• Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
University of Dundee Featured Masters Courses
FindA University Ltd Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Swansea University Featured Masters Courses
"aeronautics"×
0 miles

Masters Degrees (Aeronautics)

We have 31 Masters Degrees (Aeronautics)

  • "aeronautics" ×
  • clear all
Showing 1 to 15 of 31
Order by 
This course provides advanced training in computational methods, the underlying physical principles, and appropriate experimental techniques for aeronautics and other sectors. Read more

This course provides advanced training in computational methods, the underlying physical principles, and appropriate experimental techniques for aeronautics and other sectors.

It is suitable for applicants who wish to enhance their engineering training or to convert to an advanced engineering discipline from backgrounds in mathematics, physics or computer science.

You will develop specialist skills that are attractive to a broad spectrum of both aerospace and non-aerospace engineering industries.

The Department works closely with employers and industry - including Industrial Advisory Panels - to design a programme which ensures that students graduate with the technical knowledge, expertise and transferrable skills in demand by employers.

Through links with industry, it is possible for projects to be supervised in part by staff from industry or to be carried out in industry.

Further information

For full information on this course, including how to apply, see: http://www.imperial.ac.uk/study/pg/aeronautics/computational-methods/

If you have any enquiries you can contact our team at:



Read less
The Masters in Aerospace Engineering is a multi-disciplinary programme that covers all aspects of modern aircraft design. This involves developing essential knowledge and skills in advanced aerodynamics and aerospace systems. Read more

The Masters in Aerospace Engineering is a multi-disciplinary programme that covers all aspects of modern aircraft design. This involves developing essential knowledge and skills in advanced aerodynamics and aerospace systems. By choosing specific options in the second semester the degree programme can be tailored to provide specialisms in either Aeronautics or Systems.

Why this programme

  • The University of Glasgow has been the home of Aerospace Research for over 60 years. This long-standing activity has culminated in the Division of Aerospace Sciences having been internationally recognised expertise in all areas of Aeronautics and Aerospace Systems
  • The School of Engineering’s aeronautical engineering is consistently highly ranked among the top 10 in the UK and recently achieved 1st in Scotland (Complete University Guide 2017).

Programme structure

Modes of delivery of the MSc in Aerospace Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work. 

The summer period is dedicated to project work, with either academic or industrial placements providing the context for your project. 

Semester 1 core courses 

  • Aircraft flight dynamics 
  • Aerospace Control 1 
  • Navigation systems 
  • Simulation of aerospace systems 
  • Space flight dynamics 1 

Semester 2 optional courses

Select a team project from:

  • Aerospace Design Project M *
  • Aerospace Systems Team Design Project M 

Select five courses from the following:

  • Aeroelasticity 5 or Aircraft Vibration & Aeroelasticity 4 *
  • Autonomous vehicle guidance systems **
  • CFD 5 or CFD 4 *
  • Composite Airframe Structures *
  • Fault detection, isolation and reconfiguration **
  • High Speed Aerodynamics 4 *
  • Intro to Wind Engineering *
  • Radar and electro-optic systems **
  • Robust control 5 **
  • Rotorcraft Aeromechanics 5 *
  • Spacecraft Systems II **
  • Turbulent Flows 5 *
  • Aircraft Handling Qualities & Control 5 * (Enrolment on this course is subject to available numbers on flight test course and may require an additional charge)

* signifies courses that constitute the specialism in Aeronautics

** signifies courses that constitute the specialism in Systems



Read less
The programme is co-organised by Vrije Universiteit Brussel (VUB) and Universite Libre de Bruxelles (ULB), offering students the possibility to obtain a double master's degree at the end of the programme. Read more

About the programme

The programme is co-organised by Vrije Universiteit Brussel (VUB) and Universite Libre de Bruxelles (ULB), offering students the possibility to obtain a double master's degree at the end of the programme. The first year of courses is taught at the ULB Engineering Campus in Brussels, while the second year is taught at VUB.

This Master offers:

- A broad range of scientific knowledge combining a multidisciplinary engineering training with an in-depth specialisation in the chosen major.
- Students the necessary tools to begin a productive career in engineering practice or research.
- Close contact with highly qualified academic staff and specialists from industry and research institutes.
- The best international context you can think of in Europe. Study in Brussels, the capital of Europe!
- A gateway to a challenging and exciting future.
- Students the opportunity to become an engineer with scientific and technological efficiency

The program trains engineers with scientific and technological efficiency. The program is academic, meaning that it is characterized by close links to scientific research in the related fields as well as the profession.

Students must obtain a scientific balance between thorough, critical knowledge and practical skills, with emphasis on independence, creativity and inventiveness.

The academically educated engineer must be eager to study throughout his/her career in order to be able to assimilate the results of research and learn new skills. He/she must be able to solve problems. In addition, he/she should have both social and language skills.

Specific objectives

- To train engineers specialized in machine construction, the automobile industry, thermal installations, aircraft construction, consulting firms, application of machinery, maintenance of chemical, petrochemical and nuclear companies, production, distribution and application of electric energy (including power electronics and maintenance of industrial installations)
- To specialize in electromechanical engineering while maintaining a broad-based education by balancing the specialization with more general subjects.

