• Goldsmiths, University of London Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Coventry University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
University of Worcester Featured Masters Courses
Cranfield University Featured Masters Courses
University of Bradford Featured Masters Courses
Loughborough University Featured Masters Courses
"aerodynamic"×
0 miles

Masters Degrees (Aerodynamic)

  • "aerodynamic" ×
  • clear all
Showing 1 to 10 of 10
Order by 
Gas Turbine Technology provides a comprehensive background in the design and operation of different types of gas turbines for all applications. Read more

Course Description

Gas Turbine Technology provides a comprehensive background in the design and operation of different types of gas turbines for all applications. This course is designed for those seeking a career in the design, development, operations and maintenance of power and propulsion systems. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand. The course is suitable for graduates seeking a challenging and rewarding career in an international growth industry.

The UK continues to lead the world in power and propulsion technology. In addition to its established aerospace role, the gas turbine is finding increasing application in power generation, oil and gas pumping, chemical processing and power plants for ships and other large vehicles.

Course overview

The course consists of approximately ten to fifteen taught modules and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:

- Provide the skills required for a rewarding career in the field of propulsion and power.
- Meet employer requirements for graduates within power and propulsion industries.
- Demonstrate a working knowledge and critical awareness of gas turbine performance, analysis techniques, component design and associated technologies.
- Explain, differentiate and critically discuss the underpinning concepts and theories for a wide range of areas of gas turbine engineering and associated applications.
- Be able to discern, select and apply appropriate analysis techniques in the assessment of particular aspects of gas turbine engineering.

Individual Project

You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner.

Recent Individual Research Projects include:

- S-duct aerodynamic shape multi-objective optimisation
- Performance modelling of evaporative gas turbine cycles for marine applications
- Mechanical integrity/stress analysis of the high pressure compressor of a new engine
- High pressure turbine blade life analysis for a civilian derivative aircraft conducting military operations
- Engine performance degradation due to foulants in the environment
- Effects of manufacturing tolerances on gas turbine performance and components
- Development of a transient combustion model
- Numerical fan modelling and aerodynamic analysis of a high bp ratio turbofan engine
- Combustor modelling
- Impact of water ingestion on large jet engine performance and emissions
- Windmilling compressor and fan aerodynamics
- Neural networks based sensor fault diagnostics for industrial gas turbine engines
- Boundary layer ingestion for novel aircraft
- Multidisciplinary design optimisation for axial compressors
- Non-linear off design performance adaptation for a twin spool turbofan engine
- Engine degradation analysis and washing effect on performance using measured data.

Modules

The taught programme for the Gas Turbine Technology masters consists of seven compulsory modules and up to seven optional modules. The modules are generally delivered from October to April.

Core -

Blade Cooling
Combustors
Engine Systems
Gas Turbine Theory and Performance
Mechanical Design of Turbomachinery
Gas Turbine Simulation and Diagnostics
Turbomachinery

Optional -

Computational Fluid Dynamics
Fatigue and Fracture
Gas Turbine Applications
Jet Engine Control (only October intake)
Management for Technology
Propulsion Systems Performance and Integration
Rotating Equipment Selection

Assessment

The final assessment is based on two components of equal weight; the taught modules (50%) and the individual research project (50%). Assessment is by examinations, assignments, presentations and thesis.

Funding

A variety of funding, including industrial sponsorship, is available. Please contact us for details.

Cranfield Postgraduate Loan Scheme (CPLS) - https://www.cranfield.ac.uk/Study/Postgraduate-degrees/Fees-and-funding/Funding-opportunities/cpls/Cranfield-Postgraduate-Loan-Scheme

The Cranfield Postgraduate Loan Scheme (CPLS) is a funding programme providing affordable tuition fee and maintenance loans for full-time UK/EU students studying technology-based MSc courses.

Career opportunities

- Gas turbine engine manufacturers
- Airframe manufacturers
- Airline operators
- Regulatory bodies
- Aerospace/Energy consultancies
- Power production industries
- Academia: doctoral studies.

Further Information

For further information on this course, please visit our course webpage - http://www.cranfield.ac.uk/Courses/Masters/Gas-Turbine-Technology-option-Thermal-power

Read less
Aerospace Propulsion provides a comprehensive background in the design and operation of different types of propulsion systems for aerospace applications. Read more

Course Description

Aerospace Propulsion provides a comprehensive background in the design and operation of different types of propulsion systems for aerospace applications. The course is designed for those seeking a career in the design, development, operation and maintenance of propulsion systems.  The course is suitable for graduates seeking a challenging and rewarding career in an established international industry. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand.

