Courses (HKUST):
-AESF 5050 Fracture Behavior of Polymers
-AESF 5311 Robotics: Mechanics and Control
-AESF 5360 Advanced Flow Instability
-AESF 5370 Composites and Nanocomposites
-AESF 5380 Computational Fluid Dynamics
-AESF 5390 Computational Aeroacoustics
-AESF 5410 Advanced Mechanical Behavior of Materials
-AESF 5930 Finite Element Methods
-AESF 6910 Special Topics
-EEMT 5120 Operation/Production Management #

Courses offered by ENAC (France):
2nd term at ENAC (12 HKUST credits / 24 ECTS)
-Design Principles
-Production Process
-Operator’s Responsibilities
-MRO Constraints
-Manufacturer’s Role
-Safety Management System

3rd term at ENAC (15 HKUST credits / 30 ECTS)
-Aircraft Performances Optimization – Specialization
-Flight Control System
-Maintenance Management and Engineering
-Airspace Organization and ATM
-Airline Strategy
-Marketing, Customer Support and Fleet Management
-Human Resources Management
-Fleet Planning and Crew Management
-Social Sciences

* Courses are offered subject to needs and availability.

# It will become foundation course with effect from 2017/18 Fall.

Facilities at HKUST and ENAC

Students at HKUST campus can enjoy library facilities, computer support and sports facilities at no extra cost. Upon graduation, students could also apply for related alumni services.

High level training facilities and resources can be found in ENAC associated with its multidisciplinary activities: ATC simulators, flight simulators, 135 aircrafts, laboratories for electronics, data processing, aerodynamics, language courses, etc.

Read less
The MSc in Aerospace Dynamics aims to provide both fundamental and applied knowledge applicable to the understanding of air flows, vehicle dynamics and control and methods for computational modelling. Read more
The MSc in Aerospace Dynamics aims to provide both fundamental and applied knowledge applicable to the understanding of air flows, vehicle dynamics and control and methods for computational modelling. The course will provide students with practical experience in the measurement, analysis, modelling and simulation of airflows and aerial vehicles. The MSc in Aerospace Dynamics stems from the programme in Aerodynamics which was one of the first masters courses offered by Cranfield and is an important part of our heritage. The integration of Aerodynamics with Flight Dynamics reflects the long-term link with the aircraft flight test activity established by Cranfield. Graduates of this course are eligible to join the Cranfield College of Aeronautics Alumni Association (CCAAA), an active community which hold a number of networking and social events throughout the year.

Read less
The aerodynamics and handling performances of aircraft are amongst the most challenging aspects of aircraft designs. Take your expertise of the cutting-edge aeronautics industry to the next level with our course - focused on developing your understanding of advanced aerodynamics, materials and technologies. Read more
The aerodynamics and handling performances of aircraft are amongst the most challenging aspects of aircraft designs.

Take your expertise of the cutting-edge aeronautics industry to the next level with our course - focused on developing your understanding of advanced aerodynamics, materials and technologies.

The MSc in Aeronautical Engineering will enable you to develop a deep understanding and solid skills in aerodynamics and aerodynamic design of aircraft. Grasp detailed knowledge and application principles of composite materials and alloys, critically review and assess the application and practice of advanced materials in modern aircraft.

You will have access to our state-of-art Merlin flight simulator for design and testing your aircraft and will learn and use cutting-edge design, analysis and simulation software: MATLAB/Simulink, CATIA v5, ANSYS, and ABAQUS. You will also have access to subsonic and supersonic wind tunnel facilities and rapid prototyping facilities.

Key Course Features

-Wrexham Glyndŵr University is located nearby to one of the largest aircraft company in the world, Airbus and also has close links with aviation industries, such as Rolls-Royce, Raytheon and Magellan.
-The MSc in Aeronautical Engineering is accredited by Royal Aeronautical Society (RAeS), Institute of Engineering Technology (IET) and the Institution of Mechanical Engineers (IMechE), and provides you with the required training for registering for Chartered Engineer status.

