• Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of Hertfordshire Featured Masters Courses
University of Reading Featured Masters Courses
Durham University Featured Masters Courses
University of Cambridge Featured Masters Courses
Newcastle University Featured Masters Courses
"advanced" AND "software"…×
0 miles

Masters Degrees (Advanced Software Engineering)

We have 704 Masters Degrees (Advanced Software Engineering)

  • "advanced" AND "software" AND "engineering" ×
  • clear all
Showing 1 to 15 of 704
Order by 
The Advanced Software Engineering MSc is a newly redesigned course that enables graduates enable students to extend their knowledge of, and gain valuable experience in, software engineering as it applies to a number of new and important areas of IT and computing. Read more
The Advanced Software Engineering MSc is a newly redesigned course that enables graduates enable students to extend their knowledge of, and gain valuable experience in, software engineering as it applies to a number of new and important areas of IT and computing.

Graduates will be able to follow a flexible program of study designed to lead to, and enhance, a career in software engineering with a focus on new technologies and areas of application, such as cybersecurity, big data, or mobile application development.

The rapid pace of technical change in software development is notorious and this has been accompanied and compounded by an increase in the complexity of the systems that are developed. Recently this has been most noticeable in the increase in mobile computing and the use of sophisticated hardware that require developer knowledge of new paradigms.

Many applications that run on these systems whether mobile or stationary are distributed in nature and will consume web services provided by service-oriented architectures and cloud-based platforms. There has also been an increase in the use of virtualisation techniques for providing flexible and maintainable systems. Businesses are now regularly using virtualised systems and techniques to lower cost and complexity and increase availability in computing environments.

The surge in cybersecurity issues and threats facing businesses and organisations that depend on IT systems has meant that software engineers need a thorough understanding of security when building and maintaining software applications and systems.

There is an acknowledged national shortage of IT and computing skills in the workforce. In the specific area of software development, a number of factors contribute to this. Most obviously, the rate of technological change means that an individual's specific knowledge frequently becomes out of date. Secondly, many significant technological developments originate in industry rather than academia, and are not yet firmly embedded in undergraduate curricula. Finally, many people enter the software industry without a specific educational background in computer science and acquire much vital knowledge in the workplace in relatively ad hoc ways.

In response to this, for many years the Department of Computer Science has been running courses that combine an emphasis on methodical approaches to the development of software applications and information systems with a determination to equip graduates with a portfolio of relevant research-oriented and practical skills and knowledge to compliment and expand their own knowledge.

The rationale behind the MSc in Advanced Software Engineering is to draw on this experience to provide an education that will cover in-depth specific skills and best current practice in software development where there is currently a significant skills shortage, whilst at the same time instilling important research-based skills that will equip students for independent lifelong learning in fast-changing and technically challenging environment.

Course content

The Masters of Science in Advanced Software Engineering takes into account the emerging needs of industry underpinned by theory and software engineering practices. As a consequence the modules emphasise both the critical conceptual underpinnings as well as the practical skills for each subject.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-ADVANCED SOFTWARE DESIGN
-ENTERPRISE DEVELOPMENT
-CONCURRENCY AND PARALLELISM
-RESEARCH METHODS AND PROFESSIONAL PRACTICE
-ADVANCED SOFTWARE ENGINEERING PROJECT

Option modules - In addition you will pursue a pathway of your choice, selected with the guidance and advice of our academic staff. You can chose up to five of the following pathways modules:
-BIG DATA THEORY AND PRACTICE
-ADVANCED BIG DATA ANALYTICS
-CLOUD COMPUTING APPLICATIONS
-DATA MINING & MACHINE LEARNING
-DATA VISUALISATION AND DASHBOARDING
-CYBERSECURITY THREATS AND COUNTERMEASURES
-INTERNET SECURITY
-MOBILE APPLICATION DEVELOPMENT
-MOBILE AND UBIQUITOUS COMPUTING
-USABILITY AND USER EXPERIENCE DESIGN
-FREE CHOICE MODULE

Associated careers

Graduates will typically be part of a team working on sophisticated n-tier applications, as a designer, programmer, systems administrator or systems analyst (among others). Graduates will also find positions within new and established businesses that specialise in mobile applications. Other roles are possible in computer science research for either a commercial enterprise or academic institution. Further PhD study opportunities within the University of Westminster are also an option.

