• University of Derby Online Learning Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses
University of Nottingham in China Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Vlerick Business School Featured Masters Courses
OCAD University Featured Masters Courses
Swansea University Featured Masters Courses
"aeronautical" AND "engin…×
0 miles

Masters Degrees (Aeronautical Engineering)

We have 84 Masters Degrees (Aeronautical Engineering)

  • "aeronautical" AND "engineering" ×
  • clear all
Showing 1 to 15 of 84
Order by 
NOTE. Are you a student from outside the EU? If you are an International student we have designed a version of this award especially for you! It is called the Extended International Master in Aeronautical Engineering. Read more
NOTE: Are you a student from outside the EU? If you are an International student we have designed a version of this award especially for you! It is called the Extended International Master in Aeronautical Engineering. It includes an extra semester of preliminary study to prepare you for postgraduate learning in the UK. We strongly recommend that all international students take this option as it is proven to improve your chances of success. Take a look at this alternative course here.

About the Course A focus on the practical application of the advanced theories learnt. Familiarisation with a range of industry standard design and analysis software. The opportunity to undertake low cost gliding, with reduced price club membership for students. Good career prospects. The aerospace industry is one of the UK's most successful industrial sectors, with its involvement in major international project groups including Airbus, Rolls Royce, British Aerospace to name but a few. Not every university that teaches engineering includes Aeronautical Engineering in its portfolio, but Staffordshire University is proud to be running a new and innovative MSc award in this area which started September 2012.

The MSc in Aeronautical Engineering builds upon the success of the undergraduate Aeronautical programme which has been running at Staffordshire for over ten years. The MSc is an award for the graduate engineer (who will have usually studied a BEng(hons) in Mechanical or Aeronautical Engineering or equivalent, or possibly a BSc(hons) in Aeronautical Technology) and who wishes to expand and deepen their knowledge of aeronautical engineering.

The MSc covers a broad range of areas including fixed wing and rotary aircraft, subsonic and supersonic flight regimes, aircraft propulsion systems, aircraft control systems, materials, etc. As well as taught classes, students use our extensive range of laboratories which include industry standard design and analysis software, including Pro Engineer, Phoenix CFD, ANSYS FEA, etc.

Course content

Students study eight taught modules then undertake a research-based dissertation, the length of the course being about 12 months in total.

Modules studied include: ​​​
-Technical and Study Skills
-Research Methods and Project Management
-Control Systems for Aeronautics
-Structural Integrity
-Aircraft Propulsion Systems
-Advanced Aeronautics
-Advanced Vehicle Aerodynamics
-MSc Project the 60 credit dissertation module, student centred but with close staff guidance.

Options include:
-MSc Project by Distance Learning (as an alternative to the MSc Project)
-Advanced Engineering Materials
-Technical Paper Authoring
-Industrial Responsibility

Employment opportunities

It is envisaged that graduates from the MSc in Aeronautical Engineering will be in a position to apply for a large range of technical, engineering, analytical, operation or management jobs within the aerospace and airline industries.

Read less
Aeronautical engineering graduates are highly valued and in great demand. This Masters course is ideal for graduates seeking employment in the aeronautical sector and for practising aerospace engineers who want to extend and update their skills. Read more
Aeronautical engineering graduates are highly valued and in great demand. This Masters course is ideal for graduates seeking employment in the aeronautical sector and for practising aerospace engineers who want to extend and update their skills.

Progression to management is key to the careers of postgraduate engineers, so as part of the course you will develop relevant managerial skills, as well as an awareness of the wider issues that affect the aeronautical industry, such as safety and the environment. The course meets the academic requirements for Chartered Engineer (CEng) status with the Institution of Mechanical Engineering (IMechE) and the Royal Aeronautical Society (RAeS).

The University has recently built an Aerospace Centre on the Pontypridd Campus, which includes a BAE Jetstream aircraft, laboratory equipment, a gas turbine engine, wind tunnel and a flight simulator, as well as state-of-the-art engineering analysis software.

We have comprehensive links with industry through our Industrial Panel, which contains representatives from major companies, including BAMC, Storm, GE Aviation Systems, Nordam Europe, TES and BA Avionics.

See the website http://courses.southwales.ac.uk/courses/641-msc-aeronautical-engineering

What you will study

Modules include:
- Further Engineering Materials
- Aircraft Propulsion
- Finite Element Analysis
- Computational Fluid Dynamics
- Aircraft Structures
- Non-destructive Testing
- Safety, Health and Environment
- Integrated Project Planning and
- Management
- Dissertation

Learning and teaching methods

The course is delivered in two major blocks to offer an intensive but flexible learning pattern, with two start points each year – February and September. Modules involve lectures, tutorials and practical laboratory work, with continually assessed coursework or a mixture of coursework and exams.

Work Experience and Employment Prospects

Employment prospects are strong in this dynamic and diverse industry. Those with an MSc Aeronautical Engineering degree enhance their career opportunities in commercial and military aircraft engineering, the air transportation industry, teaching or research. The highly technical nature of this course also equips you for careers in many related, technology-intensive fields. Graduates are likely to progress to senior positions in the aeronautical engineering industry and related sectors.

Assessment methods

You will be continually assessed coursework or a mixture of coursework and exams. The dissertation allows you to research a specific aeronautical engineering topic, to illustrate your depth of knowledge, critical awareness and problem-solving skills. The dissertation has three elements of assessment: a thesis, a poster presentation, and a viva voce examination.