Choose between four majors

This master enables students to build a broad ranging scientific knowledge combined with a multidisciplinary engineering traiwithning an in-depth specialization in the chosen major: Aeronautics, Energy, Mechatronics-Construction or Vehicle Technology and Transport.

Aeronautics: students will become engineers who are competent in the many aspects of cutting-edge technologies in the aeronautics sector and their spin-off possibilities in other industrial sectors. The programme includes all aspects of construction, exploitation and maintenance of aircraft and spacecraft.

Energy: students will become engineers who are specifically well-acquainted with systems for production, transport distribution and electronic conversion of energy, as well as its transformation into mechanical energy. Sustainable energy, rational use of energy and energy management are also covered.

Mechatronics-Construction: students will become engineers who are able to optimally design, produce, maintain and apply complex electromechanical systems..

Vehicle Technology and Transport: students will become engineers who can design systems in which transportation of people and goods are central, with special attention to innovative, environmentally friendly vehicles

Curriculum

Available on http://www.vub.ac.be/en/study/electromechanical-engineering/programme

Read less
This MSc aims to build up your knowledge of the design of flying vehicles such as aircraft, missiles, airships and spacecraft. Select from one of three specialist options and excel in a growing aerospace industry. Read more

This MSc aims to build up your knowledge of the design of flying vehicles such as aircraft, missiles, airships and spacecraft. Select from one of three specialist options and excel in a growing aerospace industry:

Who is it for?

This MSc course provides a taught engineering programme with a focus on the technical, business and management aspects that encompass aircraft design in the civil and military aerospace sectors.

Teaching integrates a range of disciplines required for modern aircraft design, for example:

  • Aircraft systems design
  • Avionic systems design
  • Design for manufacture
  • Initial aircraft design 
  • Operation and cost
  • Propulsion integration
  • Stability and performance 
  • Structural design and Airframe

Why this course?

Cranfield have been at the forefront of postgraduate education in aerospace engineering since 1946 with the Aerospace Vehicle Design being one of the original foundation courses of the College of Aeronautics. Graduates from this course also become members of the Cranfield College of Aeronautics Alumni Association (CCAAA), an active community which holds a number of networking and social events throughout the year.

One unique feature of the course is that we have a range of external examiners, from industry and from academia who continually assess the quality of the course.

Cranfield University is very well located for students from all over the world, and offers a range of library, IT and support facilities to support your studies. This enables students from all over the world to complete this qualification whilst achieving the right balance of work/life commitments.

Informed by Industry

The course has an Industrial Advisory Committee with senior members from major UK aerospace companies, government bodies, and the military services. The committee meets twice a year to review and advise on course content, acquisition skills and other attributes which are deemed desirable from graduates of the course. Panel members have included professionals from organisations such as:

  • Airbus
  • BAE Systems
  • BOEING
  • Department of National Defence and the Canadian Armed Forces.
  • GKN Aerospace 
  • Messier-Dowty
  • Royal Air Force
  • Royal Australian Air Force
  • Thales UK

Accreditation

The MSc in Aerospace Vehicle Design, in part meets the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng (Hons) accredited for CEng will be able to show that they have satisfied the required educational base for CEng registration.

Course details

The taught component of the Aerospace Vehicle Design masters is generally delivered from October to March (or March-August for the March intake). Modules for each option vary - please refer to MSc course option pages for descriptions of compulsory modules which must be undertaken. Students also have an extensive choice of optional modules to match their specific interests.

Group project

The extensive group design project is a distinctive and unique feature of this course. This teamwork project takes place from October to March (or March-August for the March intake), and recreates a virtual industrial environment bringing together students with various experience levels and different nationalities into one integrated design team.

Each team member is given the responsibility for the detailed design of a significant part of the aircraft, for example, forward fuselage, fuel system, or navigation system. The project progress a design from the conceptual phase through to the preliminary and detail design phases. Students will be required to run project meetings, produce engineering drawings and conduct detailed analyses of their design. Problem solving and project co-ordination must be undertaken on a team and individual basis. At the end of the project, the group is required to report and present findings to a panel of up to 200 senior engineers from industry and academia.

This element of the course is both realistic and engaging, and places the whole student group in a professional role as aerospace design engineers. Students testify that working as an integrated team on real problems is invaluable and prepares them well for careers in a highly competitive industry.

Students following the Structural Design option do not participate in the Group Design Project but instead undertake a more intensive individual project.

Watch past presentation videos to give you a taster of our innovative and exciting group projects

Individual project

The individual research project element aims to provide the training necessary for you to apply knowledge from the taught elements to research, and takes place from March to September (or October-February for the March intake). The project may be theoretical and/or experimental and can be selected from a range of topics related to the course as suggested by teaching staff, your employer or even focused on your own area of interest. 

Assessment

Refer to MSc course option pages for breakdown of assessment

Your career

The MSc in Aerospace Vehicle Design is valued and respected by employers worldwide. The applied nature of this course ensures that our graduates are ready to be of immediate use to their future employer and has provided sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression.

This course prepares graduates for careers as project engineers, systems design, structural design or avionic engineers in aerospace or related industries, with the aim of progressing to technical management/chief engineer roles. Graduates from the MSc in Aerospace Vehicle Design can therefore look forward to a varied choice of challenging career opportunities in the above disciplines. 

Many of our graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry. Some example student destinations include BAE Systems, Airbus, Dassault and Rolls-Royce.