Read less
The Advanced Software Engineering MSc is a newly redesigned course that enables graduates enable students to extend their knowledge of, and gain valuable experience in, software engineering as it applies to a number of new and important areas of IT and computing. Read more
The Advanced Software Engineering MSc is a newly redesigned course that enables graduates enable students to extend their knowledge of, and gain valuable experience in, software engineering as it applies to a number of new and important areas of IT and computing.

Graduates will be able to follow a flexible program of study designed to lead to, and enhance, a career in software engineering with a focus on new technologies and areas of application, such as cybersecurity, big data, or mobile application development.

The rapid pace of technical change in software development is notorious and this has been accompanied and compounded by an increase in the complexity of the systems that are developed. Recently this has been most noticeable in the increase in mobile computing and the use of sophisticated hardware that require developer knowledge of new paradigms.

Many applications that run on these systems whether mobile or stationary are distributed in nature and will consume web services provided by service-oriented architectures and cloud-based platforms. There has also been an increase in the use of virtualisation techniques for providing flexible and maintainable systems. Businesses are now regularly using virtualised systems and techniques to lower cost and complexity and increase availability in computing environments.

The surge in cybersecurity issues and threats facing businesses and organisations that depend on IT systems has meant that software engineers need a thorough understanding of security when building and maintaining software applications and systems.

There is an acknowledged national shortage of IT and computing skills in the workforce. In the specific area of software development, a number of factors contribute to this. Most obviously, the rate of technological change means that an individual's specific knowledge frequently becomes out of date. Secondly, many significant technological developments originate in industry rather than academia, and are not yet firmly embedded in undergraduate curricula. Finally, many people enter the software industry without a specific educational background in computer science and acquire much vital knowledge in the workplace in relatively ad hoc ways.

In response to this, for many years the Department of Computer Science has been running courses that combine an emphasis on methodical approaches to the development of software applications and information systems with a determination to equip graduates with a portfolio of relevant research-oriented and practical skills and knowledge to compliment and expand their own knowledge.

The rationale behind the MSc in Advanced Software Engineering is to draw on this experience to provide an education that will cover in-depth specific skills and best current practice in software development where there is currently a significant skills shortage, whilst at the same time instilling important research-based skills that will equip students for independent lifelong learning in fast-changing and technically challenging environment.

Course content

The Masters of Science in Advanced Software Engineering takes into account the emerging needs of industry underpinned by theory and software engineering practices. As a consequence the modules emphasise both the critical conceptual underpinnings as well as the practical skills for each subject.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-ADVANCED SOFTWARE DESIGN
-ENTERPRISE DEVELOPMENT
-CONCURRENCY AND PARALLELISM
-RESEARCH METHODS AND PROFESSIONAL PRACTICE
-ADVANCED SOFTWARE ENGINEERING PROJECT

Optional modules - In addition you will pursue a pathway of your choice, selected with the guidance and advice of our academic staff. You can chose up to five of the following pathways modules:
-BIG DATA THEORY AND PRACTICE
-ADVANCED BIG DATA ANALYTICS
-CLOUD COMPUTING APPLICATIONS
-DATA MINING & MACHINE LEARNING
-DATA VISUALISATION AND DASHBOARDING
-CYBERSECURITY THREATS AND COUNTERMEASURES
-INTERNET SECURITY
-MOBILE APPLICATION DEVELOPMENT
-MOBILE AND UBIQUITOUS COMPUTING
-USABILITY AND USER EXPERIENCE DESIGN
-FREE CHOICE MODULE

Associated careers

Graduates will typically be part of a team working on sophisticated n-tier applications, as a designer, programmer, systems administrator or systems analyst (among others). Graduates will also find positions within new and established businesses that specialise in mobile applications. Other roles are possible in computer science research for either a commercial enterprise or academic institution. Further PhD study opportunities within the University of Westminster are also an option.

Read less
The Advanced Software Engineering with Management MSc is an advanced study pathway that aims to provide computer graduates with a thorough understanding of the role of IT in business, and how information systems impact on trade and organisational processes. Read more

The Advanced Software Engineering with Management MSc is an advanced study pathway that aims to provide computer graduates with a thorough understanding of the role of IT in business, and how information systems impact on trade and organisational processes. The course also introduces core management theories and essential problem-solving skills in preparation for senior roles in the IT industry.