What Will You Study?

FULL-TIME STUDY (SEPTEMBER INTAKE)
The taught element, Part One, of the programmes will be delivered in two 12 week trimesters and each trimester has a loading of 60 credits.

You will cover six taught modules which include lectures, tutorials and practical work on a weekly basis. The expected timetable per module will be a total of 200 hours, which includes 40 hours of scheduled learning and teaching hours and 160 independent study hours.

Part Two will then take a further 15 weeks having a notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

FULL-TIME MODE (JANUARY INTAKE)
For the January intake, students will study the three specialist modules first during the second trimester from January to May. The three core modules will be studied in the first trimester of the next academic year from September to January.

On successful completion of the taught element of the programme the students will progress to Part Two, MSc dissertation to be submitted in April/May.

PART-TIME MODE
The taught element, part one, of the programmes will be delivered over two academic teaching years. 80 credits or equivalent worth of modules will be delivered in the first year and 40 credits or equivalent in the second year. The part time students would join the full time delivery with lectures and tutorials/practical work during one day on a weekly basis.

The dissertation element will start in trimester 2 taking a further 30 weeks having a total notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

AREAS OF STUDY INCLUDE:
-Engineering Research Methods
-Sustainable Design & Innovation
-Engineering Systems Modelling & Simulation
-Advanced Composite Materials
-Applied Aerodynamics
-Flight Dynamics & Controls
-Dissertation

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Assessment and Teaching

You will be assessed throughout your course through a variety of methods including portfolios, presentations and, for certain subjects, examinations.

Career Prospects

The courses will give you the chance to advance your career to management levels. You might also consider consultancy, research and development, testing and design positions within the aeronautical industry. Airbus is a classic example of an employer excelling in this field in the north Wales region.

The Careers & Zone at Wrexham Glyndŵr University is there to help you make decisions and plan the next steps towards a bright future. From finding work or further study to working out your interests, skills and aspirations, they can provide you with the expert information, advice and guidance you need.

Read less
Today’s military aviation platforms are complex systems and it is essential, therefore, that they are deployed and maintained in such a way as to ensure their continued airworthiness and the safety of the crew operating them. Read more

Course Description

Today’s military aviation platforms are complex systems and it is essential, therefore, that they are deployed and maintained in such a way as to ensure their continued airworthiness and the safety of the crew operating them. To achieve this requires engineers to be cognisant of a broad range of aerospace engineering, airworthiness and safety disciplines.

The MSc in Military Aerospace and Airworthiness has been designed to address these needs by providing a course aimed specifically at employees in the MoD, the Armed Forces and the international defence industry. It provides practicing engineers with the knowledge and skills to enable them to work more effectively in aerospace engineering, airworthiness, and safety. The course structure allows students to continue in full-time employment whilst they are studying.

Cranfield University has been at the forefront of postgraduate education in aeronautics and engineering for over 60 years, so you can be sure that your qualification will be valued and respected by employers.

Overview

The MSc distinguishes itself from similar courses offered by leading UK Universities by offering one focussed specifically on the Military context and offers unique subject areas unavailable elsewhere. You will be taught by staff, primarily from Cranfield Defence and Security at Shrivenham, and the School of Engineering at Cranfield, Bedfordshire, many of them world leaders in their field. Visiting lecturers include experts from industry, research establishments, and the MoD. The course draws students from the UK and Western Europe giving an eclectic mix to the classroom environment. Maximum number of places: 25 per year.

Course overview

The course is delivered on a part-time basis. It contains five compulsory modules:
- Airworthiness of Military Aircraft
- Aviation Safety Management
- Fixed-Wing Aeromechanics
- Propulsion Systems
- Safety Assessment of Aircraft Systems

which together provide an overarching introduction to the subject of military aerospace and airworthiness and impart the essential knowledge required by all students on the course.