Read less
This specialist option of the . MSc Aerospace Vehicle Design.  provides you with an understanding of aircraft structures, airworthiness requirements, design standards, stress analysis, fatigue and fracture (damage tolerance) and fundamentals of aerodynamics and loading. Read more

This specialist option of the MSc Aerospace Vehicle Design provides you with an understanding of aircraft structures, airworthiness requirements, design standards, stress analysis, fatigue and fracture (damage tolerance) and fundamentals of aerodynamics and loading. Also covered is the selection of suitable materials, both metallic and composite.

Who is it for?

Manufacturers of modern aircraft are demanding more lightweight and more durable structures. Structural integrity is a major consideration of today’s aircraft fleet. For an aircraft to economically achieve its design specification and satisfy airworthiness regulations, a number of structural challenges must be overcome. This course trains engineers to meet these challenges, and prepares them for careers in civil and military aviation. It is suitable if you have a background in aeronautical or mechanical engineering, or relevant industrial experience.

Why this course?

We have been at the forefront of postgraduate education in aerospace engineering since 1946. Aerospace Vehicle Design at Cranfield University was one of the original foundation courses of the College of Aeronautics. Graduates of this course are eligible to join the Cranfield College of Aeronautics Alumni Association (CCAAA), an active community which hold a number of networking and social events throughout the year.

Cranfield University is well located for students from all over the world, and offers a range of library and support facilities to support your studies. This enables students from all over the world to complete this qualification whilst balancing work/life commitments. 

Informed by Industry

The course has an Industrial Advisory Committee with senior members from major UK aerospace companies, government bodies, and the military services. The committee meets twice a year to review and advise on course content, acquisition skills and other attributes are desirable from graduates of the course. Panel members include:

  • Airbus
  • BAE Systems
  • BOEING
  • Department of National Defence and the Canadian Armed Forces.
  • GKN Aerospace 
  • Messier-Dowty
  • Royal Air Force
  • Royal Australian Air Force
  • Thales UK

We also arrange visits to sites such as BAE Systems, Marshall Aerospace, GKN and RAF bases which specialise in the maintenance of military aircraft. This allows you to get up close to the aircraft components and help with your understanding.

Accreditation

The MSc in Aerospace Vehicle Design is accredited by the Royal Aeronautical Society (RAeS) & Institution of Mechanical Engineers (IMechE) as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Course details

This option is comprised of 4 compulsory modules and a minimum of 120 hours of optional modules, selected from a list of 18 options. You will also complete an individual research project. Delivered via a combination of structured lectures, industry guest lectures, computer based workshops and private study.

A unique feature of the course is that we have four external examiners; two from industry who assess the group design project and two from academia who assess the individual research project.

Individual project

The individual research project aims to provide the training necessary for you to apply knowledge from the taught element to research, and takes place from January to September. It is sometimes associated with a real-world problem that one of our industry partners are looking to resolve.

Examples of recent Individual Research Projects include:

  • Review, Evaluation and Development of a Microlight Aircraft
  • Investigation of the Fatigue Life of Hybrid Metal Composite Joints
  • Design for Additive Layer Manufacture
  • Rapid Prototyping for Wind Tunnel Model Manufacturing.

Assessment

Taught modules 20%, Individual research project 80%

Your career

This Aerospace Vehicle Design option in Structural Design is valued and respected by employers worldwide. The applied nature of this course ensures that our graduates are ready to be of immediate use to their future employer and has provided sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression.

Graduates from this option have gone onto pursue engineering careers in disciplines such as structural design, stress analysis or systems design. Many of our graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry. Student destinations have included BAE Systems, Airbus, Dassault and Rolls-Royce.



Read less
With the ever increasing traffic density of civil aircraft, and the need for increased military precision in conflicts around the world, safer aircraft operations require more sophisticated avionic systems. . Read more

With the ever increasing traffic density of civil aircraft, and the need for increased military precision in conflicts around the world, safer aircraft operations require more sophisticated avionic systems. 

This specialist option of the MSc Aerospace Vehicle Design provides you with an understanding of avionic systems design, analysis, development, test and airframe integration.

Who is it for?

This course is suitable for students with a background in aeronautical or mechanical engineering or those with relevant industrial experience. It provides a taught engineering programme with a focus on the technical, business and management aspects of aircraft design in the civil and military aerospace sectors.

Why this course?

The Avionic Systems Design option aims to provide an understanding of avionic systems design, analysis, development, test and airframe integration. This includes a detailed look at robust and fault-tolerant flight control, advanced 4D flight management and RNP navigation, self-separation and collision avoidance and advanced digital data communications systems, as well as pilot-friendly and intelligent cockpit displays and situation awareness.

The course extent also covers future ATM systems which have been at the forefront of postgraduate education in aerospace engineering since 1946. Aerospace Vehicle Design at Cranfield University was one of the original foundation courses of the College of Aeronautics. Graduates of this course are eligible to join the Cranfield College of Aeronautics Alumni Association (CCAAA), an active community which hold a number of networking and social events throughout the year.

Cranfield University is well located for students from all over the world, and offers a range of library and support facilities to support your studies. This enables students from all over the world to complete this qualification whilst balancing work/life commitments. 