Overview

The key technological achievement underlying the development and growth of the aerospace industry has been the design and development of efficient and economical propulsion systems. This sector has experienced a consistent growth in the past and is expected to do so in the future. Major efforts are also now being dedicated to the development of new technologies relevant to the propfan and variable cycle engines.

The MSc in Aerospace Propulsion provides a comprehensive background in the design and operation of different types of propulsion systems for aerospace applications. The course is designed for those seeking a career in the design, development, operation and maintenance of propulsion systems.

The course is suitable for graduates seeking a challenging and rewarding career in an established international industry. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand.

Structure

The course consists of approximately ten to fifteen taught modules and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:

- Provide the skills required for a rewarding career in the field of propulsion and power
- Meet employer requirements for graduates within power and propulsion industries
- Demonstrate a working knowledge and critical awareness of gas turbine performance, analysis techniques, component design and associated technologies
- Explain, differentiate and critically discuss the underpinning concepts and theories for a wide range of areas of gas turbine engineering and associated applications
- Be able to discern, select and apply appropriate analysis techniques in the assessment of particular aspects of gas turbine engineering.

Modules

The taught programme for the Aerospace Propulsion masters consists of eight compulsory modules and up to six optional modules. The modules are generally delivered from October to April.

Individual Project

Individual Project
You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner.

Recent Individual Research Projects include:

- Design of an experimental test rig facility for an axial compressor
- Energy management in a hybrid turbo-electric, hydrogen fuelled, hale UAV
- Civil aircraft intake, nacelle and nozzle aerodynamics
- The computation of adiabatic isobaric combustion temperature
- Air filtration systems for helicopters
- Nacelle parametric design space exploration
- Distributed propellers assessment for turboelectric distributed propulsion
- Aerodynamic analysis of the flowfield distortion within a serpentine intake
- Green runway :impact of water ingestion on medium and small jet engine performance and emissions
- Distributed propulsion systems boundary layer ingestion for uav aircraft
- Preliminary design of a low emissions combustor for a helicopter engine
- Compressor design and performance simulation through the use of a through-flow method
- Estimation of weight and mechanical losses of a pts for a geared turbofan engine
- Optimisation of turbine disc for a small turbofan engine
- Modelling of tip leakage flows in axial flow high pressure gas turbine
- Aerodynamic modelling and adjoint-based shape optimisation of separate-jet exhaust systems
- Preliminary design & performance analysis of a combustor for UAV.

Assessment

The final assessment is based on two components of equal weight; the taught modules (50%) and the individual research project (50%). Assessment is by examinations, assignments, presentations and thesis.

Funding

A variety of funding, including industrial sponsorship, is available. Please contact us for details.

Career opportunities

- Gas turbine engine manufacturers
- Airframe manufacturers
- Airline operators
- Regulatory bodies
- Aerospace/Energy consultancies
- Power production industries
- Academia: doctoral studies.

For further information

On this course, please visit our course webpage http://www.cranfield.ac.uk/Courses/Masters/Aerospace-Propulsion-Option-Thermal-Power

Read less
This course is aimed at those who wish to study advanced topics in mechanical engineering with a focus on materials. It's been developed to provide you with an in-depth technical understanding of advanced mechanical engineering topics. Read more

Why this course?

This course is aimed at those who wish to study advanced topics in mechanical engineering with a focus on materials.

It's been developed to provide you with an in-depth technical understanding of advanced mechanical engineering topics. You’ll also develop generic skills that allow you to contribute effectively in developing company capabilities.

The course is designed to make you more employable and also satisfies the Further Learning requirements necessary to obtain Chartered Engineer status.

This course is particularly suitable for graduate engineers in these sectors:
- chemical, petrochemical & process engineering
- design engineering
- power generation
- manufacturing
- oil & gas
- renewable energy

See the website https://www.strath.ac.uk/courses/postgraduatetaught/advancedmechanicalengineeringwithmaterials/

You’ll study

You’ll have the opportunity to select technical and specialist classes.