Students choose one further module to complete the PgCert or a further seven modules to complete the PgDip (MSc taught phase). This provides students with the flexibility to tailor their studies to account for prior educational and work experience and the current and future needs of their employment role.

The modules taken in the taught phase of the MSc (the PgDip) provide students with the knowledge and skills necessary to complete a research-based project, which forms the final part of the Masters award.

Modules

Core:
- Study Skills (non-assessed)
- Airworthiness of Military Aircraft
- Aviation Safety Management
- Fixed-Wing Aeromechanics
- Fundamentals of Aeronautical Engineering Top-up (FAE qualified students only)
- Propulsion Systems
- Safety Assessment of Aircraft Systems
- Research Project (MSc only)

Elective:
- Aircraft Accident Investigation and Response
- Aircraft Fatigue and Damage Tolerance
- Aircraft Survivability
- Air Transport Engineering - Maintenance Operations
- Design Durability and Integrity of Composite Aircraft Structures
- Fundamentals of Aircraft Engine Control
- Guided Weapons
- Human Factors in Aircraft Maintenance
- Introduction to Aircraft Structural Crashworthiness
- Introduction to Human Factors
- Mechanical Integrity of Gas Turbines
- Military Aircraft Systems
- Military Avionics -STA Communications and Navigation
- Practical Reliability
- Rotary-Wing Aeromechanics

Individual Project

The individual research project would focus on a topical subject area covered by the taught phase of the course. The subject of the project can be chosen to match the research needs of the sponsor and/or the interests of the individual student and students are encouraged to utilise their employment resources to place the project in context. Lecturing staff on both campuses will undertake supervision of research projects.

Assessment

Specific assessment details will be dependent upon the modules chosen but will include closed-book written examinations, individual and group design exercises, technical essays, engineering calculations, computer-based assessment.
In addition, for MSc students, the assessment includes lectures and tutorials relating to research, methodologies, project planning, research ethics, plagiarism and technical writing skills, one-to-one discussion with a nominated
academic supervisor, examination of a written dissertation and viva voce examination.

Career opportunities

The course creates opportunities to develop your career at a more senior level and in achieving Incorporated or Chartered Engineer status.

For further information

On this course, please visit our course webpage http://www.cranfield.ac.uk/courses/masters/military-aerospace-and-airworthiness.html

Read less
The Masters in Aeronautical Engineering focuses on advanced engineering subjects required for understanding modern design of fixed-wing aircraft. Read more
The Masters in Aeronautical Engineering focuses on advanced engineering subjects required for understanding modern design of fixed-wing aircraft.

Why this programme

◾The University of Glasgow has been the home of Aerospace Research for over 60 years. This long-standing activity has culminated in the Division of Aerospace Sciences having internationally recognised expertise in all areas of Aeronautics and Aerospace Systems.
◾Aeronautical engineering at the University of Glasgow is consistently highly ranked recently achieving 10th in the UK and 1st in Scotland (Complete University Guide 2017).
◾If you are an aerospace engineering graduate wanting to improve your skills and knowledge; a graduate of a related engineering discipline or physical science and you want to change field; or you are looking for a well rounded postgraduate qualification in aeronautical engineering to enhance your career prospects, this programme is designed for you.
◾You will benefit from access to our outstanding facilities: including several wind tunnels, a flight simulation lab, an autonomous unmanned vehicle (UAV) laboratory, helicopter test rig laboratories, structural testing apparatus and computer labs for modelling and simulation.

Programme structure

Modes of delivery of the MSc in Aeronautical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work. You will attend taught courses and take part in laboratory-based assignments and field visits. You will be further assessed in coursework, report writing and oral presentations.

The summer period is dedicated to project work, with either academic or industrial placements providing the context for your project.

Semester 1 courses
◾Aerospace control 1
◾Aircraft flight dynamics
◾Navigation systems
◾Space flight dynamics 1
◾Viscous shear flows.