Key benefits

  • Located in central London, giving access to major libraries and leading scientific societies, including the Chartered Institute for IT (BCS), and the Institution of Engineering and Technology (IET).
  • You will learn advanced software engineering skills preparing you for leading creative roles in the professional and research communities.
  • You will develop critical awareness and appreciation of the changing role of computing in society and motivating you to pursue further professional development and research.
  • Frequent access to speakers of international repute through seminars and external lectures, enabling you to keep abreast of emerging knowledge in advanced computing and related fields. 
  • The Department of Informatics has a reputation for delivering research-led teaching and project supervision from leading experts in their field.

Description

The Advanced Software Engineering with Management MSc course focuses on innovative techniques for the development of software systems, with an emphasis on the construction and management of internet-oriented, agent-oriented and large software systems. You will develop your expertise and skills in software engineering, preparing you for a career in software engineering, software maintenance and software testing. The programme will also equip you with essential research, analytical and critical thinking skills.

The course is made up of optional and required modules, and you will complete the course in one year, studying September to September. You must take modules totalling 180 credits to meet the requirements of the qualification, and 60 credits will come from an individual project of 15000 words. You will also participate in a group project that will provide you with invaluable experience of working in a team to design, implement and document a substantial software product.

Course purpose

For graduates with substantial experience of computer science, this programme will develop your expertise and skills in software engineering, preparing you for a career in software engineering, software maintenance and software testing. Research for your individual project will provide valuable preparation for a career in research or industry.

Course format and assessment

Teaching

We use lectures, seminars and group tutorials to deliver most of the modules on the programme. You will also be expected to undertake a significant amount of independent study.

Assessment

The primary method of assessment for this course is a combination of written examinations, essays, coursework and individual or group projects and oral presentations. 

Extra information

Location

The majority of learning for this degree takes place at the Strand Campus, with occasional lectures and practical sessions taking place at the Waterloo Campus. Please note that locations are determined by where each module is taught and may vary depending on the optional modules you select.

Career prospects

Our graduates have continued on to have very successful careers working for software consultancy companies, specialised software development businesses and the IT departments of large institutions (financial, telecommunications and public sector). Recent employers include Ernst & Young, Accenture and M-Netics. While some of our graduates have entered into the field of academic and industrial research in areas such as software engineering, algorithms and computer networks.



Read less
The Advanced Software Engineering MSc is an advanced study pathway that provides computer graduates with a thorough understanding of the role of IT in business, and how information systems impact on trade and organisational processes. Read more

The Advanced Software Engineering MSc is an advanced study pathway that provides computer graduates with a thorough understanding of the role of IT in business, and how information systems impact on trade and organisational processes.

Key benefits

  • Located in central London, giving access to major libraries and leading scientific societies, including the Chartered Institute for IT (BCS) , and the Institution of Engineering and Technology (IET).
  • You will learn advanced software engineering skills preparing you for leading creative roles in the professional and research communities.
  • You will develop critical awareness and appreciation of the changing role of computing in society and motivating you to pursue further professional development and research.
  • Frequent access to speakers of international repute through seminars and external lectures, enabling you to keep abreast of emerging knowledge in advanced computing and related fields.
  • The Department of Informatics has a reputation for delivering research-led teaching and project supervision from leading experts in their field.

Description

The Advanced Software Engineering MSc course focuses on complex techniques for the development of software systems, with an emphasis on the construction and management of internet-oriented, agent-oriented and large software systems. The programme will also equip you with essential research, analytical and critical thinking skills.

The course is made up of optional and required modules, and you will complete the course in one year, studying September to September. You must take modules totalling 180 credits to meet the requirements of the qualification, and 60 credits will come from an individual project of around 15,000 words. You will also participate in a group project that will provide you with invaluable experience of working in a team to design, implement and document a substantial software product.

Course purpose

For graduates with substantial experience of computer science, this programme will develop your expertise and skills in software engineering, preparing you for a career in software engineering, software maintenance and software testing. Research for your individual project will provide valuable preparation for a career in research or industry.

Course format and assessment

Teaching

We use lectures, seminars and group tutorials to deliver most of the modules on the programme. You will also be expected to undertake a significant amount of independent study.

Assessment

The primary method of assessment for this course is a combination of written examinations, essays, coursework and individual or group projects and oral presentations. The research project will be assessed on a 15,000-word dissertation.  

Extra information

Location

The majority of learning for this degree takes place at the Strand Campus, with occasional lectures and practical sessions taking place at the Waterloo Campus. 

