• University of Bristol Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of London International Programmes Featured Masters Courses
University of Cambridge Featured Masters Courses
University of Cambridge Featured Masters Courses
University College London Featured Masters Courses
Teesside University Featured Masters Courses
"aerodynamic"×
0 miles

Masters Degrees (Aerodynamic)

We have 17 Masters Degrees (Aerodynamic)

  • "aerodynamic" ×
  • clear all
Showing 1 to 15 of 17
Order by 
The MSc in Aerospace Dynamics aims to provide both fundamental and applied knowledge applicable to the understanding of air flows, vehicle dynamics and control and methods for computational modelling. Read more

The MSc in Aerospace Dynamics aims to provide both fundamental and applied knowledge applicable to the understanding of air flows, vehicle dynamics and control and methods for computational modelling. The course will provide students with practical experience in the measurement, analysis, modelling and simulation of airflows and aerial vehicles. The MSc in Aerospace Dynamics stems from the programme in Aerodynamics which was one of the first masters courses offered by Cranfield and is an important part of our heritage. The integration of Aerodynamics with Flight Dynamics reflects the long-term link with the aircraft flight test activity established by Cranfield. Graduates of this course are eligible to join the Cranfield College of Aeronautics Alumni Association (CCAAA), an active community which hold a number of networking and social events throughout the year.

Who is it for?

Suitable if you have an interest in aerodynamic design, flow control, flow measurement, flight dynamics and flight control. Choose your specialist option once you commence your studies.

  • Flight Dynamics option: if you want to develop a career in flight physics and aircraft stability and control, more specifically in the fields of flight control system design, flight simulation and flight testing.
  • Aerodynamics option: if you want to develop a career in flight physics and specifically in the fields of flow simulation, flow measurement and flow control.

Why this course?

The aerospace industry in the UK is the largest in the world, outside of the USA. Aerodynamics and flight dynamics will remain a key element in the development of future aircraft and in reducing civil transport environmental issues, making significant contributions to the next generation of aircraft configurations. 

In the military arena, aerodynamic modelling and flight dynamics play an important role in the design and development of combat aircraft and unmanned air vehicles (UAVs). The continuing search for aerodynamic refinement and performance optimisation for the next generation of aircraft and surface vehicles creates the need for specialist knowledge of fluid flow behaviour.

Cranfield University has been at the forefront of postgraduate education in aerospace engineering since 1946. The MSc in Aerospace Dynamics stems from the programme in Aerodynamics which was one of the first masters' courses offered by Cranfield and is an important part of our heritage. The integration of aerodynamics with flight dynamics reflects the long-term link with the aircraft flight test activity established by Cranfield. 

Graduates of this course are eligible to join the Cranfield College of Aeronautics Alumni Association (CCAAA), an active community which holds a number of networking and social events throughout the year.

Informed by Industry

The Industrial Advisory Panel, comprising senior industry professionals, provides input into the curriculum in order to improve the employment prospects of our graduates. Panel members include:

  • Adrian Gaylord, Jaguar Land Rover (JLR)
  • Trevor Birch, Defence, Science and Technology Laboratory (DSTL)
  • Chris Fielding, BAE Systems
  • Anastassios Kokkalis, Voith
  • Stephen Rolson, European Aeronautic Defence and Space Company (EADS)
  • Clyde Warsop, BAE Systems




Read less
Gas Turbine Technology provides a comprehensive background in the design and operation of different types of gas turbines for all applications. Read more

Course Description

Gas Turbine Technology provides a comprehensive background in the design and operation of different types of gas turbines for all applications. This course is designed for those seeking a career in the design, development, operations and maintenance of power and propulsion systems. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand. The course is suitable for graduates seeking a challenging and rewarding career in an international growth industry.

The UK continues to lead the world in power and propulsion technology. In addition to its established aerospace role, the gas turbine is finding increasing application in power generation, oil and gas pumping, chemical processing and power plants for ships and other large vehicles.

Course overview

The course consists of approximately ten to fifteen taught modules and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:

- Provide the skills required for a rewarding career in the field of propulsion and power.
- Meet employer requirements for graduates within power and propulsion industries.
- Demonstrate a working knowledge and critical awareness of gas turbine performance, analysis techniques, component design and associated technologies.
- Explain, differentiate and critically discuss the underpinning concepts and theories for a wide range of areas of gas turbine engineering and associated applications.
- Be able to discern, select and apply appropriate analysis techniques in the assessment of particular aspects of gas turbine engineering.

Individual Project

You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner.

Recent Individual Research Projects include:

- S-duct aerodynamic shape multi-objective optimisation
- Performance modelling of evaporative gas turbine cycles for marine applications
- Mechanical integrity/stress analysis of the high pressure compressor of a new engine
- High pressure turbine blade life analysis for a civilian derivative aircraft conducting military operations
- Engine performance degradation due to foulants in the environment
- Effects of manufacturing tolerances on gas turbine performance and components
- Development of a transient combustion model
- Numerical fan modelling and aerodynamic analysis of a high bp ratio turbofan engine
- Combustor modelling
- Impact of water ingestion on large jet engine performance and emissions
- Windmilling compressor and fan aerodynamics
- Neural networks based sensor fault diagnostics for industrial gas turbine engines
- Boundary layer ingestion for novel aircraft
- Multidisciplinary design optimisation for axial compressors
- Non-linear off design performance adaptation for a twin spool turbofan engine
- Engine degradation analysis and washing effect on performance using measured data.