Semester 2 courses (five chosen)
◾Autonomous vehicle guidance systems
◾Composites airframe structures
◾Introduction to aeroelasticity
◾Introduction to computational fluid dynamics
◾Introduction to wind engineering
◾Robust control 5
◾Spacecraft systems 2
◾Aerospace design project.

]]Projects]]
◾To complete the MSc degree you must undertake a project worth 60 credits.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Aeronautical Engineering. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

[[Accreditation ]]

MSc Aeronautical Engineering is accredited by the Royal Aeronautical Society (RAeS)

Career prospects

Career opportunities include positions in aerospace, defence, renewable energy, control design, structural engineering. You can also continue studying, for a research Masters or a PhD.

Graduates of this programme have gone on to positions such as:

◾Teaching Assistant at a university
◾Graduate Engineer at UTC Aerospace Systems
◾Scientist at Fluid Gravity Engineering Ltd.

Read less
The Masters in Aerospace Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen aerospace engineering speciality. Read more
The Masters in Aerospace Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen aerospace engineering speciality.

Why this programme

◾The University of Glasgow has been the home of Aerospace Research for over 60 years. This long-standing activity has culminated in the Division of Aerospace Sciences having internationally recognised expertise in all areas of Aeronautics and Aerospace Systems.
◾You will be taught jointly by staff from the School of Engineering and the Adam Smith Business School. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
◾The University of Glasgow is one of the few institutions in the UK, and the only University in Scotland, to offer an Aerospace System MSc.
◾Aeronautical engineering at the University of Glasgow is consistently highly ranked recently achieving 10th in the UK and 1st in Scotland (Complete University Guide 2017).
◾If you have an engineering background, but with little management experience and you are looking to broaden your knowledge of management while also furthering your knowledge of aerospace engineering, this programme is designed for you.
◾Students in this programme can benefit from access to our outstanding facilities: including several wind tunnels, a flight simulation lab, an autonomous unmanned vehicle (UAV) laboratory, helicopter test rig laboratories, structural testing apparatus and computer labs for modelling and simulation.
◾This programme has a September and January intake.

Programme structure

There are two semesters of taught material and a summer session working on a project or dissertation. September entry students start with management courses and January entry students with engineering courses.

Semester 1

You will be based in the Adam Smith Business School, developing knowledge and skills in management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.

Core courses

◾Contemporary issues in human resource management
◾Managing creativity and innovation
◾Managing innovative change
◾Marketing management
◾Operations management
◾Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen aerospace engineering subjects.

Core courses

◾Integrated systems design project.

Optional courses (four chosen)
◾Autonomous vehicle guidance systems
◾Composite airframe structures
◾Fault detection, isolation and reconfiguration
◾Introduction to aeroelasticity
◾Introduction to computational fluid dynamics
◾Introduction to wind engineering
◾Radar and electro-optic systems
◾Robust control 5
◾Spacecraft systems 2.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May–August). This will give you an opportunity to apply and consolidate the course material and enhance your ability to do independent work, as well as present results in the most appropriate format. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to aerospace engineering projects, and January entry students have a choice of aerospace engineering projects.

Projects

To complete the MSc degree you must undertake a project worth 60 credits. This is an integral part of the MSc programme and many have a technical or business focus.

The project will integrate subject knowledge and skills that you acquire during the MSc programme. It is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.

You can choose a topic from a list of MSc projects in Aeronautical Engineering or the Management portion of your degree. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Students who start in January must choose an engineering focussed project

Industry links and employability

If you are looking to advance to a senior position in industry and to perform well at this level, knowledge and understanding of management principles will give you a competitive edge in the jobs market.

The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, advising on projects, curriculum development, and panel discussion.

During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the aerospace industry.

Career prospects

Career opportunities include positions in aerospace, defence, renewable energy, nuclear energy and management. You can also continue studying, for a research Masters or a PhD.