Career prospects

Our graduates have continued on to have very successful careers working for software consultancy companies, specialised software development businesses and the IT departments of large institutions (financial, telecommunications and public sector). Recent employers include Ernst & Young, Accenture and M-Netics. Some of our graduates have entered into the field of academic and industrial research in areas such as software engineering, algorithms and computer networks.



Read less
The MSc in Advanced Software Engineering is a taught programme aimed at graduates from computing or related subjects who want to extend their knowledge and expertise in the field of Software Engineering. Read more
The MSc in Advanced Software Engineering is a taught programme aimed at graduates from computing or related subjects who want to extend their knowledge and expertise in the field of Software Engineering. The core modules cover advanced programming and cutting edge software engineering technologies, before leading onto modules on relevant Internet and computing topics.

Course Structure

The course is built from eight taught modules plus one project/dissertation module. Each of the eight modules lasts for approximately four weeks and consists of a combination of lectures, tutorials, private study and a mini project. Each of the modules is designed to build upon the student's growing knowledge and skills.

The final project module involves the design, implementation and evaluation of a significant information systems solution.

Core Modules

•Advanced Java with UML
•Software Dependability
•Advances in Software Engineering
•Enterprise and Distributed Systems
•Research Methods and Professional Issues
•Web Technology
•New Initiatives in Software Engineering
•Information Search for the WWW
•Dissertation

Read less
The MSc in Advanced Software Engineering is a taught programme aimed at graduates from computing or related subjects who want to extend their knowledge and expertise in the field of Software Engineering. Read more
The MSc in Advanced Software Engineering is a taught programme aimed at graduates from computing or related subjects who want to extend their knowledge and expertise in the field of Software Engineering. The core modules cover advanced programming and cutting edge software engineering technologies, before leading onto modules on relevant Internet and computing topics.

Course Structure
The course is built from eight taught modules plus one project/dissertation module. Each of the eight modules lasts for approximately four weeks and consists of a combination of lectures, tutorials, private study and a mini project. Each of the modules is designed to build upon the student's growing knowledge and skills.

The final project module involves the design, implementation and evaluation of a significant information systems solution.

Core Modules
- Advanced Java with UML
- Software Dependability
- Advances in Software Engineering
- Enterprise and Distributed Systems
- Research Methods and Professional Issues
- Web Technology
- New Initiatives in Software Engineering
- Information Search for the WWW
- Dissertation

Read less
Computer science supports the build, development and use of computer systems. There is a growing need across the world for skilled, advanced computer science professionals. Read more

Why this course?

Computer science supports the build, development and use of computer systems.

There is a growing need across the world for skilled, advanced computer science professionals. This course helps you develop the skills necessary to design and deploy sophisticated modern software systems in a range of application areas.

You’ll improve your practical software engineering skills and learn new theories of software development. This course gives you the necessary qualifications to get a skilled position in the computing industry.

Our courses have some of the highest student satisfaction rates in the UK and our graduates are highly sought after.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/advancedsoftwareengineering/

You’ll study

Diploma and MSc students will study the following classes:
- Software Architecture and Design
- Advanced Topics in Software Engineering
- Designing Usable Systems
- Distributed Information Systems
- Mobile Software and Applications
- Personal Study
- Research Methods

You can also take a tailored programme of options from our other Masters classes. This allows you to graduate with a degree in Advanced Computer Science. Those who progress to the Masters will undertake an individual project.

Individual project/dissertation (MSc students only)

You’ll take on an individual research project on an approved topic related to your selected pathway. You’ll pursue a specific interest in further depth, giving scope for original thought, research and technical presentation of complex ideas.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at the University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.
To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

The course is taught through lectures, tutorials and practical laboratories.

Careers

There'll be opportunities for you to meet industry employers and take part in recruitment events.

As a graduate of advanced software engineering you could be an analyst, architect or developer. There's a demand for advanced practitioners and researchers in the growing area of embedded systems development.

How much will I earn?

- Systems analyst - typical salaries for junior analysts are around £25,000. More experienced analysts earn £40,000 a year, on average.*
- Applications developer - graduate salaries start at around £20,000. This can vary depending on the size of the employer and the sector which you are working in. The typical salary range for a senior applications developer is approximately £45,000 to £50,000.*

*Information is intended only as a guide.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/

Read less
This MSc focuses on the methodologies and technologies that address the challenges that companies are facing for competing in the volatile markets of today. Read more
This MSc focuses on the methodologies and technologies that address the challenges that companies are facing for competing in the volatile markets of today. It looks at how to generate applications from high-level business models to reduce time-to-market and development costs and how to evolve legacy systems and promote business processes in an economy dominated by the need to offer and integrate, on demand, new services.