Informed by Industry

The course has an Industrial Advisory Committee with senior members from major UK aerospace companies, government bodies, and the military services. The committee meets twice a year to review and advise on course content, acquisition skills and other attributes are desirable from graduates of the course. Panel members include:

  • Airbus
  • BAE Systems
  • BOEING
  • Department of National Defence and the Canadian Armed Forces.
  • GKN Aerospace 
  • Messier-Dowty
  • Royal Air Force
  • Royal Australian Air Force
  • Thales UK

We also arrange visits to sites such as BAE Systems, Thales, GKN and RAF bases which specialise in the maintenance of military aircraft. This allows you to get up close to the aircraft and components to help with ideas for the group project.

Accreditation

The MSc in Aerospace Vehicle Design is accredited by the Royal Aeronautical Society (RAeS). Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Course details

This option is comprised of a number of mandatory modules and a minimum of 60 hours of optional modules, selected from a list of options. You are also required to complete a group design project and an individual research project. Delivered via a combination of structured lectures, industry guest lectures, computer based workshops and private study.

A unique feature of the course is that we have four external examiners; two from industry who assess the group design project and two from academia who assess the individual research project.

Group project

The extensive group design project is a distinctive and unique feature of this course. This teamwork project takes place over six months, usually between October and March; and recreates a virtual industrial environment bringing together students with various experience levels and different nationalities into one integrated design team.

You will be given responsibility for the detailed design of a significant part of the aircraft, for example, flight control system, or navigation system. The project will progress the design of the aircraft and avionic systems from the conceptual phase through to the preliminary and detail design phases. You are required to run project meetings, produce system schematics and conduct detailed analyses of their design. Problem solving and project coordination must be undertaken on a team and individual basis. At the end of the project, groups are required to report and present findings to a panel of up to 200 senior engineers from industry. 

This element of the course is both real and engaging, and places the student group in a professional role as aerospace design engineers. Students testify that working as an integrated team on real problems is invaluable and prepares them well for careers in a highly competitive industry.

Watch past presentation YouTube videos to give you a taster of our innovative and exciting group projects:

Individual project

The individual research project aims to provide the training necessary for you to apply knowledge from the taught element to research, and takes place over six months. The project may be theoretical and/or experimental and drawn from a range of topics related to the course and suggested by teaching staff, your employer or focused on your own area of interest.

Assessment

Taught modules 10%, Group project 50%, Individual research project 40%

Your career

The Avionic Systems Design option is valued and respected by employers worldwide. The applied nature of this course ensures that our graduates are ready to be of immediate use to their future employer and has provided sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression.

This course prepares graduates for careers as project design engineers, systems design, structural design or avionic engineers in aerospace or related industries, with the aim of progressing to technical management/chief engineer. Graduates from the MSc in Avionic Systems Design can therefore look forward to a varied choice of challenging career opportunities in the above disciplines. 

Many of our graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry. Typical student destinations include BAE Systems, Airbus, Dassault and Rolls-Royce plc.



Read less
About the Course A focus on the practical application of the advanced theories learnt. Familiarisation with a range of industry standard design and analysis software. Read more

About the Course A focus on the practical application of the advanced theories learnt. Familiarisation with a range of industry standard design and analysis software. The opportunity to undertake low cost gliding, with reduced price club membership for students. Good career prospects. The aerospace industry is one of the UK's most successful industrial sectors, with its involvement in major international project groups including Airbus, Rolls Royce, British Aerospace to name but a few. Not every university that teaches engineering includes Aeronautical Engineering in its portfolio, but Staffordshire University is proud to be running a new and innovative MSc award in this area which started September 2012.

The MSc in Aeronautical Engineering builds upon the success of the undergraduate Aeronautical programme which has been running at Staffordshire for over ten years. The MSc is an award for the graduate engineer (who will have usually studied a BEng(hons) in Mechanical or Aeronautical Engineering or equivalent, or possibly a BSc(hons) in Aeronautical Technology) and who wishes to expand and deepen their knowledge of aeronautical engineering.

The MSc covers a broad range of areas including fixed wing and rotary aircraft, subsonic and supersonic flight regimes, aircraft propulsion systems, aircraft control systems, materials, etc. As well as taught classes, students use our extensive range of laboratories which include industry standard design and analysis software, including Pro Engineer, Phoenix CFD, ANSYS FEA, etc.

Course content

Students study eight taught modules then undertake a research-based dissertation, the length of the course being about 12 months in total.

Modules studied include: ​​​

-Technical and Study Skills

-Research Methods and Project Management

-Control Systems for Aeronautics

-Structural Integrity

-Aircraft Propulsion Systems

-Advanced Aeronautics

-Advanced Vehicle Aerodynamics

-MSc Project the 60 credit dissertation module, student centred but with close staff guidance.

Options include:

-MSc Project by Distance Learning (as an alternative to the MSc Project)

-Advanced Engineering Materials

-Technical Paper Authoring

-Industrial Responsibility

Employment opportunities

It is envisaged that graduates from the MSc in Aeronautical Engineering will be in a position to apply for a large range of technical, engineering, analytical, operation or management jobs within the aerospace and airline industries.