Read less
Aerospace systems are the future of the aerospace industry and constitute the major component of all modern aircraft. They are the essential onboard systems that ensure the safe and accurate operation of all aerospace vehicles, from civil passenger planes to sophisticated unmanned aerial vehicles. Read more
Aerospace systems are the future of the aerospace industry and constitute the major component of all modern aircraft. They are the essential onboard systems that ensure the safe and accurate operation of all aerospace vehicles, from civil passenger planes to sophisticated unmanned aerial vehicles.

Why this programme

◾The University of Glasgow has been the home of Aerospace Research for over 60 years. This long-standing activity has culminated in the Division of Aerospace Sciences having internationally recognised expertise in all areas of Aeronautics and Aerospace Systems.
◾The University of Glasgow is one of the few institutions in the UK, and the only University in Scotland, to offer an Aerospace Systems MSc.
◾Aeronautical engineering at the University of Glasgow is consistently highly ranked recently achieving 10th in the UK and 1st in Scotland (Complete University Guide 2017).
◾If you are an aeronautical engineering or avionics graduate wanting to improve your skills and knowledge; a graduate of another engineering discipline, mathematics or physics and you want to change field; looking for a well-rounded postgraduate qualification in electronics & electrical engineering to enhance your career prospects; this programme is designed for you.
◾Students in this programme can benefit from access to our outstanding facilities: including several wind tunnels, a flight simulation lab, an autonomous unmanned vehicle (UAV) laboratory, helicopter test rig laboratories and computer labs for modelling and simulation.

Programme structure

Modes of delivery of the MSc in Aerospace Systems include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

The summer period is dedicated to project work, with either academic or industrial placements providing the context for your project.

Semester 1 core courses
◾Aircraft flight dynamics
◾Control M
◾Navigation systems
◾Simulation of aerospace systems
◾Space flight dynamics 1.

Semester 2 core courses
◾Autonomous vehicle guidance systems
◾Fault detection, isolation and reconfiguration
◾Radar and electro-optic systems
◾Robust control 5.
◾Aerospace systems team design project.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Aerospace Systems. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Accreditation

MSc Aerospace Systems is accredited by the Royal Aeronautical Society (RAeS)

Industry links and employability

◾You will be introduced to this exciting multi-disciplinary area of technology, gaining expertise in autonomous guidance and navigation, advanced aerospace control, simulation and simulators, fault detection and isolation, electro-optic and radar systems, and space systems.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, advising on projects, curriculum development, and panel discussion.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the aerospace industry.

Career prospects

Career opportunities include aerospace, defence, laser targeting systems, radar development, electro-optics, autonomous systems and systems modelling.

Graduates of this programme have gone on to positions such as:
Software Engineer at Hewlett-Packard
Avionic and Mission System Engineer at Qinetiq
Engineering Corporal & Driver at Hellenic Army.

Read less
The program aims to form Master graduates with a comprehensive and solid scientific and technological background in Electronics Engineering, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged. Read more

Mission and goals

The program aims to form Master graduates with a comprehensive and solid scientific and technological background in Electronics Engineering, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged.
To meet these training needs, the Master of Science in Electronics Engineering bases its roots on a full spectrum of basic courses (mathematics, classical and modern physics, computer science, signal theory, control and communications, basic electronic circuits) that are prerequisites required from the Bachelor, and focuses on the most advanced disciplines in electronic design (analog and digital electronics, solid state physics and devices, microelectronics, optoelectronics, sensors and electronic instrumentation, communications and control systems) to provide a complete and updated preparation. Upon graduating, students will have developed a “design oriented” mindset and acquired a skill to use engineering tools to design solutions to advanced electronic challenges in scientific and technological fields.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