Facilities

The University has recently built an Aerospace Centre on the Pontypridd Campus, which includes a BAE Jetstream aircraft, laboratory equipment, a gas turbine engine, wind tunnel and a flight simulator, as well as state-of-the-art engineering analysis software.

Read less
The aerodynamics and handling performances of aircraft are amongst the most challenging aspects of aircraft designs. Take your expertise of the cutting-edge aeronautics industry to the next level with our course - focused on developing your understanding of advanced aerodynamics, materials and technologies. Read more
The aerodynamics and handling performances of aircraft are amongst the most challenging aspects of aircraft designs.

Take your expertise of the cutting-edge aeronautics industry to the next level with our course - focused on developing your understanding of advanced aerodynamics, materials and technologies.

The MSc in Aeronautical Engineering will enable you to develop a deep understanding and solid skills in aerodynamics and aerodynamic design of aircraft. Grasp detailed knowledge and application principles of composite materials and alloys, critically review and assess the application and practice of advanced materials in modern aircraft.

You will have access to our state-of-art Merlin flight simulator for design and testing your aircraft and will learn and use cutting-edge design, analysis and simulation software: MATLAB/Simulink, CATIA v5, ANSYS, and ABAQUS. You will also have access to subsonic and supersonic wind tunnel facilities and rapid prototyping facilities.

Key Course Features

-Wrexham Glyndŵr University is located nearby to one of the largest aircraft company in the world, Airbus and also has close links with aviation industries, such as Rolls-Royce, Raytheon and Magellan.
-The MSc in Aeronautical Engineering is accredited by Royal Aeronautical Society (RAeS), Institute of Engineering Technology (IET) and the Institution of Mechanical Engineers (IMechE), and provides you with the required training for registering for Chartered Engineer status.

What Will You Study?

FULL-TIME STUDY (SEPTEMBER INTAKE)
The taught element, Part One, of the programmes will be delivered in two 12 week trimesters and each trimester has a loading of 60 credits.

You will cover six taught modules which include lectures, tutorials and practical work on a weekly basis. The expected timetable per module will be a total of 200 hours, which includes 40 hours of scheduled learning and teaching hours and 160 independent study hours.

Part Two will then take a further 15 weeks having a notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

FULL-TIME MODE (JANUARY INTAKE)
For the January intake, students will study the three specialist modules first during the second trimester from January to May. The three core modules will be studied in the first trimester of the next academic year from September to January.

On successful completion of the taught element of the programme the students will progress to Part Two, MSc dissertation to be submitted in April/May.

PART-TIME MODE
The taught element, part one, of the programmes will be delivered over two academic teaching years. 80 credits or equivalent worth of modules will be delivered in the first year and 40 credits or equivalent in the second year. The part time students would join the full time delivery with lectures and tutorials/practical work during one day on a weekly basis.

The dissertation element will start in trimester 2 taking a further 30 weeks having a total notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

AREAS OF STUDY INCLUDE:
-Engineering Research Methods
-Sustainable Design & Innovation
-Engineering Systems Modelling & Simulation
-Advanced Composite Materials
-Applied Aerodynamics
-Flight Dynamics & Controls
-Dissertation

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Assessment and Teaching

You will be assessed throughout your course through a variety of methods including portfolios, presentations and, for certain subjects, examinations.

Career Prospects

The courses will give you the chance to advance your career to management levels. You might also consider consultancy, research and development, testing and design positions within the aeronautical industry. Airbus is a classic example of an employer excelling in this field in the north Wales region.

The Careers & Zone at Wrexham Glyndŵr University is there to help you make decisions and plan the next steps towards a bright future. From finding work or further study to working out your interests, skills and aspirations, they can provide you with the expert information, advice and guidance you need.

Read less
The master´s programme in Aeronautical Engineering at Linköping University offers a holistic view on aircraft design. An aircraft is a complex, integrated, closely connected system of various technologies and disciplines such as. Read more
The master´s programme in Aeronautical Engineering at Linköping University offers a holistic view on aircraft design. An aircraft is a complex, integrated, closely connected system of various technologies and disciplines such as: aerodynamics, structure, propulsion, actuation systems and other on-board systems.

Read less
The programme provides a preparation particularly focused on issues of design, operation and maintenance of aircraft and their on-board systems. Read more

Mission and goals

The programme provides a preparation particularly focused on issues of design, operation and maintenance of aircraft and their on-board systems. The objective is to prepare highly culturally and professionally qualified technicians able to carry out and manage activities related to research and design in the fields of aerodynamics, materials, lightweight structures, aircraft systems and aerospace propulsion in national and international contexts, both in autonomy or in cooperation.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

Career opportunities

The graduate finds employment in aeronautical and space industries; in public and private bodies for experimentation in the aerospace field; in aircraft fleet management and maintenance companies; in air-traffic control agencies; in the airforce; in industries producing machinery and equipment in which aerodynamics and lightweight structures play a significant role.
Aeronautical engineers are particularly sought after in related fields. In fact, they may be involved in the design of terrestrial or nautical vehicles or large buildings or bridges or even in the design of power plants. Graduates are also in demand in the lightweight constructions industry, in the motor industry in the areas of monitoring the mechanical behaviour of structures subject to stress.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Aeronautical_Engineering.pdf
This programme aims at providing the students with specific skills in design, operation and maintenance of aircrafts and their on-board systems. The objective is to prepare culturally and professionally highly qualified technicians able to carry out and manage activities related to research and design in the fields of aerodynamics, materials, lightweight structures, aircraft systems and aerospace propulsion. Graduates can find employment in national and international contexts in aeronautical and space industries, public and private bodies for experimentation in the aerospace field, aircraft fleet management and maintenance companies, air-traffic control agencies, or in the air force. The track in Rotary wing is taught in English, while the other tracks are partially available in English.