Modules

The taught programme for the Gas Turbine Technology masters consists of seven compulsory modules and up to seven optional modules. The modules are generally delivered from October to April.

Core -

Blade Cooling
Combustors
Engine Systems
Gas Turbine Theory and Performance
Mechanical Design of Turbomachinery
Gas Turbine Simulation and Diagnostics
Turbomachinery

Optional -

Computational Fluid Dynamics
Fatigue and Fracture
Gas Turbine Applications
Jet Engine Control (only October intake)
Management for Technology
Propulsion Systems Performance and Integration
Rotating Equipment Selection

Assessment

The final assessment is based on two components of equal weight; the taught modules (50%) and the individual research project (50%). Assessment is by examinations, assignments, presentations and thesis.

Funding

A variety of funding, including industrial sponsorship, is available. Please contact us for details.

Cranfield Postgraduate Loan Scheme (CPLS) - https://www.cranfield.ac.uk/Study/Postgraduate-degrees/Fees-and-funding/Funding-opportunities/cpls/Cranfield-Postgraduate-Loan-Scheme

The Cranfield Postgraduate Loan Scheme (CPLS) is a funding programme providing affordable tuition fee and maintenance loans for full-time UK/EU students studying technology-based MSc courses.

Career opportunities

- Gas turbine engine manufacturers
- Airframe manufacturers
- Airline operators
- Regulatory bodies
- Aerospace/Energy consultancies
- Power production industries
- Academia: doctoral studies.

Further Information

For further information on this course, please visit our course webpage - http://www.cranfield.ac.uk/Courses/Masters/Gas-Turbine-Technology-option-Thermal-power

Read less
Aerospace Propulsion provides a comprehensive background in the design and operation of different types of propulsion systems for aerospace applications. Read more

Course Description

Aerospace Propulsion provides a comprehensive background in the design and operation of different types of propulsion systems for aerospace applications. The course is designed for those seeking a career in the design, development, operation and maintenance of propulsion systems.  The course is suitable for graduates seeking a challenging and rewarding career in an established international industry. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand.

Overview

The key technological achievement underlying the development and growth of the aerospace industry has been the design and development of efficient and economical propulsion systems. This sector has experienced a consistent growth in the past and is expected to do so in the future. Major efforts are also now being dedicated to the development of new technologies relevant to the propfan and variable cycle engines.

The MSc in Aerospace Propulsion provides a comprehensive background in the design and operation of different types of propulsion systems for aerospace applications. The course is designed for those seeking a career in the design, development, operation and maintenance of propulsion systems.

The course is suitable for graduates seeking a challenging and rewarding career in an established international industry. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand.

Structure

The course consists of approximately ten to fifteen taught modules and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:

- Provide the skills required for a rewarding career in the field of propulsion and power
- Meet employer requirements for graduates within power and propulsion industries
- Demonstrate a working knowledge and critical awareness of gas turbine performance, analysis techniques, component design and associated technologies
- Explain, differentiate and critically discuss the underpinning concepts and theories for a wide range of areas of gas turbine engineering and associated applications
- Be able to discern, select and apply appropriate analysis techniques in the assessment of particular aspects of gas turbine engineering.

Modules

The taught programme for the Aerospace Propulsion masters consists of eight compulsory modules and up to six optional modules. The modules are generally delivered from October to April.

Individual Project

Individual Project
You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner.

Recent Individual Research Projects include:

- Design of an experimental test rig facility for an axial compressor
- Energy management in a hybrid turbo-electric, hydrogen fuelled, hale UAV
- Civil aircraft intake, nacelle and nozzle aerodynamics
- The computation of adiabatic isobaric combustion temperature
- Air filtration systems for helicopters
- Nacelle parametric design space exploration
- Distributed propellers assessment for turboelectric distributed propulsion
- Aerodynamic analysis of the flowfield distortion within a serpentine intake
- Green runway :impact of water ingestion on medium and small jet engine performance and emissions
- Distributed propulsion systems boundary layer ingestion for uav aircraft
- Preliminary design of a low emissions combustor for a helicopter engine
- Compressor design and performance simulation through the use of a through-flow method
- Estimation of weight and mechanical losses of a pts for a geared turbofan engine
- Optimisation of turbine disc for a small turbofan engine
- Modelling of tip leakage flows in axial flow high pressure gas turbine
- Aerodynamic modelling and adjoint-based shape optimisation of separate-jet exhaust systems
- Preliminary design & performance analysis of a combustor for UAV.

Assessment

The final assessment is based on two components of equal weight; the taught modules (50%) and the individual research project (50%). Assessment is by examinations, assignments, presentations and thesis.

Funding

A variety of funding, including industrial sponsorship, is available. Please contact us for details.

Career opportunities

- Gas turbine engine manufacturers
- Airframe manufacturers
- Airline operators
- Regulatory bodies
- Aerospace/Energy consultancies
- Power production industries
- Academia: doctoral studies.

For further information

On this course, please visit our course webpage http://www.cranfield.ac.uk/Courses/Masters/Aerospace-Propulsion-Option-Thermal-Power

Read less
This course is aimed at those who wish to study advanced topics in mechanical engineering with a focus on materials. It's been developed to provide you with an in-depth technical understanding of advanced mechanical engineering topics. Read more

Why this course?

This course is aimed at those who wish to study advanced topics in mechanical engineering with a focus on materials.

It's been developed to provide you with an in-depth technical understanding of advanced mechanical engineering topics. You’ll also develop generic skills that allow you to contribute effectively in developing company capabilities.