- Compulsory classes
You’ll study three compulsory classes:
- Engineering Composites
- Polymer & Polymer Composites
- Industrial Metallurgy

- Other specialist instructional modules
These focus on different technical aspects allowing you to tailor learning to your individual needs. When choosing technical modules, you’ll discuss the options with the course co-ordinator. These include:
- Pressurised Systems
- Aerodynamic Performance
- Aerodynamic Propulsion Systems
- Systems Engineering 1 & 2
- Machine Dynamics
- Machinery Diagnosis & Condition Monitoring
- Mathematical Modelling in Engineering Science
- Spaceflight Mechanics
- Advanced Topics in Fluid Systems Engineering
- Spaceflight Systems
- Advanced Boiler Technologies 1 & 2
- Materials for Power Plant
- Gas & Steam Turbines

- Faculty-wide generic instructional modules
You’ll choose three faculty-wide generic modules which satisfy the broader learning requirements for Chartered Engineer status. You'll choose from:
- Design Management
- Project Management
- Sustainability
- Information Management
- Finance
- Risk Management
-Environmental Impact Assessment
- Knowledge Engineering & Management for Engineers

- Individual project
MSc students take on an individual project which allows study of a selected topic in-depth. This may be an industry-themed project or one aligned to engineering research at Strathclyde.

Facilities

Our facilities include many laboratories and research centres including:
- Advanced Space Concepts Laboratory
- Energy Systems Research Unit
- Future Air-Space Transportation Technology
- James Weir Fluids Laboratory
- Mechanics & Materials Research Centre

We have local access to a 3500-node region supercomputer.

Accreditation

As this is a new course starting in 2014/15, accreditation by IMechE is expected (as has been obtained for the Advanced Mechanical Engineering course), after it has been operational for one year.

English language requirements for international students

IELTS - minimum overall band score of 6.5 (no individual test score below 5.5) or TOEFL iBT minimum total score of 95 (minimum scores of Listening-17, Writing-19, Reading and Speaking-20). Both tests are valid for two years.

Learning & teaching

Teaching methods include lectures and practical exercises. Site visits are also arranged.

Careers

Engineering graduates, particularly Mechanical Engineers, are in demand from recruiting companies. This course is designed to meet industrial demand for qualified staff in the area of Mechanical Engineering. This course is particularly suitable for Graduate Engineers in the following sectors:
- Chemical, Petrochemical & Process Engineering
- Design Engineering
- Power Generation
- Manufacturing
- Oil & Gas
- Renewable Energy

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/

Read less
Like our classic MSc, this course combines advanced taught modules with research experience. But with an MSc(Res), the research project goes into much more detail. Read more
Like our classic MSc, this course combines advanced taught modules with research experience. But with an MSc(Res), the research project goes into much more detail.

Careers

Our courses are designed to prepare you for a career in industry. You’ll get plenty of practical research experience, as well as training in research methods and management. Recent graduates now work for Arup, Rolls-Royce and Network Rail.

Core modules

Technical Communication for Mechanical Engineers; Information Management for Researchers; Advanced Experiments and Modelling; Individual Research Project; Innovation Management.

Optional modules

A selection from: Reciprocating Engines; Signal Processing and Instrumentation; Aerodynamic Design; Mechanical Engineering in Railways; Sports Engineering; Condition Monitoring.

Teaching and assessment

Lectures, tutorials, small group work and online modules. You’re assessed by exams, coursework assignments and a dissertation.

Read less
Enhance your knowledge of aerospace systems and structures with advanced modules and an extensive research project. Subjects include. Read more

About the course

Enhance your knowledge of aerospace systems and structures with advanced modules and an extensive research project. Subjects include: aerodynamics and aeropropulsion, fatigue and fracture of aerospace components, composites for aerospace applications and structural health monitoring of aerospace structures.

Your career

Our courses are designed to prepare you for a career in industry. You’ll get plenty of practical research experience, as well as training in research methods and management. Recent graduates now work for Arup, Rolls-Royce and Network Rail.

A world-famous department

This is one of the largest, most respected mechanical engineering departments in the UK. Our reputation for excellence attracts world-class staff and students. They’re involved in projects like improving car designs and designing jaw replacements – projects that make a difference.

Our world-famous research centres include the Insigneo Institute, where we’re revolutionising the treatment of disease, and the Centre for Advanced Additive Manufacturing. We also work closely with the University’s Advanced Manufacturing Research Centre (AMRC).

Support for international students

Our students come from all over the world. We’ll help you get to know the department and the city. Your personal tutor will support you throughout your course and we can help you with your English if you need it.

Labs and equipment

We’ve just refurbished a large section of our lab space and invested over £350,000 in equipment including new fatigue testing facilities, a CNC milling centre, a laser scanning machine and a 3D printer.

Core modules

Information Management; Research Project; Advanced Experiments and Modelling; Design Innovation Toolbox.