Subjects

Specializations available:
- Aerodynamics
- Flight mechanics and systems
- Propulsion
- Structures
- Rotary-wing aircraft

Mandatory courses are:
- Aerodynamics
- Flight Dynamics
- Aerospace Structures
- Dynamics and control of aerospace structures

Other courses:
- Fundamentals of Aeroelasticity
- Nonlinear analysis of aerospace structures
- Fundamentals of Thermochemical propulsion
- Management of aerospace projects
- Gasdynamics
- Aircraft instrumentation & integrated systems
- Aircraft Design
- Heat transfer and thermal analysis
- Numerical modeling of differential problems
- Rotorcraft design
- Aircraft engines
- Airport and air traffic management
- Aerospace materials
- Communication skills
- Thesis

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The Masters in Aeronautical Engineering focuses on advanced engineering subjects required for understanding modern design of fixed-wing aircraft. Read more
The Masters in Aeronautical Engineering focuses on advanced engineering subjects required for understanding modern design of fixed-wing aircraft.

Why this programme

◾The University of Glasgow has been the home of Aerospace Research for over 60 years. This long-standing activity has culminated in the Division of Aerospace Sciences having internationally recognised expertise in all areas of Aeronautics and Aerospace Systems.
◾Aeronautical engineering at the University of Glasgow is consistently highly ranked recently achieving 10th in the UK and 1st in Scotland (Complete University Guide 2017).
◾If you are an aerospace engineering graduate wanting to improve your skills and knowledge; a graduate of a related engineering discipline or physical science and you want to change field; or you are looking for a well rounded postgraduate qualification in aeronautical engineering to enhance your career prospects, this programme is designed for you.
◾You will benefit from access to our outstanding facilities: including several wind tunnels, a flight simulation lab, an autonomous unmanned vehicle (UAV) laboratory, helicopter test rig laboratories, structural testing apparatus and computer labs for modelling and simulation.

Programme structure

Modes of delivery of the MSc in Aeronautical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work. You will attend taught courses and take part in laboratory-based assignments and field visits. You will be further assessed in coursework, report writing and oral presentations.

The summer period is dedicated to project work, with either academic or industrial placements providing the context for your project.

Semester 1 courses
◾Aerospace control 1
◾Aircraft flight dynamics
◾Navigation systems
◾Space flight dynamics 1
◾Viscous shear flows.

Semester 2 courses (five chosen)
◾Autonomous vehicle guidance systems
◾Composites airframe structures
◾Introduction to aeroelasticity
◾Introduction to computational fluid dynamics
◾Introduction to wind engineering
◾Robust control 5
◾Spacecraft systems 2
◾Aerospace design project.

]]Projects]]
◾To complete the MSc degree you must undertake a project worth 60 credits.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Aeronautical Engineering. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

[[Accreditation ]]

MSc Aeronautical Engineering is accredited by the Royal Aeronautical Society (RAeS)

Career prospects

Career opportunities include positions in aerospace, defence, renewable energy, control design, structural engineering. You can also continue studying, for a research Masters or a PhD.

Graduates of this programme have gone on to positions such as:

◾Teaching Assistant at a university
◾Graduate Engineer at UTC Aerospace Systems
◾Scientist at Fluid Gravity Engineering Ltd.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Aerospace Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Aerospace Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Aerospace Engineering at Swansea University has a distinguished history of working with aerospace companies around the world. As a student on the MSc Aerospace Engineering, you will be provided with a systematic understanding of the advanced knowledge, critical awareness and new insights required by effective practising aerospace engineers.

The MSc Aerospace Engineering degree is based on the world-class expertise available in the Materials Engineering Centre and the Zienkiewicz Centre for Computational Engineering.

At Swansea, world-class aerospace research drives excellent teaching within a cutting-edge learning environment with state-of-the-art facilities. The MSc Aerospace Engineering course prepares you for the design, analysis, testing and flight of the full range of aeronautical vehicles, including propeller-driven and jet-powered planes, helicopters and gliders.

Students on the Aerospace Engineering course will gain hands-on experience through access to one of the world’s most advanced engineering flight simulators housed within the College of Engineering. The MSc Aerospace Engineering course at Swansea University is accredited by the Institution of Mechanical Engineers (IMechE), the Royal Aeronautical Society (RAeS), and the Institution of Engineering Designers (IED).

Modules on the Aerospace Engineering course typically include:

Finite Element Computational Analysis

Composite Materials

Flight Dynamics and Control

Advanced Airframe Structure

Advanced Aerodynamics

Numerical Methods for Partial Differential Equations

Aerospace Materials Engineering

Group Project

Research Dissertation

MSc Dissertation - Aerospace Engineering

Student Quotes

“After passing all the modules on the MSc Aerospace Engineering course, I had the possibility to develop my final thesis in an industrial environment. I learnt about avionics and electronic equipment and developed team work and communication skills.

My favourite memory of the MSc Aerospace Engineering course is our team winning the International Aircraft Design and Handling competition. Our effort really paid off when we won the first prize!

Before starting my final thesis, I found a job as an Applications Engineer in one of the most important aerospace engineering companies, MTorres. Personally, I think obtaining a Master’s degree in a university with a great reputation such as Swansea University makes it much easier to find a job.

Swansea University provides a fantastic opportunity to study any field of engineering due to the professional and friendly staff.”