The course is designed to make you more employable and also satisfies the Further Learning requirements necessary to obtain Chartered Engineer status.

This course is particularly suitable for graduate engineers in these sectors:
- chemical, petrochemical & process engineering
- design engineering
- power generation
- manufacturing
- oil & gas
- renewable energy

See the website https://www.strath.ac.uk/courses/postgraduatetaught/advancedmechanicalengineeringwithmaterials/

You’ll study

You’ll have the opportunity to select technical and specialist classes.

- Compulsory classes
You’ll study three compulsory classes:
- Engineering Composites
- Polymer & Polymer Composites
- Industrial Metallurgy

- Other specialist instructional modules
These focus on different technical aspects allowing you to tailor learning to your individual needs. When choosing technical modules, you’ll discuss the options with the course co-ordinator. These include:
- Pressurised Systems
- Aerodynamic Performance
- Aerodynamic Propulsion Systems
- Systems Engineering 1 & 2
- Machine Dynamics
- Machinery Diagnosis & Condition Monitoring
- Mathematical Modelling in Engineering Science
- Spaceflight Mechanics
- Advanced Topics in Fluid Systems Engineering
- Spaceflight Systems
- Advanced Boiler Technologies 1 & 2
- Materials for Power Plant
- Gas & Steam Turbines

- Faculty-wide generic instructional modules
You’ll choose three faculty-wide generic modules which satisfy the broader learning requirements for Chartered Engineer status. You'll choose from:
- Design Management
- Project Management
- Sustainability
- Information Management
- Finance
- Risk Management
-Environmental Impact Assessment
- Knowledge Engineering & Management for Engineers

- Individual project
MSc students take on an individual project which allows study of a selected topic in-depth. This may be an industry-themed project or one aligned to engineering research at Strathclyde.

Facilities

Our facilities include many laboratories and research centres including:
- Advanced Space Concepts Laboratory
- Energy Systems Research Unit
- Future Air-Space Transportation Technology
- James Weir Fluids Laboratory
- Mechanics & Materials Research Centre

We have local access to a 3500-node region supercomputer.

Accreditation

As this is a new course starting in 2014/15, accreditation by IMechE is expected (as has been obtained for the Advanced Mechanical Engineering course), after it has been operational for one year.

English language requirements for international students

IELTS - minimum overall band score of 6.5 (no individual test score below 5.5) or TOEFL iBT minimum total score of 95 (minimum scores of Listening-17, Writing-19, Reading and Speaking-20). Both tests are valid for two years.

Learning & teaching

Teaching methods include lectures and practical exercises. Site visits are also arranged.

Careers

Engineering graduates, particularly Mechanical Engineers, are in demand from recruiting companies. This course is designed to meet industrial demand for qualified staff in the area of Mechanical Engineering. This course is particularly suitable for Graduate Engineers in the following sectors:
- Chemical, Petrochemical & Process Engineering
- Design Engineering
- Power Generation
- Manufacturing
- Oil & Gas
- Renewable Energy

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/

Read less
Our Mechanical Engineering MSc programme is accredited by the Institution of Mechanical Engineers (IMechE). It comprises advanced topics in mechanical engineering and features our popular industrially linked projects. Read more

Our Mechanical Engineering MSc programme is accredited by the Institution of Mechanical Engineers (IMechE). It comprises advanced topics in mechanical engineering and features our popular industrially linked projects. You will benefit from the teaching leadership of some of the world experts in their fields, in a state-of-the-art working environment, and will receive a number of networking opportunities to enhance your career prospects.

Mechanical engineering combines scientific principles, mathematics and realisation. Scientific principles underpin all aspects of engineering, while mathematics is the language used to quantify and optimise solutions. Realisation encapsulates the whole range of creative abilities which distinguish the engineer from the scientist; that is, to conceive, make and actually bring to fruition something which has never existed before.

The course comprises advanced topics in mechanical engineering, with modules that have been developed to complement departmental research, along with our strong industrial links. Modules and projects are delivered by academic staff who have international expertise in their discipline.

The knowledge and experience that you will acquire during your MSc study will enable you to take advantage of the many senior engineering and technology employment opportunities available at home and abroad. At the same time, you will be developing capabilities that are much valued by employers more generally, where your problem solving, analytical skills and team working abilities will be in demand. During your Masters degree, you will participate in exciting projects that are both challenging and linked into real industrial need, and where possible, connected to an industrial partner. These projects have led to employment for many alumni of the course. Examples are:

  • Control design for a mobile robot used for nuclear decommissioning tasks
  • Fire resistance of FRP-Concrete columns
  • Wave powered eddy current heat generator for sea water desalination technologies
  • Investigation of advanced air cooling using synthetic jets
  • Exploration of Stability and Buckling of Various Structural Configurations of Composite Materials Under Different Environmental Loads
  • Design and Control of High Performance Cars with Active Aerodynamic Systems
  • Improved solar thermal system


Read less
Who is it for?. Whether you are a new graduate or an engineering professional, this course has been designed to help you develop advanced skills in thermofluids science and technology, fluid dynamics, structural analysis, heat conversion and recovery. Read more

Who is it for?

Whether you are a new graduate or an engineering professional, this course has been designed to help you develop advanced skills in thermofluids science and technology, fluid dynamics, structural analysis, heat conversion and recovery. You will learn with leading experts in the field on modules informed by the latest developments in technology and practice.