Over the course of this degree, you will develop a deep understanding of the nature and impact of current challenges faced by the IT industry so that you know what is expected from a mature professional. You will also develop an awareness of the methodologies and technologies that are available within computer science to address these challenges, so that you can evaluate and analyse specific situations and make informed choices.

You will have opportunities to develop your interpersonal, communication, decision-making, and problem-solving skills, and to use these skills in an imaginative way.

This MSc course will provide you with the knowledge and research skills to continue your studies at PhD level.

Start Dates

Campus-based: October and January each year.
Distance Learning: September and January each year.

(Please note: due to regular enhancement of the University’s courses, please refer to Leicester’s own website (http://www.le.ac.uk) or/and Terms and Conditions (http://www2.le.ac.uk/legal) for the most accurate and up-to-date course information. We recommend that you familiarise yourself with this information prior to submitting an application.)

Read less
Accredited by the British Computer Society. We teach you how to build robust, effective software systems, and how to critique and evaluate the latest software engineering techniques. Read more

About the course

Accredited by the British Computer Society

We teach you how to build robust, effective software systems, and how to critique and evaluate the latest software engineering techniques. Through project work, you’ll learn how to apply your knowledge in the real world.

Genesys: learning on the job

Genesys Solutions is unique: an IT company run by students, with its own premises next to the department. As a student on this course you can join the company to work on software projects for real clients in a real business environment.

Prepare for your career

Our courses give you experience of how real-world projects work. We consult with big employers to ensure that you develop the skills and the personal qualities they’re looking for.

You’ll learn about the issues that matter in global business and industry. Our graduates go into academic and industrial research, the software industry, banking and finance. They work for companies such as Logica, IBM, Hewlett Packard, PWC, Vodafone, the BBC and HSBC.

About us

Our challenge is to use computation to understand all kinds of systems: computer systems, living systems and cognitive systems. Our research areas include robotics, machine learning, speech and language processing, virtual reality, computational systems biology and software verification and testing. It’s work that makes a difference to people’s lives.

Network and hardware

We have our own high-performance network so you can access our advanced computing facilities. There are labs for teaching smaller groups, wi-fi coverage throughout the department, and you can connect your own laptop to the network. Mobile devices and tablets are available for you to borrow for project work.

We also use specialised equipment: an immersive virtual reality facility, robotics hardware and an acoustic booth for speech processing research.

Core modules

Object-Oriented Programming and Software Design; Research Methods and Professional Issues; Dissertation Project; Testing and Verification in Safety-Critical Systems.

Examples of optional modules

Text Processing; Modelling and Simulation of Natural Systems; Speech Processing; Theory of Distributed Systems; 3D Computer Graphics; Computer Security and Forensics; Intelligent Web; Machine Learning and Adaptive Intelligence; Software and Hardware Verification; Software Development for Mobile Devices; Speech Technology; Virtual Environments and Computer Games Technology; Natural Language Processing; Java E-Commerce; Network Performance Analysis; Genesys Solutions (Software House) modules.

Teaching and assessment

We use lectures, tutorials and group work. You can also learn on the job in our student- run software engineering and consultancy business, Genesys Solutions. Assessment is by formal examinations, coursework assignments and a dissertation.

Read less
This MSc in Advanced Engineering Design is aimed at high calibre and ambitious engineering graduates who want to gain expertise in systematically developing complex, multidisciplinary engineering design. Read more

About the course

This MSc in Advanced Engineering Design is aimed at high calibre and ambitious engineering graduates who want to gain expertise in systematically developing complex, multidisciplinary engineering design.

You will learn how to design products requiring embedded intelligence and comprehensive engineering analysis and how to use six CAE software packages.

The programme - accredited by the Institution of Mechanical Engineering (IMechE) - has been developed to fulfil the industry’s need for an integrated course that offers:
teaching of advanced theory, human factors and creativity tools essential to successful product development
training in software, research and applications
practical experience of applying your knowledge and skills through an integrating, real life group project.