Roberto Morujo, MSc Aerospace Engineering

Links with Industry

Aerospace Engineering at Swansea University has a distinguished history of working with aerospace companies around the world, including:

BAE Systems

Rolls Royce

EADS

Airbus

We have also contributed to many exciting projects, from the super-jet Airbus A380 to the 1,000mph land-speed record breaking BLOODHOUND SSC.

Careers

The MSc Aerospace Engineering course is suitable for those who would like to gain comprehensive knowledge, understanding and skills that will enable them to contribute to the creation and maintenance of aerospace and aeronautical equipment.

The MSc Aerospace Engineering course covers the necessary aspects for a successful career in the growing aerospace industry.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Aerospace Engineering at Swansea University has a wide range of in-house facilities ranging from computer labs housing state-of-the-art PCs through to specialist equipment used almost exclusively by aerospace students.

Practical flying experience on the MSc Aerospace Engineering course is gained from the state-of-the-art Merlin MP521X engineering flight simulator mounted on a six axis hydraulic motion system and flying experience at a local airport.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.



Read less
This course provides education and training in selected military electronic systems. The course is intended for officers of the armed forces and for scientists and technical officers in government defence establishments and the defence industry. Read more

Course Description

This course provides education and training in selected military electronic systems. The course is intended for officers of the armed forces and for scientists and technical officers in government defence establishments and the defence industry. It is particularly suitable for those who, in their subsequent careers, will be involved with the specification, analysis, development, technical management or operation of military radar, electro-optics, communications, sonar or information systems, where the emphasis will be on an Electronic Warfare environment.

Students taking the Postgraduate Certificate (PgCert) course variant are able to choose to study, and will be awarded, either the Communications Electronic Warfare PgCert or Sensors Electronic Warfare PgCert.

Overview

A Military Electronic Systems Engineering graduate achieves a high level of understanding and detailed knowledge of military communications and sensor systems with particular regard to electronic warfare. In addition, the MSc course enables the student to carry out an in-depth investigation into an area of electronic warfare to further enhance their analytical capability. Successful graduates of this course should be fully equipped for roles in defence intelligence, systems development and acquisition, involving the specification and analysis of such systems, working individually or as part of a team.

A typical course cohort comprises 10-15 full time students and up to 4 part time.

Duration: Full-time MSc - one year, Part-time MSc - up to three years, Full-time PgCert - one year, Part-time PgCert - two years, Full-time PgDip - one year, Part-time PgDip - two years

Course overview

- MSc students must complete a taught phase consisting of twelve modules, followed by an individual dissertation in a relevant topic.
- PgDip students must complete a taught phase consisting of twelve modules.
- PgCert students must complete a taught phase consisting of six specified modules.

Core Modules

The MSc/PGDip taught phase comprises 10 compulsory modules and a choice of either Information Networks and Advanced Radar, or, Aeronautical Engineering Parts 1 and 2.

Core:
- Electromagnetic Propagation and Devices
- MES-CP - Communications Principles
- Communications Systems 1 and 2
- Radar Principles
- Radar Electronic Warfare
- Electro-Optics and Infrared Systems 1
- Electro-Optics and Infrared Systems 2
- Information Networks

Elective:
- MES-AR - Advanced Radar
- MES-ASDP - Advanced Sensor Data Processing
- Aeronautical Engineering 1
- Aeronautical Engineering 2

Individual Project

The project aim is for the student to undertake an extensive analytical research project using appropriate research methodology, involving simulation and modelling, measurements, experimentation, data collection and analysis. This will enable students to develop and demonstrate their technical expertise, independent learning abilities and critical research skills in a specialist subject area relevant to the field of study of the course.

Assessment

By examination, assignments and thesis.

Career opportunities

This course is typically a requirement for progression for certain engineering and technical posts within UK MOD.

Successful graduates of this course should be fully equipped for roles in defence intelligence, systems development and acquisition, involving the specification and analysis of such systems, working individually or as part of a team either in the military or in the defence industry.

For further information

On this course, please visit our course webpage - http://www.cranfield.ac.uk/courses/masters/military-electronic-systems-engineering.html

Read less
As a Master of Engineering (ME) graduate you will have the opportunity to either seek employment as a professional engineer, or start a research career. Read more

As a Master of Engineering (ME) graduate you will have the opportunity to either seek employment as a professional engineer, or start a research career.

The ME normally takes 12 months to complete full-time.  It builds on prior study at undergraduate level, such as the four-year BE(Hons) or BSc(Tech).  The degree requires 120 points, which can either be made up of 30 points in taught papers and a 90-point dissertation (research project), or one 120-point thesis.

If you enrol in an ME via the Faculty of Science & Engineering you can major in Engineering, and your thesis topic may come from our wide range of study areas such as biological engineering, chemical engineering, civil engineering, mechanical engineering, materials engineering, environmental engineering and electronic engineering.

The Faculty of Science & Engineering fosters collaborative relationships between science, engineering, industry and management.  The Faculty has developed a very strong research base to support its aims of providing you with in-depth knowledge, analytical skills, innovative ideas, and techniques to translate science into technology in the real world.

You will have the opportunity to undertake research with staff who are leaders in their field and will have the use of world-class laboratory facilities. Past ME students have worked on projects such as a ‘snake robot’ for disaster rescue and a brain-controlled electro-mechanical prosthetic hand.

Facilities

The University of Waikato School of Engineering’s specialised laboratories includes the Large Scale Lab complex that features a suite of workshops and laboratories dedicated to engineering teaching and research.  These include 3D printing, a mechanical workshop and computer labs with engineering design software.