This course is designed to help you meet the challenges of the rapidly changing global market, with a focus on advanced thermal power, systems and processes. As a result, your studies will prepare you for a successful career in a wide range of engineering enterprises.

Objectives

The programme has been developed from our research strength in fluid dynamics, structural mechanics, mathematical modelling in CAD, renewable and sustainable energy, gas turbine engineering, IC engines and powertrain, and advanced heat transfer.

The Advanced Mechanical Engineering MSc will help you:

  • Gain advanced knowledge of the latest technological developments in advanced mechanical engineering, particularly in thermo-fluids applications.
  • Acquire an in-depth understanding of the fundamentals, practical skills and an appreciation of the latest developments in engineering solutions in the energy and transport sectors.
  • Demonstrate a knowledge and understanding of the general areas of Mechanical Engineering subjects and to extended knowledge of underlying principles of modern methods of control and design of vehicle and power  train systems.
  • Assess the behaviour of mechanical, aeronautical or electrical systems.
  • Apply advanced methods of analysis to mechanical, aeronautical or electrical systems.
  • Gain extended knowledge of the underlying principles of modern methods of design of mechanical, aeronautical or electrical systems with appropriate methods.
  • Appreciate advanced computer methods, e.g. CFD and CAD, using different software techniques.

Accreditation

The course has been accredited regularly by the Institution of Mechanical Engineers (IMechE), on behalf of the Engineering Council, as fully meeting the academic requirement for registration as a Chartered Engineer. Accreditation takes place every five years and currently the course is going through the re-accreditation process.

Academic facilities

The department has extensive experimental and computational facilities that you can use during your studies, particularly during the work leading to your dissertation. This includes:

  • Micro-gas turbine test cells, which are currently used to develop new technology for utilisation with concentrated solar power.
  • Fuel injection with applications in the automotive industry.
  • Screw compressors and expanders.
  • High-speed aerodynamic measurements test rigs and wind tunnels

The department also has a parallel computing cluster with licences to the most commonly used computational software in addition to in-house developed programmes.

Teaching and learning

The programme comprises lectures, assessed assignments and technical visits.

Teaching by academics and industry professionals whose work is internationally recognised. Seminar series and talks are conducted by visiting speakers.

Assessment

Assessment is based on marks obtained throughout the year for courseworks, class tests, and end-of-year examinations followed by dissertation. Modules, based on coursework only, are assessed through substantial individually designed courseworks, assignments and small projects. IT skill is assessed through submitted work on design reports and computational courseworks.

Modules

On this MSc, there are eight taught modules equating to 120 credits, plus a dissertation of 60 credits. The taught part of the MSc is structured into modules of 15 credits each.

The dissertation provides a stimulating and challenging opportunity to apply knowledge and develop a deep understanding in a specialised topic of your choice. Dissertations can be research- or industry-inspired, allowing you to prepare for your future career choices. Successful industrial projects often lead to the recruitment of students by the collaborating company.

The course follows a weekly teaching structure delivered at City, throughout the year at the rate of four days per week. Completion of modules and examinations will lead to the award of a Postgraduate Diploma. The completion of modules, examinations and dissertation will lead to the award of an MSc degree.

Core modules

6 Core Modules, 15 credits each (90 credits):

  • MEM106 Advanced Structural Mechanics (15 credits)
  • MEM107 Advanced Heat Transfer (15 credits)
  • MEM108 IC Engine and Vehicle propulsion (15 credits)
  • AEM301 Advanced Computational Fluid Dynamics (15 credits)
  • AEM305 Gas Turbine Engineering (15 credits)
  • ETM051 Professional Industrial Management Studies (15 credits)

Plus the individual project (EPM949); 60 credits.

Elective modules

Elective modules, choice of two, 15 credits each (30 credits):

  • MEM102 Combustion Fundamentals and Applications (15 credits)
  • EPM707 Finite Element Methods (15 credits)
  • EPM767 Mathematical Modelling in CAD (15 credits)
  • EPM879 Renewable Energy Fundamentals & Sustainable Energy Technologies (15 credits)
  • EPM501 Power Electronics (15 credits)

Career prospects

This Masters is geared towards preparing you for a successful career in mechanical engineering, providing you with highly sought-after, in-depth knowledge of fundamental theory and hands-on experience in the field of mechanical technology. The course also features industry-based projects that can provide you with employment opportunities.

Recent graduate employment destinations include:

  • Ford
  • Rolls Royce
  • Lotus
  • BP
  • Howden
  • Shell
  • Heliex
  • Sortex
  • Transport for London
  • Jaguar
  • Delphi
  • Holroyd


Read less
The Race Car Aerodynamics masters degree is recognised as a world-leading course for those wanting to enter Formula One as aerodynamicists and CFD engineers. Read more

The Race Car Aerodynamics masters degree is recognised as a world-leading course for those wanting to enter Formula One as aerodynamicists and CFD engineers. The theme emphasises the fundamentals of aerodynamics as a subject by focusing on analysis, computation and measurement of turbulent flows associated with high performance race cars. It will suit graduates or similarly qualified individuals from engineering, scientific and mathematical backgrounds, with some experience of fluid dynamics who are aiming for advanced specialisation in aerodynamics.

Introducing your degree

This postgraduate masters course emphasises the fundamentals of aerodynamics as a subject by focusing on analysis, computation and measurement of turbulent flows associated with high performance race cars. It will suit graduates or similarly qualified individuals from engineering, scientific and mathematical backgrounds, with some experience of fluid dynamics who are aiming for advanced specialisation in aerodynamics.