Career opportunities

Thanks to the deep and solid scientific and technological knowledge provided, Master of Science graduates in Electronics Engineering will be able to hold positions of great responsibility, both at technical and management level, in a wide variety of productive contexts:
- Scientific and technological research centers, national and international, public or private;
- Industries of semiconductors, integrated circuits and in general of electronic components;
- Industries of electronic systems and instrumentation, such as consumer electronics (audio, video, telephone, computers, etc.), optoelectronics, biomedical, etc.;
- Electromechanical industries with high technological content such as aeronautics, transportation, aerospace, energy, robotics and plant automation, etc.;
- Work as a freelance in the design and fabrication of custom electronic systems.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electronics_Engineering_01.pdf
The Master of Science in Electronics Engineering aims to form graduates with a comprehensive and solid scientific and technological knowledge in the field of Electronics, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged. The course focuses on the most advanced aspects of Electronics (analog and digital integrated circuits design, solid state devices, microelectronics, optoelectronic devices and sensors, electronic instrumentation, communications and control systems) to provide a complete and updated professional preparation. Upon graduating, students will have developed a “design oriented” mindset enabling them to successfully deal with the complex needs of today’s industrial system. They will have also acquired a skill to use engineering tools to design solutions to advanced electronic challenges in scientific and technological fields as well as a maturity to hold positions of great responsibility both at technical and management level. The programme is taught in English.

Required background from Bachelor studies

The Master of Science in Electronics Engineering bases its roots on a full spectrum of knowledge that students are expected to have successfully acquired in their Bachelor degree, like advanced mathematics, classical and modern physics, computer science, signal and communication theory, electric circuits and feedback control, basic electronic devices and analog & digital circuit analysis.

Subjects

- Analog & Digital Integrated Circuit Design
- MEMS and Microsensors
- Electronic Systems
- Electron Devices and Microelectronic Technologies
- Signal recovery and Feedback Control
- Optoelectronic Systems and Photonics Devices
- RF Circuit Design
- Power Electronics
- Semiconductor Radiation Detectors
- FPGA & Microcontroller System Design
- Biochip and Electronics Design for Biomedical Instrumentation

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
-A focus on the practical application of the advanced theories learnt. -Familiarisation with a range of industry standard design and analysis software. Read more
-A focus on the practical application of the advanced theories learnt.
-Familiarisation with a range of industry standard design and analysis software.
-The opportunity to undertake low cost gliding, with reduced price club membership for students.
-Good career prospects.

The aerospace industry is one of the UK's most successful industrial sectors, with its involvement in major international project groups including Airbus, Rolls Royce, British Aerospace to name but a few. Not every university that teaches engineering includes Aeronautical Engineering in its portfolio, but Staffordshire University is proud to be running this innovative MSc award. The MSc in Aeronautical Engineering builds upon the success of the undergraduate Aeronautical programme which has been running at Staffordshire for thirteen years.

The MSc is an award for the graduate engineer (who will have usually studied a BEng(hons) in Mechanical or Aeronautical Engineering or equivalent, or possibly a BSc(hons) in Aeronautical Technology) and who wishes to expand and deepen their knowledge of aeronautical engineering.

The MSc covers a broad range of areas including fixed wing and rotary aircraft, subsonic and supersonic flight regimes, aircraft propulsion systems, aircraft control systems, materials, etc. As well as taught classes, students use our extensive range of laboratories which include industry standard design and analysis software, including Pro Engineer, Phoenix CFD, ANSYS FEA, etc.

Applicants who require a Tier 4 visa for study in the UK are not able to apply for the Sandwich degree in the first instance due to Immigration regulations. We encourage International students, once enrolled, to apply for a placement and we have a dedicated team of experts who will lead you through the process. Students who are successful with finding a placement will be provided with help and advice with their visa extension application (subject to the University deadlines and Immigration requirements).

It is possible for the MSc students to join the undergraduate Aeronautics students in becoming a member of the local gliding club, where it is possible to experience gliding, whether this is just a couple of air-experience flights, or joining the club as a student member and in some cases taking hundreds of flights and achieving a gliding qualification. Many airline pilots started their flying career by gliding.

A range of external speakers will be invited to give lectures to the MSc students, including designers from industry and airline pilots. There is an opportunity for students on the MSc to undertake a placement with one of the local, regional, national or international aerospace companies, and assistance in finding these placements is given by the Placements Office.