The computing facilities at the University of Waikato are among the best in New Zealand, ranging from phones and tablets for mobile application development to cluster computers for massively parallel processing. Software engineering students will have 24 hour access to computer labs equipped with all the latest computer software.

Build a successful career

Depending on the thesis topic studied, graduates of this degree may find employment in the research and development department in a range of engineering industries, including energy companies, environmental agencies, government departments, biomedical/pharmaceutical industries, private research companies, universities, food and dairy industries, electronics, agriculture, forestry and more. The ME can also be a stepping stone to doctoral studies.

Career opportunities

  • Aeronautical Engineer
  • Automotive Engineer
  • Biotechnologist
  • Computer-aided Engineer
  • Engineering Geologist
  • Food and Drink Technologist
  • Laboratory Technician
  • Mechanical Engineer
  • Medical Sciences Technician
  • Patent Attorney
  • Pharmaceutical Engineer
  • Quality Assurance Officer
  • Research Assistant
  • Theoretical Physics Research


Read less
The Design and Manufacturing Engineering MSc develops your knowledge and skills in mechanical engineering as well as materials and manufacturing engineering. Read more
The Design and Manufacturing Engineering MSc develops your knowledge and skills in mechanical engineering as well as materials and manufacturing engineering. You have the opportunity to undertake in-depth studies through your research projects.

This one year course is intended for honours graduates (or an international equivalent) in mechanical or mechanical-related engineering, maths, physics or a related discipline, eg automotive, aeronautical or design.

A two year MSc is also available for non-native speakers of English that includes a Preliminary Year.

The taught part of the course consists of major engineering themes such as:
-Sustainable energy management
-Manufacturing materials and processes
-Engineering design
-Computational methods
-Engineering software

Your project is chosen from an extensive range of subjects. Project work can range from fundamental studies in areas of basic engineering science to practical design, make and test investigations.

Recent areas for project work include:
-Design and manufacture
-Thermo-fluid dynamics
-Composite materials
-Bioengineering and biomaterials
-Microelectronic-mechanical systems
-Mathematical and computational engineering modelling

Some research may be undertaken in collaboration with industry.

The course is delivered by the School of Mechanical and Systems Engineering. The School has an established programme of research seminars. These are delivered by guest speakers from academia and industry (both national and international), providing excellent insights into a wide variety of engineering research.

Effective communication is an important skill for the modern professional engineer. This course includes sessions to help develop your ability, both through formal guidance sessions dedicated to good practice in report writing, and through oral/poster presentations of project work.

Delivery

The taught component of the course makes use of a combination of lectures, tutorials/labs and seminars. Assessment is by written examination and submitted in-course assignments.

The research project (worth 60 credits) is undertaken throughout the duration of the Masters course. Project work is assessed by dissertation and oral/poster presentations. You will be allocated, and meet regularly with, project supervisors.

Accreditation

The courses have been accredited by the Institution of Engineering and Technology (IET) under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC).

An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as a Chartered Engineer (CEng).

Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

The School of Mechanical and Systems Engineering is based in the Stephenson Building. It has both general and specialist laboratories and workshop facilities. These are used for training, course delivery and the manufacture of materials/components needed to support project work.

The Stephenson Building houses one of the largest networked computer clusters on campus (120+ PCs), which supports all of the specialist software introduced and used within the course (eg CAD, stress analysis, fluid dynamics, signal processing packages) in addition to the School’s own cluster (60+ PCs) used for instrumentation and data acquisition laboratories.

Read less
This MSc course produces graduates with the creative, technical and managerial skills and expertise that are highly sought after in the field of engineering design. Read more
This MSc course produces graduates with the creative, technical and managerial skills and expertise that are highly sought after in the field of engineering design.

Based on research expertise within the Department of Mechanical Engineering, the programme covers an extensive range of innovative design techniques and approaches, reflecting how design impacts across all sectors of industry, and broadening your career opportunities as much as possible.

It will not only help prepare you for an exciting career in the industry, but also help prepare you to continue your studies onto a Doctor of Philosophy research programme.

Many distinction-level graduates from this programme stay on for a PhD, often funded in part by the University of Bath.

Learning outcomes

By studying for our MSc in Engineering Design you will:

- understand the issues associated with creativity and innovation
- develop knowledge and experience of the global commercial environment
- gain the expertise needed to manage engineering design projects and teams.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/design/index.html

Collaborative working

Our course includes traditionally taught subject-specific units and business and group-orientated modular work.

These offer you the chance to gain experience in design, project management and creativity, while working with students from other subjects.

- Group project work
In semester 2 you undertake a cross-disciplinary group activity for your professional development, simulating a typical industrial work situation.

- Individual project work
In the final semester, you undertake an individual research project directly related to key current research at the University, often commissioned by industry.

Structure

See programme catalogue (http://www.bath.ac.uk/catalogues/2015-2016/me/TEME-AFM10.html) for more detail on individual units.

Semester 1 (October-January):
The first semester introduces the fundamental principles of new product design and development, advanced design and innovation techniques, and computer aid packages for design.

- Five taught units
- Includes coursework involving laboratory or small project sessions
- Typically each unit consists of 22 hours of lectures, may involve a number of hours of tutorials/exercises and laboratory activity and approximately 70 hours of private study (report writing, laboratory results processing and revision for examinations)

Semester 2 (February-May):
In Semester 2 you will study both technical specialist units and project-based units. You will develop your professional understanding of engineering in a research and design context. You will gain analytical and team working skills to enable you to deal with the open-ended tasks that typically arise in practice in present-day engineering.