Overview

Design is a central theme on this course. You will take part in individual and group practical work to detail your insight of race car design and learn to evaluate and apply experimental aerodynamic concepts. You will also learn advanced computational fluid dynamics and numerical procedures to counteract problems in the design process.

The year is divided into two semesters. Each semester, you will have the option to further your understanding by selecting from a range of modules, from Systems Reliability to Automotive Propulsion.

The final four months will hone in on research. You will have access to our world-class facilities, including the RJ Mitchell wind tunnel as used by F1 teams, America's Cup yacht teams and Olympic athletes. As part of the learning process, you will engage in experimental and practical study and complete a critical research project.

View the specification document for this course



Read less
Like our classic MSc, this course combines advanced taught modules with research experience. But with an MSc(Res), the research project goes into much more detail. Read more
Like our classic MSc, this course combines advanced taught modules with research experience. But with an MSc(Res), the research project goes into much more detail.

Careers

Our courses are designed to prepare you for a career in industry. You’ll get plenty of practical research experience, as well as training in research methods and management. Recent graduates now work for Arup, Rolls-Royce and Network Rail.

Core modules

Technical Communication for Mechanical Engineers; Information Management for Researchers; Advanced Experiments and Modelling; Individual Research Project; Innovation Management.

Optional modules

A selection from: Reciprocating Engines; Signal Processing and Instrumentation; Aerodynamic Design; Mechanical Engineering in Railways; Sports Engineering; Condition Monitoring.

Teaching and assessment

Lectures, tutorials, small group work and online modules. You’re assessed by exams, coursework assignments and a dissertation.

Read less
Enhance your knowledge of aerospace systems and structures with advanced modules and an extensive research project. Subjects include. Read more

About the course

Enhance your knowledge of aerospace systems and structures with advanced modules and an extensive research project. Subjects include: aerodynamics and aeropropulsion, fatigue and fracture of aerospace components, composites for aerospace applications and structural health monitoring of aerospace structures.

Your career

Our courses are designed to prepare you for a career in industry. You’ll get plenty of practical research experience, as well as training in research methods and management. Recent graduates now work for Arup, Rolls-Royce and Network Rail.

A world-famous department

This is one of the largest, most respected mechanical engineering departments in the UK. Our reputation for excellence attracts world-class staff and students. They’re involved in projects like improving car designs and designing jaw replacements – projects that make a difference.

Our world-famous research centres include the Insigneo Institute, where we’re revolutionising the treatment of disease, and the Centre for Advanced Additive Manufacturing. We also work closely with the University’s Advanced Manufacturing Research Centre (AMRC).

Support for international students

Our students come from all over the world. We’ll help you get to know the department and the city. Your personal tutor will support you throughout your course and we can help you with your English if you need it.

Labs and equipment

We’ve just refurbished a large section of our lab space and invested over £350,000 in equipment including new fatigue testing facilities, a CNC milling centre, a laser scanning machine and a 3D printer.

Core modules

Information Management; Research Project; Advanced Experiments and Modelling; Design Innovation Toolbox.

Examples of optional modules

A selection from: Computational Fluid Mechanics; Renewable Energy; Engineering Composites Materials; Advanced Fluid Mechanics; Reciprocating Engines; Aerodynamic Design; Experimental Stress Analysis; Tribology of Machine Elements; Aeropropulsion; Condition Monitoring.

Teaching and assessment

Teaching takes place through lectures, tutorials, small group work and online modules. Assessment is by formal examinations, coursework assignments
and a dissertation.

Read less
Interested in a management career? This course combines advanced mechanical engineering subjects with management modules specially designed for engineers. Read more

About the course

Interested in a management career? This course combines advanced mechanical engineering subjects with management modules specially designed for engineers. You’ll complete a research project that brings together technical and management issues. And you can choose taught modules that support your project work.

Your career

Our courses are designed to prepare you for a career in industry. You’ll get plenty of practical research experience, as well as training in research methods and management. Recent graduates now work for Arup, Rolls-Royce and Network Rail.

A world-famous department

This is one of the largest, most respected mechanical engineering departments in the UK. Our reputation for excellence attracts world-class staff and students. They’re involved in projects like improving car designs and designing jaw replacements – projects that make a difference.

Our world-famous research centres include the Insigneo Institute, where we’re revolutionising the treatment of disease, and the Centre for Advanced Additive Manufacturing. We also work closely with the University’s Advanced Manufacturing Research Centre (AMRC).

Support for international students

Our students come from all over the world. We’ll help you get to know the department and the city. Your personal tutor will support you throughout your course and we can help you with your English if you need it.

Labs and equipment

We’ve just refurbished a large section of our lab space and invested over £350,000 in equipment including new fatigue testing facilities, a CNC milling centre, a laser scanning machine and a 3D printer.

Core modules

Design Innovation Toolbox; Market Management; Individual Research Project; Advanced Experiments and Modelling.

Examples of optional modules

A selection from: Additive Manufacturing; Advanced Finite Element Modelling; Aerodynamic Design; Experimental Stress Analysis; Tribology of Machine Elements; Mechanical Engineering of Railways; Nuclear Thermal Hydraulics and Heat Transfer.

Teaching and assessment

You’ll learn through lectures, tutorials, small group work and online modules. You’re assessed by exams, coursework assignments and a dissertation.