Course content

On the Engineering Extended MSc you will spend your first semester studying modules that have been written to provide you with the academic, professional and technical skills that you will need to succeed on your chosen award. All engineering students on the Extended MSc study the same modules for one semester and then study specialist modules depending on their chosen discipline. This means that whether you have chosen the Aeronautical, Automotive, Electrical, Electronic, Mechanical, Mechatronic or Telecommunication route, you will study the following modules in your first semester:

Academic English: This module will help you to develop your English Language speaking, listening, reading and writing skills and will introduce you to the conventions of academic writing.

Study skills & Employability: This module will help you to develop the skills and knowledge required to support study at Masters level. It will also help you to develop skills that will aid you in the job market and will look at things such as writing a C.V. and creating a personal development plan.

Engineering Principles: In this module you will undertake a variety of practical, laboratory based exercises giving you a flavour of your future studies and underpinning your future learning. You will be given experience of software tools that might include product design using solid modelling, CFD analysis for aerodynamics and Finite Element Analysis for structural analysis. This will be complemented by time spent in our new and wellequipped automotive, aeronautical and mechanical laboratories.

Mathematical Applications: As an engineering graduate you should already have a strong mathematical knowledge. This module will revise your existing knowledge and introduce you to some of the more advanced mathematical concepts deployed in the field of professional engineering. Where appropriate you will utilise software to support and enhance the problem solving and analysis techniques met in this module, allowing you to hone an essential skill for the modern industry based working environment

After successfully completing the first semester, you will concentrate on your chosen core engineering discipline. You will study a total of 8 core and option modules as set out in your award structure. For information about the structure of your award and the modules you will study after the first semester, please see the award handbooks.

Employment opportunities

It is envisaged that graduates from the MSc in Aeronautical Engineering will be in a position to apply for a large range of technical, engineering, analytical, operation or management jobs within the aerospace and airline industries.

Read less
What are the laws of nature governing the universe from elementary particles to the formation and evolution of the solar system, stars, and galaxies? In the Master’s Programme in Particle Physics and Astrophysical Sciences, you will focus on gaining a quantitative understanding of these phenomena. Read more
What are the laws of nature governing the universe from elementary particles to the formation and evolution of the solar system, stars, and galaxies? In the Master’s Programme in Particle Physics and Astrophysical Sciences, you will focus on gaining a quantitative understanding of these phenomena.

With the expertise in basic research that you will gain in the programme, you can pursue a career in research. You will also acquire proficiency in the use of mathematical methods, IT tools and/or experimental equipment, as well as strong problem-solving and logical deduction skills. These will qualify you for a wide range of positions in the private sector.

After completing the programme, you will:
-Have wide-ranging knowledge of particle physics and/or astrophysical phenomena.
-Have good analytical, deductive and computational skills.
-Be able to apply theoretical, computational and/or experimental methods to the analysis and understanding of various phenomena.
-Be able to generalize your knowledge of particle physics and astrophysical phenomena as well as identify their interconnections.
-Be able to formulate hypotheses and test them based your knowledge.

The teaching in particle physics and astrophysical sciences is largely based on the basic research. Basic research conducted at the University of Helsinki has received top ratings in international university rankings. The in-depth learning offered by international research groups will form a solid foundation for your lifelong learning.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The understanding of the microscopic structure of matter, astronomical phenomena and the dynamics of the universe is at the forefront of basic research today. The advancement of such research in the future will require increasingly sophisticated theoretical, computational and experimental methods.

The study track in elementary particle physics and cosmology focuses on experimental or theoretical particle physics or cosmology. The theories that form our current understanding of these issues must be continuously re-evaluated in the light of new experimental results. In addition to analytical computation skills, this requires thorough mastery of numerical analysis methods. In experimental particle physics, the main challenges pertain to the management and processing of continuously increasing amount of data.