- The semester aims to develop your professional understanding of engineering in a business environment and is taught by academic staff with extensive experience in industry
- Group projects in which students work in a multi-disciplinary team to solve a conceptual structural engineering design problem, just as an industrial design team would operate
- Individual project preliminary work and engineering project management units

Summer/Dissertation Period (June-September):
- Individual project leading to MSc dissertation
- Depending on the chosen area of interest, the individual project may involve theoretical and/or experimental activities; for both such activities students can use the department computer suites and well-equipped and newly refurbished laboratories for experimental work. The individual projects are generally carried out under the supervision of a member of academic staff. A number of industrially-based projects are available to students.

Subjects covered

- Professional skills for engineering practice
- Advanced computer-aided design
- Engineering systems simulation
- Innovation & advanced design
- Materials in engineering design
- Product design & development

Career Options

Previous graduates of the University of Bath MSc in Engineering Dynamics and Control have gone on to careers in the UK and overseas in areas such as environmental design and design consultancies.

Recent graduates have secured jobs at:

Garrad Hassan
ABB Research
Dyson

About the department

Bath has a strong tradition of achievement in mechanical engineering research and education.

We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

We offer taught MSc students the chance to carry out projects within outstanding research groupings.

Our research impact is wide and we are dedicated to working with industry to find innovative solutions to problems that affect all areas of society.

We are consistently ranked among the UK’s top 10 mechanical engineering departments in the annual league tables.

We believe in producing leaders, not just engineers.

We will give you the edge over your competitors by teaching you how technology fits into commercial settings. You will not only have access to cutting edge science and technology, we will also provide you with the skills you need to manage a workforce in demanding business environments.

For further information visit our departmental website (http://www.bath.ac.uk/mech-eng/pgt/).

Find out how to apply here - http://www.bath.ac.uk/study/pg/apply/

Read less
The MSc in Mechatronics is an integration of Electrical and Mechanical Engineering. It has been specifically designed to fulfil the needs of modern industry requiring knowledge in both fields and incorporates a significant input from industry to complement its academic foundations. Read more
The MSc in Mechatronics is an integration of Electrical and Mechanical Engineering. It has been specifically designed to fulfil the needs of modern industry requiring knowledge in both fields and incorporates a significant input from industry to complement its academic foundations.

The course specialises in enabling students to produce mechatronic components which increase performance and energy efficiency, as sought after by industries worldwide.

It will not only help prepare you for an exciting career in the industry, but it will also help prepare you to continue your studies onto a Doctor of Philosophy research programme.

Many distinction-level graduates from this programme stay on for a PhD, often funded in part by the University of Bath.

Learning outcomes

By studying for our MSc in Mechatronics you will learn to:

- implement the concepts of mechatronics design principles to the solution of complex multi-physics engineering systems
- apply artificial intelligence and modern control and computer engineering techniques to improve the performance of modern equipments and devices

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/mechatronics/index.html

Collaborative working

The programme includes traditionally taught subject-specific units and business and group-orientated modular work. These offer you the chance to gain experience in design, project management and creativity, while working with students from other subjects.

You will complete your MSc through an individual research project under the supervision of two supervisors; one from the Department of Electronic & Electrical Engineering (http://www.bath.ac.uk/elec-eng/) and one from Mechanical Engineering (http://www.bath.ac.uk/mech-eng/), assigned to one of our leading research centres (http://www.bath.ac.uk/engineering/research/index.html).

- Group project work
In semester 2 you undertake a cross-disciplinary group activity for your professional development, simulating a typical industrial work situation.

- Individual project work
In the final semester, you undertake an individual research project directly related to key current research at the University, often commissioned by industry.

Structure

See programme catalogue (http://www.bath.ac.uk/catalogues/2015-2016/me/me-proglist-pg.html#H) for more detail on individual units.

Semester 1 (October-January):
The first semester covers the fundamental principles of computational artificial intelligence, integrated engineering control techniques and mechatronic systems modelling and simulation.

- Five taught units
- Includes coursework involving laboratory or small project sessions
- Typically each unit consists of 22 hours of lectures, may involve a number of hours of tutorials/exercises and laboratory activity and approximately 70 hours of private study (report writing, laboratory results processing and revision for examinations)

Further advanced options will give you an in depth knowledge of how electrical and mechanical engineering can be integrated to effect state of the art technologies.

Semester 2 (February-May):
In Semester 2 you will study both technical specialist units and project-based units. You will develop your professional understanding of engineering in a research and design context. You will gain analytical and team working skills to enable you to deal with the open-ended tasks that typically arise in practice in present-day engineering.

- The semester aims to develop your professional understanding of engineering in a business environment and is taught by academic staff with extensive experience in industry
- Group projects in which students work in a multi-disciplinary team to solve a conceptual structural engineering design problem, just as an industrial design team would operate
- Individual project preliminary work and engineering project management units

Summer/Dissertation Period (June-September):
- Individual project leading to MSc dissertation, done under the supervision of two supervisors, one from the Department of Electronic & Electrical Engineering and one from Mechanical Engineering

- Depending on the chosen area of interest, the individual project may involve theoretical and/or experimental activities; for both such activities students can use the department computer suites and well-equipped and newly refurbished laboratories for experimental work. The individual projects are generally carried out under the supervision of a member of academic staff. A number of industrially-based projects are available to students

- Examples of typical projects include the design and control of autonomous robots; undersea tidal wave power generators; and the design and control of high speed mechanisms.

Subjects covered

- Computational intelligence
- Control engineering
- Engineering systems simulation
- Power systems control
- Professional skills for engineering practice
- Signals & information

Career Options

Graduates with knowledge and training in both electrical and mechanical engineering are very much in demand in aerospace, automotive and manufacturing industries.