Read less
To design modern efficient aircraft requires a complex combination of aerodynamic performance, lightweight durable structures and advanced systems engineering. This specialist . Read more

To design modern efficient aircraft requires a complex combination of aerodynamic performance, lightweight durable structures and advanced systems engineering. This specialist MSc Aerospace Vehicle Design option explores how different structural and systems elements can be designed and integrated using up-to-date methods and techniques.

Who is it for?

This option is suitable for those students wishing to gain an overview of the whole aircraft design process as well as the design of aircraft structures and systems. 

Why this course?

This Aircraft Design option aims to provide a comprehensive overview of whole aircraft configuration design as well as, structures and systems. A holistic teaching approach is taken to explore how the individual elements of an aircraft can be designed and integrated using up-to-date methods and techniques. You will learn to understand how to select and integrate specific systems such as fuel systems, and their effect on the aircraft as a whole.

We have been at the forefront of postgraduate education in aerospace engineering since 1946. Aerospace Vehicle Design at Cranfield University was one of the original foundation courses of the College of Aeronautics. Graduates of this course are eligible to join the Cranfield College of Aeronautics Alumni Association (CCAAA), an active community which hold a number of networking and social events throughout the year.

Cranfield University is well located for students from all over the world, and offers a range of library and support facilities to support your studies. This enables students from all over the world to complete this qualification whilst balancing work/life commitments.

Informed by Industry

The course has an Industrial Advisory Committee with senior members from major UK aerospace companies, government bodies, and the military services. The committee meets twice a year to review and advise on course content, acquisition skills and other attributes that are desirable for graduates of the course. Panel members include:

  • Airbus
  • BAE Systems
  • BOEING
  • Department of National Defence and the Canadian Armed Forces.
  • GKN Aerospace 
  • Messier-Dowty
  • Royal Air Force
  • Royal Australian Air Force
  • Thales UK

Accreditation

The MSc in Aerospace Vehicle Design is accredited by the Royal Aeronautical Society (RAeS) & Institution of Mechanical Engineers (IMechE) as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Course details

The Aircraft Design option consists of a number of mandatory modules and a minimum of 60 hours of optional modules, which are selected from optional modules. You are also required to complete a group design project and an individual research project.

A unique feature of the course is that we have four external examiners, two from industry who assess the group design project and two from academia who assess the individual research project.

Group project

The extensive group design project is a distinctive and unique feature of this course. This teamwork project takes place over six months and recreates a virtual industrial environment bringing together students with various experience levels and different nationalities into one integrated design team.

Students are given responsibility for the detailed design of a significant part of the aircraft, for example, forward fuselage, fuel system, landing gear, environmental control system, wing. The project will progress from the conceptual phase through to the preliminary and detail design phases. You will be required to run project meetings, produce engineering drawings and detailed analyses of your design. Problem solving and project co-ordination must be undertaken on a team and individual basis. At the end of the project, groups are required to report and present findings to a large panel of senior engineers from industry.

This element of the course is both realistic and engaging, and places the student group in a professional role as aerospace design engineers. Students testify that working as an integrated team on real problems is invaluable and prepares them well for careers in a highly competitive industry.

Watch past presentation videos (YouTube) to give you a taster of our innovative and exciting group projects:

Individual project

The individual research project aims to provide the training necessary for you to apply knowledge from the taught element to research. The project may be theoretical and/or experimental and drawn from a range of topics related to the course and suggested by teaching staff, your employer or focused on your own area of interest. It provides the opportunity for you to deepen your knowledge of an area that is of particular interest, and is often associated with a real-world problem that one of our industry partners is looking to resolve.

Previous Individual Research Projects include:

  • Ultra Long Range Science UAV Structure / Systems Development
  • Conceptual Design of a Hypersonic Space Launcher and Global Transportation System
  • Effect of Aerodynamics on the Conceptual Design of Blended Wing Body Aircraft
  • Review, Evaluation and Development of a Microlight Aircraft
  • Feasibility of the Application of Low Cost Scaled Aircraft Demonstrators.

Assessment

Taught modules 10%, Group project 50%, Individual research project 40%

Your career

This MSc is valued and respected by employers worldwide. The applied nature of this course ensures that our graduates are ready to be of immediate use to their future employer and has provided sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression.

Graduates from this option have gone on to pursue engineering careers in disciplines such as structural design, stress analysis or systems design.

Many of our graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry. Typical student destinations include BAE Systems, Airbus, Dassault and Rolls-Royce.



Read less
The master´s programme in Aeronautical Engineering at Linköping University offers a holistic view on aircraft design. An aircraft is a complex, integrated, closely connected system of various technologies and disciplines such as. Read more

The master´s programme in Aeronautical Engineering at Linköping University offers a holistic view on aircraft design. An aircraft is a complex, integrated, closely connected system of various technologies and disciplines such as: aerodynamics, structure, propulsion, actuation systems and other on-board systems.

All these disciplines need to be optimised in order to achieve the functionality and efficiency required of an aircraft. The latter part of the programme involves a project in which these disciplines come together and challenge students to design, build and fly an aircraft, or a subscale version.

Industry affiliations

Linköping is the aviation capital of Sweden and one of few aviation cities in the world. Saab Aeronautics, the producer of the highly successful Gripen fighter aircraft, is a major actor in the region. Other related companies and military aviation establishments that reinforce Linköping’s aviation character are located in or near the city. The Aeronautical Engineering programme benefits from this, as some of the teachers have affiliations to the industry. Moreover, there is close research and education collaborations between the university and the industry.