Examples of optional modules

A selection from: Computational Fluid Mechanics; Renewable Energy; Engineering Composites Materials; Advanced Fluid Mechanics; Reciprocating Engines; Aerodynamic Design; Experimental Stress Analysis; Tribology of Machine Elements; Aeropropulsion; Condition Monitoring.

Teaching and assessment

Teaching takes place through lectures, tutorials, small group work and online modules. Assessment is by formal examinations, coursework assignments
and a dissertation.

Read less
Interested in a management career? This course combines advanced mechanical engineering subjects with management modules specially designed for engineers. Read more

About the course

Interested in a management career? This course combines advanced mechanical engineering subjects with management modules specially designed for engineers. You’ll complete a research project that brings together technical and management issues. And you can choose taught modules that support your project work.

Your career

Our courses are designed to prepare you for a career in industry. You’ll get plenty of practical research experience, as well as training in research methods and management. Recent graduates now work for Arup, Rolls-Royce and Network Rail.

A world-famous department

This is one of the largest, most respected mechanical engineering departments in the UK. Our reputation for excellence attracts world-class staff and students. They’re involved in projects like improving car designs and designing jaw replacements – projects that make a difference.

Our world-famous research centres include the Insigneo Institute, where we’re revolutionising the treatment of disease, and the Centre for Advanced Additive Manufacturing. We also work closely with the University’s Advanced Manufacturing Research Centre (AMRC).

Support for international students

Our students come from all over the world. We’ll help you get to know the department and the city. Your personal tutor will support you throughout your course and we can help you with your English if you need it.

Labs and equipment

We’ve just refurbished a large section of our lab space and invested over £350,000 in equipment including new fatigue testing facilities, a CNC milling centre, a laser scanning machine and a 3D printer.

Core modules

Design Innovation Toolbox; Market Management; Individual Research Project; Advanced Experiments and Modelling.

Examples of optional modules

A selection from: Additive Manufacturing; Advanced Finite Element Modelling; Aerodynamic Design; Experimental Stress Analysis; Tribology of Machine Elements; Mechanical Engineering of Railways; Nuclear Thermal Hydraulics and Heat Transfer.

Teaching and assessment

You’ll learn through lectures, tutorials, small group work and online modules. You’re assessed by exams, coursework assignments and a dissertation.

Read less
The aerodynamics and handling performances of aircraft are amongst the most challenging aspects of aircraft designs. Take your expertise of the cutting-edge aeronautics industry to the next level with our course - focused on developing your understanding of advanced aerodynamics, materials and technologies. Read more
The aerodynamics and handling performances of aircraft are amongst the most challenging aspects of aircraft designs.

Take your expertise of the cutting-edge aeronautics industry to the next level with our course - focused on developing your understanding of advanced aerodynamics, materials and technologies.

The MSc in Aeronautical Engineering will enable you to develop a deep understanding and solid skills in aerodynamics and aerodynamic design of aircraft. Grasp detailed knowledge and application principles of composite materials and alloys, critically review and assess the application and practice of advanced materials in modern aircraft.

You will have access to our state-of-art Merlin flight simulator for design and testing your aircraft and will learn and use cutting-edge design, analysis and simulation software: MATLAB/Simulink, CATIA v5, ANSYS, and ABAQUS. You will also have access to subsonic and supersonic wind tunnel facilities and rapid prototyping facilities.

Key Course Features

-Wrexham Glyndŵr University is located nearby to one of the largest aircraft company in the world, Airbus and also has close links with aviation industries, such as Rolls-Royce, Raytheon and Magellan.
-The MSc in Aeronautical Engineering is accredited by Royal Aeronautical Society (RAeS), Institute of Engineering Technology (IET) and the Institution of Mechanical Engineers (IMechE), and provides you with the required training for registering for Chartered Engineer status.

What Will You Study?

FULL-TIME STUDY (SEPTEMBER INTAKE)
The taught element, Part One, of the programmes will be delivered in two 12 week trimesters and each trimester has a loading of 60 credits.

You will cover six taught modules which include lectures, tutorials and practical work on a weekly basis. The expected timetable per module will be a total of 200 hours, which includes 40 hours of scheduled learning and teaching hours and 160 independent study hours.

Part Two will then take a further 15 weeks having a notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

FULL-TIME MODE (JANUARY INTAKE)
For the January intake, students will study the three specialist modules first during the second trimester from January to May. The three core modules will be studied in the first trimester of the next academic year from September to January.

On successful completion of the taught element of the programme the students will progress to Part Two, MSc dissertation to be submitted in April/May.