More and more of the hydraulic and mechanical aspects of these industries are being replaced by mechatronics components to reduce weight and increase performance and energy efficiency.

The career opportunities in the UK and worldwide are very significant. Jobs our recent graduates have secured include:

Product Research Development Engineer, KTP Associate, University of Bath, UK
Project Manager, Guandong Best Control Technology, PR China
Software Engineer, DIAGNOS, UK
Engineer, MAN Diesel & Turbo, USA

About the department

Bath has a strong tradition of achievement in mechanical engineering research and education.

We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

We offer taught MSc students the chance to carry out projects within outstanding research groupings.

Our research impact is wide and we are dedicated to working with industry to find innovative solutions to problems that affect all areas of society.

We are consistently ranked among the UK’s top 10 mechanical engineering departments in the annual league tables.

We believe in producing leaders, not just engineers.

We will give you the edge over your competitors by teaching you how technology fits into commercial settings. You will not only have access to cutting edge science and technology, we will also provide you with the skills you need to manage a workforce in demanding business environments.

For further information visit our departmental website (http://www.bath.ac.uk/mech-eng/pgt/).

Find out how to apply here - http://www.bath.ac.uk/study/pg/apply/

Read less
As a researcher in the School of Engineering, you can benefit from the expertise of our academics and award-winning industry links. Read more
As a researcher in the School of Engineering, you can benefit from the expertise of our academics and award-winning industry links. Research opportunities are available in a variety of areas relevant to today’s engineering industry.

The School of Engineering is a Centre of Industrial Research and Development Excellence, with expertise centred on core disciplines of mechanical engineering, bio-fuels and combustion engineering, electrical and electronic engineering, control and systems engineering, vehicle engineering and materials processing. During these programmes, you will have the chance to collaborate with industry on projects that can deliver tangible benefits to employers, the sector and society.

A range of training programmes are offered to support your development and enhance your skills. Research students are supported in publishing their work in conference proceedings and international learned society journals, and are encouraged to present their work as part of the University’s research seminar series.

Research Areas, Projects & Topics

You can find detailed examples of our current research activity on the research section of our website: http://www.lincoln.ac.uk/engineering.

Opportunities for research within the School of Engineering exist in a range of areas within our core disciplines of:
-Mechanical Engineering
-Combustion Engineering
-Electrical and Electronic Engineering
-Control and Systems Engineering
-Aeronautical and Automotive Engineering
-Laser Materials Processing.

Fully funded PhD studentships within the School of Engineering are advertised at: jobs.lincoln.ac.uk.

How You Study

As a research student, you will be allocated two academic supervisors and the College Research Degrees Board will monitor your progress.

You will be encouraged to participate in our research seminar series and in the University’s Graduate School and training programmes. The School will also support you in applying for funding to attend conferences, and in publishing your work in conference proceedings and refereed journals.

Due to the nature of postgraduate research programmes, the vast majority of your time will be spent in independent study and research. You will have meetings with your academic supervisors, however the regularity of these will vary depending on your own individual requirements, subject area, staff availability and the stage of your programme.

How You Are Assessed

A PhD is usually awarded based on the quality of your thesis and your ability in an oral examination (viva voce) to present and successfully defend your chosen research topic to a group of academics. You are also expected to demonstrate how your research findings have contributed to knowledge or developed existing theory or understanding.

Facilities

The purpose-built Engineering Hub was created in collaboration with Siemens and, as a hub of technical innovation, houses industry-standard machinery, turbines, and control and laser laboratories.

Career and Personal Development

Completion of this programme may assist you in developing your career as a professional engineer. Graduates may also choose to pursue a range of career opportunities in academia.

Read less
The School of Mechanical, Aerospace and Civil Engineering has a strong and unique tradition in the UK in Aerospace Design, Helicopters, Heat Transfer, Aerodynamics, Computational Fluid Dynamics and Flow Diagnostics. Read more
The School of Mechanical, Aerospace and Civil Engineering has a strong and unique tradition in the UK in Aerospace Design, Helicopters, Heat Transfer, Aerodynamics, Computational Fluid Dynamics and Flow Diagnostics. This course builds on those strengths and exploits our links with BAe Systems, Airbus, Rolls-Royce, DSTL, USAF, North West Aerospace Alliance, North West Development Agency and SBAC.

This MSc aims to produce high quality graduates with specialist training in aerospace engineering who will be suitable for employment in the engineering industries and consultancies linked to that industry. Aerospace engineering graduates are highly valued and are currently in great demand and the Manchester programme specifically seeks to serve this growing industry requirement. The programme is suitable for engineering and science graduates, as well as engineering professionals working in technical and commercial management. The programme is also well designed to be used for conversion to Aerospace Engineering from some close enough specialities such as Mechanics, Mathematics and Physics.

Teaching and learning

The Aerospace Engineering MSc is a full time course which is studied over 12 months and there is one start date each year in September. You will develop advanced technical skills in Aerospace Engineering that will enable you to pursue a career in both general and specialised engineering industries or develop an in depth knowledge for a career in research in industry or academia.

Career opportunities

The Aerospace Engineering MSc has a strong focus on employability to support you to take control of your future and give yourself the best chance of securing your ideal job after graduation.

Each year Manchester careers fairs, workshops and presentations attract more than 600 exhibitors and 20,000 visitors to target Manchester graduates.