Contemporary tools

The first year of the programme deals with the fundamentals of aeronautics, such as aircraft design, aerodynamics, engineering system design, product modelling, and aircraft systems and installation. Throughout the programme, special attention is given to a thorough progression with significant use of contemporary engineering design tools. A mix of elective and mandatory courses prepares you for your master’s thesis durign the final semester. There is a possibility to specialise within Aerodynamics, Aircraft System Design or Aircraft Structure.



Read less
This course addresses the broad field of advanced composites, specifically the manufacturing and characterisation of composites and engineering design. Read more

This course addresses the broad field of advanced composites, specifically the manufacturing and characterisation of composites and engineering design.

New aircraft and other challenging engineering applications are becoming increasingly dependent upon the unique capabilities of high performance composite materials.

This course addresses the broad field of advanced composites, and is presented by experts in the field from the College, other universities, major aerospace companies and government research organisations.

It will appeal to graduates of engineering, materials science, physics or chemistry. You will develop an outstanding knowledge of composite technology, allowing you to take up specialist roles in industry and research.

The facilities in the Department are of a high standard with numerous technicians on-hand to support you when using the equipment and software in the laboratories and workshops.

The programme has been designed to provide a breadth and depth of knowledge of composite materials that will be of relevance to a wide range of companies who use these materials.

This is reflected by the professional accreditation awarded to the programme, as detailed below. Many of the research projects and literature review topics proposed to students are from industry contacts.

The programme is one of the primary providers of postgraduate education in composite materials in Europe, and strives to pursue excellence through the delivery of a comprehensive and integrated programme attracting ambitious applicants of high intellectual calibre.

Further information

For full information on this course, including fees and how to apply, please see: http://www.imperial.ac.uk/study/pg/aeronautics/composites/

If you have any enquiries you can contact our team at:



Read less
This course provides multidisciplinary training in aircraft technologies aimed at reducing environmental impact and life-cycle costs. Read more

This course provides multidisciplinary training in aircraft technologies aimed at reducing environmental impact and life-cycle costs.

It is suitable for applicants with an engineering background who have a particular interest in aircraft technologies.

Air travel is vital for the continued prosperity of the economy, and is predicted to grow significantly over the next 20 years. The challenge facing aviation is to meet the predicted growth in demand in a way that ensures that the environment is protected.

This MSc programme provides modules on the fundamental disciplines that are of prime importance for developing new enabling technologies vital to the design of more environmentally friendly future aircraft.

It also offers multi-disciplinary training in aircraft technologies for reducing environmental impact and life-cycle costs.

This programme provides modules on the fundamental disciplines that are of prime importance for developing new enabling technologies vital to the design of more environmentally friendly future aircraft.

The facilities in the Department are of a high standard, with the latest industry-standard software available for students to use.

Further information

For full information on this course, including how to apply, please see: http://www.imperial.ac.uk/study/pg/aeronautics/advanced-aeronautical-engineering/

If you have any enquiries you can contact our team at:



Read less
This is a truly multidisciplinary Master's degree providing formal training in fluid dynamics and its many applications. Read more

This is a truly multidisciplinary Master's degree providing formal training in fluid dynamics and its many applications.

Fluid Dynamics is important to numerous industrial, biological, biomedical and geophysical applications, and this course will provide students with formal training that broadens and deepens their understanding of the discipline, as well as provide a wide range of theoretical and practical tools, and transferable skills that are relevant in a variety of settings including in industry and academia.

The course can be taken as a one-year standalone MRes, or as part of the four-year MRes/PhD programme led by the Centre for Doctoral Training (CDT) in Fluid Dynamics across Scales. For more information see: http://www.imperial.ac.uk/fluids-cdt/

The MRes begins with in-depth training in fluid dynamics through taught modules, which make up 50% of the assessment for this course. The remaining 50% comprises of an extensive research project.

Further information

For full information on this course, including how to apply, see: http://www.imperial.ac.uk/study/pg/aeronautics/fluid-dynamics-across-scales-mres/

If you have any enquiries you can contact our team at:



Read less
This course provides both fundamental and applied knowledge to understand airflows, vehicle dynamics and control and methods for computational modelling. Read more

This course provides both fundamental and applied knowledge to understand airflows, vehicle dynamics and control and methods for computational modelling. It will provide you with practical experience in the measurement, analysis, modelling and simulation of airflows and aerial vehicles.

You have the choice of two specialist options which you chose once you commence your studies: Flight Dynamics or Aerodynamics. 

Who is it for?

Suitable if you have an interest in aerodynamic design, flow control, flow measurement, flight dynamics and flight control. Choose your specialist option once you commence your studies.

  • Flight Dynamics option: if you want to develop a career in flight physics and aircraft stability and control, more specifically in the fields of flight control system design, flight simulation and flight testing.
  • Aerodynamics option: if you want to develop a career in flight physics and specifically in the fields of flow simulation, flow measurement and flow control.

Why this course?

The aerospace industry in the UK is the largest in the world, outside of the USA. Aerodynamics and flight dynamics will remain a key element in the development of future aircraft and in reducing civil transport environmental issues, making significant contributions to the next generation of aircraft configurations. 