Read less
MA Intelligent Mobility is a new 15-month, 240 credit programme that will succeed the existing MA Vehicle Design. It will be launched in 2017/18 alongside the Intelligent Mobility Lab, a new multidisciplinary research centre dedicated to the future of transportation design, systems and urban mobility,. Read more

MA Intelligent Mobility is a new 15-month, 240 credit programme that will succeed the existing MA Vehicle Design. It will be launched in 2017/18 alongside the Intelligent Mobility Lab, a new multidisciplinary research centre dedicated to the future of transportation design, systems and urban mobility, led by Director and inaugural Chair in Intelligent Mobility Professor Dale Harrow. MA Intelligent Mobility aims to place the RCA in the vanguard of the ‘third age’ of automotive design.

The MA Intelligent Mobility programme will comprise two distinct specialisms: Automotive Transitions and Urban Mobility. Automotive Transitions students will focus on using design thinking to develop innovative forms of transportation, such as autonomous vehicles. Urban Mobility students will focus on designing the systems and frameworks that enable people to move through hyper-connected cities. The programme will also acknowledge and explore solutions for the 80 per cent of people in developing or emerging economies who do not have access to transport.

The programme offers:

  • a strong tutor team with diverse and high-level practitioner experience
  • varied creative and cultural backgrounds within the MA specialisms
  • close ties to the Intelligent Mobility Lab, a new multidisciplinary research centre
  • extensive industrial relationships through sponsored projects, internships, portfolio reviews, trips and bursaries/awards. Recent collaborations have been with organisations including: Audi, Bentley, Citroen, Hitachi Rail Europe, Jaguar, Kia, EXA (aerodynamic software), Sabic and TATA
  • close relationships with other RCA programmes, including Fashion, Textiles, Sculpture and Innovation Design Engineering
  • a west-London location at the heart of a uniquely diverse vehicle, design and cultural environment
  • alumni in numerous top design positions globally.


Read less
IN BRIEF. Emphasis on feedback control, robotics, flight control and discrete event manufacturing control. Real opportunities for career progression in to the automation industry. Read more

IN BRIEF:

  • Emphasis on feedback control, robotics, flight control and discrete event manufacturing control
  • Real opportunities for career progression in to the automation industry
  • Programme designed using Engineering Council benchmarks
  • Part-time study option
  • International students can apply

COURSE SUMMARY

The overall objective of this course is to add value to your first degree and previous relevant experience by developing a focused, integrated and critically aware understanding of underlying theory and current policy and practice in the field of control systems engineering.

The course is control systems focused, with the emphasis on control systems theory together with a range of control applications including industrial control (SCADA), intelligent control, flight control and robotic control. The control systems approach provides continuity in learning throughout the one year of study.

COURSE DETAILS

This course has been awarded accredited status by both the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE) for 2010 to 2014 intake cohorts as meeting the exemplifying academic benchmark for registration as a Chartered Engineer (CEng) for students who also hold an accredited BEng Honours degree. Candidates who do not hold an appropriately accredited BEng Honours degree will gain partial exemption for CEng status; these candidates will need to have their first qualification individually assessed if they wish to progress onto CEng registration.

Professional registration and Institution membership will enhance your career in the following ways:

  • Access to continuous professional development
  • Careers advice and employment opportunities
  • Increased earning potential over the length of your career
  • International recognition of your qualifications, skills and experience
  • Evidence of your motivation, drive and commitment to the profession
  • Networking opportunities

On completion of the course you should have a critical awareness and understanding of current problems in control engineering, techniques applicable to research in the field of control systems and how established techniques of research and enquiry are used to create and interpret knowledge in the field of control systems. You should also be able to deal with complex issues both systematically and creatively, make sound judgments in the absence of complete data, and communicate your conclusions clearly to specialist and non-specialists.

TEACHING

Teaching will be delivered through a combination of lectures, tutorials, computer workshops and laboratory activities.

ASSESSMENT

  • 35% examinations
  • 65% coursework (labs, reports, dissertation)

FACILITIES

Mechanical Lab – This lab is used to understand material behaviour under different loading conditions and contains a tensile test machine and static loading experiments – typical laboratory sessions would include tensile testing of materials and investigation into the bending and buckling behaviour of beams.

Aerodynamics Lab – Contains low speed and supersonic wind tunnels – typical laboratory experiments would include determining the aerodynamic properties of an aerofoil section and influence of wing sweep on the lift and drag characteristics of a tapered wing section.

Composite Material Lab – This lab contains wet lay-up and pre-preg facilities for fabrication of composite material test sections. The facility is particularly utilised for final year project work.

Control & Dynamics Lab – Contains flight simulators (see details below) and programmable control experiments – typical laboratory sessions would include studying the effects of damping and short period oscillation analysis, forced vibration due to rotating imbalance, and understanding the design and performance of proportional and integral controllers.

Flight Simulators

Merlin MP520-T Engineering Simulator    

  • This simulator is used to support engineering design modules, such as those involving aerodynamics and control systems by giving a more practical experience of aircraft design than a traditional theory and laboratory approach. As a student, you'll design and input your own aircraft parameters into the simulator before then assessing the flight characteristics.
  • The simulator is a fully-enclosed single seat capsule mounted on a moving 2-degree of freedom platform which incorporates cockpit controls, integrated main head-up display and two secondary instrumentation display panels.
  • An external instructor console also accompanies the simulator and is equipped with a comprehensive set of displays, override facilities and a two-way voice link to the pilot.