After graduating with an Aerospace Engineering MSc you will be in a strong position to seek employment with companies such as: Airbus, Rolls Royce, GE Aviation, Airbus, Bombardier Transportation, BAe Systems, MBDA, SAFRAN, GKN Aerospace, Spirit, Finmeccanica, EDF, BP, Schlumberger, etc.

The UK Aerospace Engineering is 2nd largest in the world and around 30% of companies in the Aerospace sector currently have vacancies.

Destination of Leavers Survey
Past graduates have found employment in:
-Airframe manufacturers
-Gas turbine and aircraft systems industries
-Defence laboratories
-Consultancy and management
-Postgraduate research

Accrediting organisations

Two highly established organisations, the Royal Aeronautical Society and Institution of Mechanical Engineers , have accredited the Aerospace Engineering MSc course under license from the UK regulator, the Engineering Council . This allows satisfactory completion of the Aerospace Engineering MSc to contribute towards the academic requirements for registration with these Institutions as a Chartered Engineer.

Read less
This course is aimed at engineering graduates who wish to work in the automotive industry, with particular focus on the design, performance and operation of automotive powertrains and vehicle systems. Read more
This course is aimed at engineering graduates who wish to work in the automotive industry, with particular focus on the design, performance and operation of automotive powertrains and vehicle systems.

Our graduates have the technical and managerial skills and expertise that are highly sought after by the automotive industry.

Our course will not only help prepare you for an exciting career in the industry, but it will also help prepare you to continue your studies onto a Doctor of Philosophy research programme.

Many distinction-level graduates from this programme stay on for a PhD, often funded in part by the University of Bath.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/automotive/index.html

Learning outcomes

By studying our MSc in Automotive Engineering you will:

- Understand the vehicle design process and the operation and performance of important sub-systems
- Analyse current and projected future environmental legislation and the impact this has on the design, operation and performance of automotive powertrain systems
- Analyse in detail the operation and performance indicators of transmission systems, internal combustion engines and after treatment devices.

Collaborative working

The programme includes traditionally taught subject-specific units and business and group-orientated modular work. These offer you the chance to gain experience in design, project management and creativity, while working with students from other subjects.

- Group project work
In semester 2 you undertake a cross-disciplinary group activity for your professional development, simulating a typical industrial work situation.

- Individual project work
In the final semester, you undertake an individual research project directly related to key current research at the University, often commissioned by industry.

Structure

See programme catalogue (http://www.bath.ac.uk/catalogues/2015-2016/me/me-proglist-pg.html#B) for more detail on individual units.

Semester 1 (October-January):
The first semester of our course allows students to choose from a range of fundamental and more advanced lecture courses covering the analysis methods and modelling techniques that are used in the simulation, design and manufacture of modern vehicles and powertrains.

- Five taught units
- Includes coursework involving laboratory or small project sessions
- Typically each unit consists of 22 hours of lectures, may involve a number of hours of tutorials/exercises and laboratory activity and approximately 70 hours of private study (report writing, laboratory results processing and revision for examinations)

Semester 2 (February-May):
In Semester 2 you will study both technical specialist units and project-based units. You will develop your professional understanding of engineering in a research and design context. You will gain analytical and team working skills to enable you to deal with the open-ended tasks that typically arise in practice in present-day engineering.

- The semester aims to develop your professional understanding of engineering in a business environment and is taught by academic staff with extensive experience in industry
- Group projects in which students work in a multi-disciplinary team to solve a conceptual structural engineering design problem, just as an industrial design team would operate
- Individual project preliminary work and engineering project management units

Summer/Dissertation Period (June-September):
The full time summer project gives students the opportunity to develop their understanding of aspects of the automotive material covered in the first semester, through a detailed study related to the research interests and specialisations of a member of the academic staff. The students will often be working as part of a larger group of researchers including postgraduates, research officers and undergraduates and as such have access to the state of the art automotive test facilities within the department.

- Individual project leading to MSc dissertation
- Depending on the chosen area of interest, the individual project may involve theoretical and/or experimental activities; for both such activities students can use the department computer suites and well-equipped and newly refurbished laboratories for experimental work. The individual projects are generally carried out under the supervision of a member of academic staff. A number of industrially-based projects are available to students

Subjects covered

- Heat transfer
- Engineering systems simulation
- Engine & powertrain technologies
- Professional skills for engineering practice
- Vehicle engineering
- Vehicle dynamics & aerodynamics

Career Options

Our MSc graduates now work all over the world in various industries, while a number of them pursue their Doctorates in universities worldwide. Recent graduates have secured jobs as:

- Calibration Engineer, Ford Motor Company Ltd
- Product Engineer, Renault
- Engineering Consultant, D'Appolonia

Companies which have hired our recent graduates include:

British Aerospace
Airbus UK
Intel
Ricardo
Cambstion
Panama Canal Authority
Moog Controls Ltd

About the department

Bath has a strong tradition of achievement in mechanical engineering research and education.

We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

We offer taught MSc students the chance to carry out projects within outstanding research groupings.

Our research impact is wide and we are dedicated to working with industry to find innovative solutions to problems that affect all areas of society.

We are consistently ranked among the UK’s top 10 mechanical engineering departments in the annual league tables.

We believe in producing leaders, not just engineers.

We will give you the edge over your competitors by teaching you how technology fits into commercial settings. You will not only have access to cutting edge science and technology, we will also provide you with the skills you need to manage a workforce in demanding business environments.

For further information visit our departmental website (http://www.bath.ac.uk/mech-eng/pgt/).

Find out how to apply here - http://www.bath.ac.uk/study/pg/apply/

Read less

Show 10 15 30 per page



Cookie Policy    X