In the military arena, aerodynamic modelling and flight dynamics play an important role in the design and development of combat aircraft and unmanned air vehicles (UAVs). The continuing search for aerodynamic refinement and performance optimisation for the next generation of aircraft and surface vehicles creates the need for specialist knowledge of fluid flow behaviour.

Cranfield University has been at the forefront of postgraduate education in aerospace engineering since 1946. The MSc in Aerospace Dynamics stems from the programme in Aerodynamics which was one of the first masters' courses offered by Cranfield and is an important part of our heritage. The integration of aerodynamics with flight dynamics reflects the long-term link with the aircraft flight test activity established by Cranfield. 

Graduates of this course are eligible to join the Cranfield College of Aeronautics Alumni Association (CCAAA), an active community which holds a number of networking and social events throughout the year.

Informed by Industry

The Industrial Advisory Panel, comprising senior industry professionals, provides input into the curriculum in order to improve the employment prospects of our graduates. Panel members include:

  • Adrian Gaylord, Jaguar Land Rover (JLR)
  • Trevor Birch, Defence, Science and Technology Laboratory (DSTL)
  • Chris Fielding, BAE Systems
  • Anastassios Kokkalis, Voith
  • Stephen Rolson, European Aeronautic Defence and Space Company (EADS)
  • Clyde Warsop, BAE Systems

Accreditation

The MSc in Aerospace Dynamics is accredited by the Royal Aeronautical Society (RAeS) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Course details

This course consists of optional taught modules, an individual research project and a group flight test project.

The group flight test project consists of two compulsory modules that offer an initial introduction to aerospace dynamics and provide grounding for the group flight test. Choice is a key feature of this course, with specialist options in either aerodynamics or flight dynamics. Choose your option once you have commenced your studies.

Group project

All students undertake the Group Flight Test Report during October to December. This involves a series of flight tests in the The National Flying Laboratory Centre (NFLC) Jetstream which are undertaken, reported and presented as a group exercise. This is an important part of the course as it enables candidates to experience the application of specialist skills within a real plane to a collaborative report/presentation.

Individual project

The individual research project allows you to delve deeper into an area of specific interest. It is very common for industrial partners to put forward real world problems or areas of development as potential research project topics. The project is carried out under the guidance of an academic staff member who acts as your supervisor. The individual research project component takes place between April and August.

If agreed with the course director, part-time students have the opportunity to undertake projects in collaboration with their place of work, which would be supported by academic supervision.

Previous Individual Research Projects covered:

Aerodynamics option

  • Spiked body instabilities at supersonic speeds
  • Aerodynamic loads on a race car wing in a vortex wake
  • Lateral/directional stability of a tailless aircraft.
  • Aerodynamic drag penalties due to runback ice
  • Automotive flow control using fluidic sheets
  • Aerodynamic design and optimisation of a blended wing body aircraft.

Flight Dynamics option

  • Flight dynamic modelling of large amplitude rotorcraft dynamics
  • Decision making for autonomous flight in icing conditions
  • Comparative assessment of trajectory planning methods for UAVs
  • Machine vision and scientific imaging for autonomous rotorcraft
  • Linear parameter varying control of a quadrotor vehicle
  • Gust load alleviation system for large flexible civil transport.

Assessment

Taught modules 40%, Group project 20% (dissertation for part-time students), Individual project 40%

Your career

Industry driven research makes our graduates some of the most desirable in the world for recruitment in a wide range of career paths within the aerospace and military sector. A successful graduate should be able to integrate immediately into an industrial or research environment and make an immediate contribution to the group without further training. Increasingly, these skills are in demand in other areas including automotive, environmental, energy and medicine. Recent graduates have found positions in the aerospace, automotive and related sectors. 

Employers include:

  • Airbus
  • BAE Systems
  • Onera
  • Deutsches Zentrum für Luft- und Raumfahrt (DLR)
  • Defence, Science and Technology Laboratory (DSTL)
  • QinetiQ
  • Rolls-Royce plc
  • Snecma
  • Thales
  • Selex ES
  • MBDA
  • Jaguar Land Rover
  • Tata
  • Science Applications International Corporation (SAIC)
  • Triumph Motorcycles.

A significant number of graduates go on to do research and higher degrees.



Read less
This course has been designed to reflect the wide applications of Computational Fluid Dynamics. Read more

This course has been designed to reflect the wide applications of Computational Fluid Dynamics. You will learn to understand, write and apply CFD methods across a wide broad range of fields, from aerospace, turbomachinery, multi-phase flow and heat transfer, to microflows, environmental flows and fluid-structure interaction problems. Tailor your course by choosing from a range of specialist modules covering application-specific methods and techniques.

Who is it for?

Designed to meet the education needs of graduates and professional engineers who are looking to kick-start an industrial or research career in the rapidly growing field of Computational Fluid Dynamics. This course bridges the gap between the introductory level of undergraduate courses and the applied expertise acquired by engineers using CFD in industry. You will gain the knowledge and appreciation of CFD methods necessary for a strong foundation to a career in this exciting engineering discipline.

Why this course?

The MSc in Computational Fluid Dynamics provides a solid background so that you will be able to apply CFD methods as a tool for design, analysis and engineering applications. With a strong emphasis on understanding and application of the underlying methods, enthusiastic students will be able to write their own CFD codes during the course.