Elite Flight Training System    

  • The Elite is a fixed base Piper PA-34 Seneca III aircraft simulator used for flight operations training and is certified by the CAA as a FNPT II-MCC Multi-Crew Cockpit training environment. It has two seats, each with a full set of instrumentation and controls, and European Visuals, so you see a projection of the terrain that you're flying through, based on real geographic models of general terrain and specific airports in Europe.

EMPLOYABILITY

A wide range of control and automation opportunities in manufacturing and engineering companies, opportunities in the aerospace sector.

FURTHER STUDY

There are opportunities to go on to further research study within our CASE control and Intelligent Systems Research Centre.

Research themes in the Centre include:

  • Control Engineering
  • Railway/Automotive Research
  • Computational Intelligence and Robotics
  • Biomedical Research
  • Energy and Electrical Engineering


Read less
The aerodynamics and handling performances of aircraft are amongst the most challenging aspects of aircraft designs. Take your expertise of the cutting-edge aeronautics industry to the next level with our course - focused on developing your understanding of advanced aerodynamics, materials and technologies. Read more
The aerodynamics and handling performances of aircraft are amongst the most challenging aspects of aircraft designs.

Take your expertise of the cutting-edge aeronautics industry to the next level with our course - focused on developing your understanding of advanced aerodynamics, materials and technologies.

The MSc in Aeronautical Engineering will enable you to develop a deep understanding and solid skills in aerodynamics and aerodynamic design of aircraft. Grasp detailed knowledge and application principles of composite materials and alloys, critically review and assess the application and practice of advanced materials in modern aircraft.

You will have access to our state-of-art Merlin flight simulator for design and testing your aircraft and will learn and use cutting-edge design, analysis and simulation software: MATLAB/Simulink, CATIA v5, ANSYS, and ABAQUS. You will also have access to subsonic and supersonic wind tunnel facilities and rapid prototyping facilities.

Key Course Features

-Wrexham Glyndŵr University is located nearby to one of the largest aircraft company in the world, Airbus and also has close links with aviation industries, such as Rolls-Royce, Raytheon and Magellan.
-The MSc in Aeronautical Engineering is accredited by Royal Aeronautical Society (RAeS), Institute of Engineering Technology (IET) and the Institution of Mechanical Engineers (IMechE), and provides you with the required training for registering for Chartered Engineer status.

What Will You Study?

FULL-TIME STUDY (SEPTEMBER INTAKE)
The taught element, Part One, of the programmes will be delivered in two 12 week trimesters and each trimester has a loading of 60 credits.

You will cover six taught modules which include lectures, tutorials and practical work on a weekly basis. The expected timetable per module will be a total of 200 hours, which includes 40 hours of scheduled learning and teaching hours and 160 independent study hours.

Part Two will then take a further 15 weeks having a notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

FULL-TIME MODE (JANUARY INTAKE)
For the January intake, students will study the three specialist modules first during the second trimester from January to May. The three core modules will be studied in the first trimester of the next academic year from September to January.

On successful completion of the taught element of the programme the students will progress to Part Two, MSc dissertation to be submitted in April/May.

PART-TIME MODE
The taught element, part one, of the programmes will be delivered over two academic teaching years. 80 credits or equivalent worth of modules will be delivered in the first year and 40 credits or equivalent in the second year. The part time students would join the full time delivery with lectures and tutorials/practical work during one day on a weekly basis.

The dissertation element will start in trimester 2 taking a further 30 weeks having a total notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

AREAS OF STUDY INCLUDE:
-Engineering Research Methods
-Sustainable Design & Innovation
-Engineering Systems Modelling & Simulation
-Advanced Composite Materials
-Applied Aerodynamics
-Flight Dynamics & Controls
-Dissertation

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Assessment and Teaching

You will be assessed throughout your course through a variety of methods including portfolios, presentations and, for certain subjects, examinations.

Career Prospects

The courses will give you the chance to advance your career to management levels. You might also consider consultancy, research and development, testing and design positions within the aeronautical industry. Airbus is a classic example of an employer excelling in this field in the north Wales region.

The Careers & Zone at Wrexham Glyndŵr University is there to help you make decisions and plan the next steps towards a bright future. From finding work or further study to working out your interests, skills and aspirations, they can provide you with the expert information, advice and guidance you need.

Read less
IN BRIEF. Great employer demand for graduates of this course. Access to excellent facilities including over 20 wind tunnels and a DC10 jet engine. Read more

IN BRIEF:

  • Great employer demand for graduates of this course
  • Access to excellent facilities including over 20 wind tunnels and a DC10 jet engine
  • Accredited course by the Institute of Mechanical Engineers, giving you the opportunity to achieve chartered engineer status
  • International students can apply

COURSE SUMMARY

The aerospace industry is at the forefront of modern engineering and manufacturing technology and there is an expanding need for highly skilled chartered Aerospace Engineers.

If you are looking to pursue a career in aerospace engineering this course will enable you to apply your skills and knowledge of engineering devices and associated components used in the production of civil and military aircraft, spacecraft and weapons systems.

This module has been accredited by the Institution of Mechanical Engineers. On graduation you be able to work towards Chartered Aerospace Engineer status which is an independent verification of your skills and demonstrates to your colleagues and employers your commitment and credentials as an engineering professional.

TEACHING

The course will be taught by a series of lectures, tutorials, computer workshops and laboratory activities.

Some modules will include a structured factory visit to illustrate the processes and techniques and to enable investigations to be conducted.

Engineers from the industry will contribute to the specialist areas of the syllabus as guest lecturers.

ASSESSMENT

The coursework consists of one assignment, and two laboratory exercises.