The study track in astrophysical sciences focuses on observational or theoretical astronomy or space physics. Our understanding of space, ranging from near Earth space all the way to structure of the universe, is being continuously redefined because of improved experimental equipment located both in space and on the Earth’s surface. Several probes are also carrying out direct measurements of planets, moons and interplanetary plasma in our solar system. Another key discipline is theoretical astrophysics which, with the help of increasingly efficient supercomputers, enables us to create in-depth models of various phenomena in the universe in general and the field of space physics in particular. Finally, plasma physics is an important tool in both space physics and astronomy research.

Selection of the Major

The Master’s programme includes two study tracks:
-Particle physics and cosmology
-Astrophysical sciences

Courses in the programme have been compiled into modules. Both study tracks contain a mandatory core module that includes a research seminar. The study tracks are divided into specialisations that focus on astronomy, space physics, particle physics or cosmology. Courses typically include lectures, exercises, group work and research literature and end in examinations and/or final assignments. In addition, some studies can be completed as book examinations.

Programme Structure

The scope of the Master’s programme is 120 credits (ECTS), which can be completed in two years. The degree consists of:
-90 credits of Master’s studies, including a Master’s thesis (30 credits).
-30 credits of other studies from the Master’s programme or other degree programmes.

In addition, your studies include a personal study plan as well as career orientation and planning. You might also take part in a traineeship, elective studies offered by the Master’s Programme in Particle Physics and Astrophysical Sciences, or studies offered by other degree programmes.

Career Prospects

A Master’s degree in elementary particle physics or astrophysical sciences provides you with excellent qualifications for postgraduate education in research or for a career in diverse positions both in Finland and abroad. As a Master’s graduate you could begin a career in research and development in industry as well as in universities and other research institutes that enable you to conduct independent research on a topic that interests you.

Potential employers and career opportunities include:
-Research institutes in Finland and abroad (basic scientific research).
-Universities and universities of applied sciences (teaching).
-Industry, particularly high technology companies (applied research and development, managerial duties).
-Software production, e.g., the game sector.
-Diverse planning and consulting positions.

Master’s graduates from equivalent study tracks under the previous degree system have embarked on careers in:
-Research and teaching positions in Finnish universities and research institutes.
-Research and teaching positions abroad, for example at CERN (the European Organization for Nuclear Research), ESA (the European Space Agency), ESO (the European Southern Observatory), and NASA (the National Aeronautics and Space Administration).
-Administrative positions, for example at the Academy of Finland or the Finnish Funding Agency for Innovation (Tekes).
-The business sector.

The strong theoretical and analytical skills you will acquire in the programme are in great demand in fields such as:
-Data analysis (industry, media companies, game companies, financing).
-Industrial research, development and consulting (at, e.g., Nokia, Ericsson, Apple, Sanoma, Spinverse, Supercell, Nielsen, Valo -Research and Trading, Planmeca, Reaktor, Comptel, and Goldman Sachs).

Internationalization

Our multilingual Master’s programme is highly international. The Department hosts a large number of international students and staff members. In addition, the University of Helsinki and the Faculty of Science provide many opportunities for international engagement:
-Student exchange at one of the destinations available through the Faculty or the University.
-International traineeships.
-English-language teaching offered by the Faculty.
-Master’s thesis project as a member of one of the international research groups operating under the programme.
-Cooperation with international students enrolled in the programme.
-International duties in subject-specific student organisations or the Student Union of the University of Helsinki.
-Language courses organised by the Language Centre of the University of Helsinki.

The Faculty of Science is a top research institute in its fields among European universities. Its partners include many leading international research institutes, such as the European Organization for Nuclear Research (CERN), the European Space Agency (ESA) and the European Southern Observatory (ESO).

As a student at the Faculty of Science, you will have the opportunity to complete a research traineeship period at, for example, CERN in Geneva. By completing a traineeship at one of the internationally active research groups on campus you will be able to acquaint yourself and network with the international scientific community during your Master’s studies. The international student exchange programmes available at the University provide numerous opportunities to complete part of your degree at a university abroad.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X