Sharing some modules with the MSc in Aerospace Dynamics gives you the opportunity to interact with students from other disciplines. In recent years, our students have been had the opportunity for work-based placements at the Aircraft Research Association (ARA), European Space Agency (ESA), Ricardo and DAF Trucks.

Informed by Industry

Our strategic links with industry ensures that all of the materials taught on the course are relevant, timely and meet the needs of organisations competing within the computational analysis sector. This industry led education makes Cranfield graduates some of the most desirable for companies to recruit.

The Industrial Advisory Panel is comprised of senior industry professionals provides input into the curriculum in order to improve the employment prospects of our graduates.

Accreditation

The MSc in Computational Fluid Dynamics will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng (Hons) accredited for CEng will be able to show that they have satisfied the educational base for CEng registration.

Course details

The taught modules are delivered from October to April via a combination of structured lectures, and computer based labs.

The core part of the course consists of modules which are considered to represent the necessary foundation subject material. The course is designed to reflect the broad range of CFD applications by providing a range of optional modules to address specific application areas. Students on the part-time programme will complete all of the compulsory modules based on a flexible schedule that will be agreed with the course director.

Individual project

The taught element of the course finishes in May, at which point you will have an excellent understanding of CFD methods and applications. From May to September you will work full-time on your individual research project. The research project gives you the opportunity to produce a detailed piece of work either in close collaboration with industry, or on a particular topic which you are passionate about.

Recent Individual Research Projects include:

  • A Study of A-pillar Vortices on the Jaguar XF Using Transitional Turbulence Models
  • Aerodynamic Analysis and Optimisation of the Aegis UAV
  • Performance Analysis of Hypervapotron Inlet Region
  • Phase Separation of Oil-water Flow in a Pipe Bend
  • CFD Simulation of a Novel CO Sensor
  • Shock Wave Interaction with Biological Membranes for Drug Therapy
  • High Resolution Implicit Large Eddy Simulation of Ariane 5 Aerodynamics.

Assessment

Taught modules 50%, Individual research project 50%

Your career

Strategic industrial links ensure that the course meets the needs of the organisations competing within the computational sector therefore making our graduates some of the most desirable in the world for companies to recruit. An increasing demand for CFD specialists with in depth technical knowledge and practical skills within a wide range of sectors has seen our graduates employed by leading companies including:

  • Alstom
  • BAE Systems
  • Cummins Turbo Technology
  • BHR
  • ESTEC
  • Hindustan Aeronautics Ltd
  • NUMECA
  • ONERA
  • Rio Tinto
  • Rolls-Royce plc
  • Siemens.

Roughly one third of our graduates go on to register for PhD degrees, many on the basis of their MSc individual research project. Thesis topics are often supplied by individual companies on in-company problems with a view to employment after graduation - an approach that is being actively encouraged by a growing number of industries.




Read less
The Masters in Aerospace Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen aerospace engineering speciality. Read more

The Masters in Aerospace Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen aerospace engineering speciality.

Why this programme

  • The University of Glasgow has been the home of Aerospace Research for over 60 years. This long-standing activity has culminated in the Division of Aerospace Sciences having internationally recognised expertise in all areas of Aeronautics and Aerospace Systems.
  • You will be taught jointly by staff from the School of Engineering and the Adam Smith Business School. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
  • The University of Glasgow is one of the few institutions in the UK, and the only University in Scotland, to offer an Aerospace System MSc.
  • Aeronautical engineering at the University of Glasgow is consistently highly ranked recently achieving 10th in the UK and 1st in Scotland (Complete University Guide 2017).
  • If you have an engineering background, but with little management experience and you are looking to broaden your knowledge of management while also furthering your knowledge of aerospace engineering, this programme is designed for you.
  • Students in this programme can benefit from access to our outstanding facilities: including several wind tunnels, a flight simulation lab, an autonomous unmanned vehicle (UAV) laboratory, helicopter test rig laboratories, structural testing apparatus and computer labs for modelling and simulation.
  • This programme has a September and January intake

Programme structure

There are two semesters of taught material and a summer session working on a project or dissertation. September entry students start with management courses and January entry students with engineering courses.

Semester 1

You will be based in the Adam Smith Business School, developing knowledge and skills in management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.

Core courses

  • Contemporary issues in human resource management 
  • Managing creativity and innovation 
  • Managing innovative change 
  • Marketing management 
  • Operations management 
  • Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen aerospace engineering subjects.

Core courses

  • Integrated systems design project.

Optional courses (four chosen)

  • Autonomous vehicle guidance systems
  • Composite airframe structures
  • Fault detection, isolation and reconfiguration
  • Introduction to aeroelasticity
  • Introduction to computational fluid dynamics
  • Introduction to wind engineering
  • Radar and electro-optic systems
  • Robust control 5
  • Spacecraft systems 2.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May–August). This will give you an opportunity to apply and consolidate the course material and enhance your ability to do independent work, as well as present results in the most appropriate format. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to aerospace engineering projects, and January entry students have a choice of aerospace engineering projects. 

Career prospects

Career opportunities include positions in aerospace, defence, renewable energy, nuclear energy and management. You can also continue studying, for a research Masters or a PhD.



Read less

Show 10 15 30 per page



Cookie Policy    X