PART-TIME MODE
The taught element, part one, of the programmes will be delivered over two academic teaching years. 80 credits or equivalent worth of modules will be delivered in the first year and 40 credits or equivalent in the second year. The part time students would join the full time delivery with lectures and tutorials/practical work during one day on a weekly basis.

The dissertation element will start in trimester 2 taking a further 30 weeks having a total notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

AREAS OF STUDY INCLUDE:
-Engineering Research Methods
-Sustainable Design & Innovation
-Engineering Systems Modelling & Simulation
-Advanced Composite Materials
-Applied Aerodynamics
-Flight Dynamics & Controls
-Dissertation

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Assessment and Teaching

You will be assessed throughout your course through a variety of methods including portfolios, presentations and, for certain subjects, examinations.

Career Prospects

The courses will give you the chance to advance your career to management levels. You might also consider consultancy, research and development, testing and design positions within the aeronautical industry. Airbus is a classic example of an employer excelling in this field in the north Wales region.

The Careers & Zone at Wrexham Glyndŵr University is there to help you make decisions and plan the next steps towards a bright future. From finding work or further study to working out your interests, skills and aspirations, they can provide you with the expert information, advice and guidance you need.

Read less
This course is accredited by the Institution of Mechanical Engineers (IMechE) and provides a route for you to achieve Chartered Engineer (CEng) status. Read more

Why this course?

This course is accredited by the Institution of Mechanical Engineers (IMechE) and provides a route for you to achieve Chartered Engineer (CEng) status.

It has been developed to provide high-calibre mechanical engineering graduates with an in-depth technical understanding of advanced mechanical engineering topics together with generic skills that will allow them to contribute effectively post graduation.

The course helps you to become a specialist in the area of aerospace. You'll also have the opportunity to take modules in general skills such as project management and risk analysis. These are necessary skills for any professional aerospace engineer.

You’ll study

You'll study three compulsory modules:
- Aerodynamics Performance
- Aerodynamic Propulsion Systems
- Spaceflight Mechanics

You'll select a number of specialist instructional classes in your chosen area. You'll also choose three generic skill modules from the following topics:
- Design Management
- Project Management
- Sustainability
- Information Management
- Finance
- Risk Management
- Environmental Impact Assessment
- Knowledge Engineering & Management for Engineers

MSc students take on an individual project which allows study of a selected topic in-depth. This may be an industry-themed project or one aligned to engineering research at Strathclyde.

Facilities

Our facilities include many laboratories and research centres including:
- Advanced Space Concepts Laboratory
- Energy Systems Research Unit
- Future Air-Space Transportation Technology
- James Weir Fluids Laboratory
- Mechanics & Materials Research Centre

We have local access to a 3500-node region supercomputer.

Accreditation

This course is accredited by the Institution of Mechanical Engineers and meets requirements for Chartered Engineer (CEng) status.

English language requirements for international students

IELTS - minimum overall band score of 6.5 (no individual test score below 5.5).

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Students take three compulsory modules and a selection of specialist and generic modules.
To qualify for the MSc, students undertake an individual project which allows study of a selected topic in depth, normally industry-themed or aligned to engineering research at Strathclyde.

Assessment

Assessment is by written assignments, exams and the individual project.

Careers

This course is particularly suitable for graduate engineers in these sectors:
- chemical, petrochemical & process engineering
- design engineering
- power generation
- manufacturing
- oil & gas
- renewable energy

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/

Read less
World leading aircraft manufacturers predict the number of in-service commercial aircraft doubling to over 43,500 in the next 20 years. Read more
World leading aircraft manufacturers predict the number of in-service commercial aircraft doubling to over 43,500 in the next 20 years. Our MSc Aviation Engineering and Management course will provide you with the skills, knowledge and expertise to succeed in the aviation industry.
You’ll develop key problem-solving skills within the field of aviation including airlines, corporate aviation, general aviation, component manufacturing organisations, and related industries, and civil aviation governmental agencies.

You’ll gain an understanding of the various complexities facing aviation businesses through a breadth of industry related modules. Your studies will also cover a wide variety of tools, techniques, and research methods, and how they may be applied to research and solve real-life problems within the aviation industry.