  • Assignment 1: Control design skills. (30%)
  • Laboratory 1: Feedback control design skills and system modelling skills. (10%)
  • Laboratory 2: Flight dynamics (10%)
  • The first 5 assignments are of equal weighting of 10%, assignment 6 has a weighting of 20%
  • Assignment1: Matlab programming skills assessed.
  • Assignment2: Simulink/ Matlab for control programming skills assessed.
  • Assignment3: Matlab simulation skills assessed.
  • Assignment4: Matlab integration skills assessed.
  • Assignment5: Matlab matrix manipulation knowledge assessed.
  • Assignment 6: Aerospace assembly techniques.

FACILITIES

Mechanical Lab – This lab is used to understand material behaviour under different loading conditions and contains a tensile test machine and static loading experiments – typical laboratory sessions would include tensile testing of materials and investigation into the bending and buckling behaviour of beams.

Aerodynamics Lab – Contains low speed and supersonic wind tunnels – typical laboratory experiments would include determining the aerodynamic properties of an aerofoil section and influence of wing sweep on the lift and drag characteristics of a tapered wing section.

Composite Material Lab – This lab contains wet lay-up and pre-preg facilities for fabrication of composite material test sections. The facility is particularly utilised for final year project work.

Control Dynamics Lab – Contains flight simulators (see details below) and programmable control experiments – typical laboratory sessions would include studying the effects of damping and short period oscillation analysis, forced vibration due to rotating imbalance, and understanding the design and performance of proportional and integral controllers.

Flight Simulators

Merlin MP520-T Engineering Simulator    

  • This simulator is used to support engineering design modules, such as those involving aerodynamics and control systems by giving a more practical experience of aircraft design than a traditional theory and laboratory approach. As a student, you'll design and input your own aircraft parameters into the simulator before then assessing the flight characteristics.
  • The simulator is a fully-enclosed single seat capsule mounted on a moving 2-degree of freedom platform which incorporates cockpit controls, integrated main head-up display and two secondary instrumentation display panels.
  • An external instructor console also accompanies the simulator and is equipped with a comprehensive set of displays, override facilities and a two-way voice link to the pilot.

Elite Flight Training System    

  • The Elite is a fixed base Piper PA-34 Seneca III aircraft simulator used for flight operations training and is certified by the CAA as a FNPT II-MCC Multi-Crew Cockpit training environment. It has two seats, each with a full set of instrumentation and controls, and European Visuals, so you see a projection of the terrain that you're flying through, based on real geographic models of general terrain and specific airports in Europe.

EMPLOYABILITY

This is a highly valued qualification and as a graduate you can expect to pursue careers in a range of organizations around the world such as in aerospace companies and their suppliers, governments and research institutions.

FURTHER STUDY

You may consider going on to further study in our Engineering 2050 Research Centre which brings together a wealth of expertise and international reputation in three focussed subject areas.

Research at the centre is well funded, with support from EPSRC, TSB, DoH, MoD, Royal Society, European Commission, as well as excellent links with and direct funding from industry. Our research excellence means that we have not only the highest calibre academics but also the first class facilities to support the leading edge research projects for both post-graduate studies and post-doctoral research.

Visit http://www.cse.salford.ac.uk/research/engineering-2050/ for further details.




Read less
This course is accredited by the Institution of Mechanical Engineers (IMechE) and provides a route for you to achieve Chartered Engineer (CEng) status. Read more

Why this course?

This course is accredited by the Institution of Mechanical Engineers (IMechE) and provides a route for you to achieve Chartered Engineer (CEng) status.

It has been developed to provide high-calibre mechanical engineering graduates with an in-depth technical understanding of advanced mechanical engineering topics together with generic skills that will allow them to contribute effectively post graduation.

The course helps you to become a specialist in the area of aerospace. You'll also have the opportunity to take modules in general skills such as project management and risk analysis. These are necessary skills for any professional aerospace engineer.

You’ll study

You'll study three compulsory modules:
- Aerodynamics Performance
- Aerodynamic Propulsion Systems
- Spaceflight Mechanics

You'll select a number of specialist instructional classes in your chosen area. You'll also choose three generic skill modules from the following topics:
- Design Management
- Project Management
- Sustainability
- Information Management
- Finance
- Risk Management
- Environmental Impact Assessment
- Knowledge Engineering & Management for Engineers

MSc students take on an individual project which allows study of a selected topic in-depth. This may be an industry-themed project or one aligned to engineering research at Strathclyde.

Facilities

Our facilities include many laboratories and research centres including:
- Advanced Space Concepts Laboratory
- Energy Systems Research Unit
- Future Air-Space Transportation Technology
- James Weir Fluids Laboratory
- Mechanics & Materials Research Centre

We have local access to a 3500-node region supercomputer.

Accreditation

This course is accredited by the Institution of Mechanical Engineers and meets requirements for Chartered Engineer (CEng) status.

English language requirements for international students

IELTS - minimum overall band score of 6.5 (no individual test score below 5.5).

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Students take three compulsory modules and a selection of specialist and generic modules.
To qualify for the MSc, students undertake an individual project which allows study of a selected topic in depth, normally industry-themed or aligned to engineering research at Strathclyde.

Assessment

Assessment is by written assignments, exams and the individual project.

Careers

This course is particularly suitable for graduate engineers in these sectors:
- chemical, petrochemical & process engineering
- design engineering
- power generation
- manufacturing
- oil & gas
- renewable energy

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/

Read less

Show 10 15 30 per page



Cookie Policy    X