See the website http://courses.southwales.ac.uk/courses/1878-msc-aviation-engineering-and-management

What you will study

The course consists of nine modules with a key theme throughout your studies including the ethical dimensions of decision-making and interpersonal relations. This means you can be confident that you will develop personally and professionally as part of the course, ultimately making yourself more employable. You’ll study the following modules:

- Aircraft Systems Design and Optimization (10 Credits)
This module will give you a comprehensive knowledge of the systems of the aircraft, including preliminary designing of systems primary and secondary systems, operation and maintenance concepts. You will be introduced to novel engineering design methods such as Multi Objective Design (MOD) and multi-disciplinary design optimisation. Part of the module will be delivered with the support of industrial partners and experts, which will bring real scale industrial experience and interaction with the industry.

- Aviation Sustainable Engineering
This module will explore the historical and contemporary perspectives in international aviation framework while looking at the socio-economic benefits of aviation since the Chicago Convention of 1944. You will analyse current and future design and manufacturing trends in the aerospace industry.

- Condition Monitoring and Non-Destructive Testing
This module analyses condition monitoring and non-destructive testing, giving you an appreciation for the key concepts and tools in this subject. You will evaluate the use of these tools in different situations within industry and make recommendations on necessary adjustments.

- Advanced Materials and Manufacture
You will look at a range of modern engineering materials and develop an awareness of the selection criteria for aeronautical and mechanical engineering applications. You will also look at a range of “standard” and modern manufacturing processes, methods and techniques.

- Lean Maintenance Operations & Certification
This module will help you develop and understand concepts in Six Sigma, lean maintenance, operational research, reliability centred maintenance and maintenance planning. You will evaluate and critically analyse processes within highly regulated industries.

- Safety, Health and Environmental Engineering Management
Covering the principles and implementation of the safety, health and environmental management within the workplace, you will look at key concepts in human cognition and other human factors in risk management and accident/incident investigation. You will also gain an understanding of the role of stakeholder involvement in sustainable development.

- Strategic Leadership and Management for Engineers
This module will explore a range of purposes and issues surrounding successful strategic management and leadership as well as appraising a range of leadership behaviours and processes that may inspire innovation, change and continuous transformation within different organisational areas including logistics and supply chain management.

- Research Methods for Engineers
The aim of this module is to provide you with the ability to determine the most appropriate methods to collect, analyse and interpret information relevant to an area of engineering research. To provide you with the ability to critically reflect on your own and others work.

- Individual Project
You will undertake a substantial piece of investigative research work on an appropriate engineering topic and further develop your skills in research, critical analysis and development of solutions using appropriate techniques.

Learning and teaching methods

You will be taught through a variety of lectures, tutorials and practical laboratory work.

You will have 10 contact hours per week, you will also need to devote around 30 hours per week to self-study, such as conducting research and preparing for your assessments and lectures.

Work Experience and Employment Prospects

Aerospace engineering is an area where demand exceeds supply. As a highly skilled professional in aircraft maintenance engineering, you will be well placed to gain employment in this challenging industry. The aircraft industry is truly international, so there is demand not only in the UK, but throughout the world.

Careers available after graduation include aircraft maintenance planning, engineering, materials, quality assurance or compliance, technical services, logistics, NDT, method and process technical engineering, aircraft or engine leasing, aviation sales, aviation safety, reliability and maintainability, operations and planning, airworthiness, technical support, aircraft surveying, lean maintenance, certification, production planning and control.

Assessment methods

You will be continually assessed coursework or a mixture of coursework and exams. The dissertation allows you to research a specific aviation engineering topic, to illustrate your depth of knowledge, critical awareness and problem-solving skills. The dissertation has three elements of assessment: a thesis, a poster presentation, and a viva voce examination.

Facilities

The aerospace industry has become increasingly competitive and in recognising this, the University has recently invested £1.8m into its aerospace facilities.

Facilities available to our students have been fully approved by the Civil Aviation Authority (CAA). With access to an EASA-approved suite of practical training facilities, our students can use a range of industry-standard facilities.

Our Aerospace Centre is home to a Jetstream 31 Twin Turboprop aircraft, assembled with Honeywell TPE331 Engines and Rockwell-Collins Proline II Avionics. It has a 19-passenger configuration.

The EASA-approved suite contains training and practical workshops and laboratories. Each area contains the tools and equipment required to facilitate the instruction of either mechanical or avionic practical tasks as required by the CAA.

Students use the TQ two-shaft gas turbine rig to investigate the inner workings of a gas turbine engine by collecting real data and subsequently analysing them for engine performance.

Our sub-sonic wind tunnel is used for basic aerodynamic instruction, testing and demonstrations on various aerofoil shapes and configurations.

The single-seater, full motion, three axes Merlin MP521 flight simulator can be programmed for several aircraft types that include the Airbus A320 and the Cessna 150.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X