Aims

Integration of mechanical, electrical, electronic and control knowledge into a single product is challenging – and this course allows you to appreciate the complexity of modern product design and to develop your expertise.

The Brunel programme aims to create the new generation of engineering designers who can combine knowledge from different areas and produce world class design.

Engineering design is the application of engineering principles, the experience of making, and use of mathematical models and analysis. The design and production of complex engineering products often require the use of embedded intelligence and detailed engineering analysis involving mechanical, electronic and control functions. Advanced theoretical knowledge and a wide range of computer driven tools, methods and methodologies are essential for this process – and the course provides graduates with these essentials.

Course Content

Continued design of modern complex products demands advanced knowledge in mechanical, electronic, manufacturing and control engineering disciplines and human factors in design, and an ability to use advanced engineering software packages, integrating application experience and a capacity to carry on learning.

The Advanced Engineering Design MSc has been developed to produce design engineers who can meet these demands. It contains six taught modules where advanced multi-disciplinary theory is taught. As part of the course, six engineering software packages are also taught. In order to give an integrating application experience in an industrial setup, 'Design Experience', a group project module with an industry, has been included as part of the curriculum.

The dissertation is aimed at providing training in carrying out an in-depth engineering task on a self-learning basis. By the end of the course you will become a confident design engineer equipped with high quality and advanced knowledge and skills to work on design tasks in an advanced computer assisted environment.

Compulsory Modules

Sustainable Design and Manufacture
Manufacturing Systems Design and Economics
Computer Aided Engineering 1
Computer Aided Engineering 2
Design Experience
Dissertation Project

Optional Modules (choose two modules)

Advanced Manufacturing Measurement
Human Factors in Design
Robotics and Manufacturing Automation
Design of Mechatronic Systems

Special Features

Special facilities

MSc Engineering Design students work in a well-equipped design studio with various experiential learning facilities, with computers available for your exclusive use of Engineering Design students.Our investment in laboratory facilities and staff ensures that we can provide an excellent experience in a friendly and supportive environment.

Industry-focused programme

The high standard of our research feeds directly into curriculum design and our teaching, ensuring our graduates are equipped with the most up-to-date techniques, methods and knowledge bases. Our teaching has an excellent reputation and is orientated to the expressed needs of modern enterprises and the industry.
The course is underpinned by the current research still being carried out by the staff in the former academic unit Advanced Manufacturing and Enterprise Engineering which promotes manufacturing as a discipline.  Thus the academics teaching on the Advanced Engineering Design which were part of this unit have strong research portfolios in manufacturing. This research has been judged world leading.  In the 2014 Research Excellence Framework, academics teaching on the course were involved with Brunel’s General engineering submission, one of one of the largest in the UK. The area’s percentage of world leading research doubled, with a significant increase in our research judged as internationally excellent as well. The impact of over 75% of this research was judged to be world leading or internationally excellent. This placed the discipline in the top 20% in the UK terms of research power.

Global reputation

With around 150 postgraduate students from all around the world and substantial research income from the EU, research councils and industry, we are a major player in the field of advanced manufacturing and enterprise engineering.
 
Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

The MSc Advanced Engineering Design is accredited by both the Institution of Mechanical Engineering (IMechE). This will provide a route to Chartered Engineer status in the UK.

Read less
Are you keen to develop your existing engineering skills and knowledge to master’s level?. The MSc Engineering Management course has been specifically designed to allow you to update, extend and deepen your understanding of engineering and management. Read more
Are you keen to develop your existing engineering skills and knowledge to master’s level?

The MSc Engineering Management course has been specifically designed to allow you to update, extend and deepen your understanding of engineering and management.

You will build on your current knowledge of subjects such as solid modelling and prototyping, computer aided design and engineering data analysis, whilst developing management and entrepreneurial skills that will enhance your career opportunities within engineering and the broader business environment.

In the second year, for one semester, you’ll undertake an internship, study in another country or join a research group. This valuable experience will enhance your employability and further develop your theoretical and practical skills.

Internship

This option offers the opportunity to spend three months working full-time in one of the many companies/industries with which we have close links. You may be able to extend this over more than one semester in cases where it is adjacent to a vacation period. We will endeavour to help those who prefer this option to find and secure a suitable position but ultimately we are in the hands of the employers who are free to decide who they take into their organisation.

Research

If you take this option, you will be assigned to our Engineering, Physics and Materials Research Group. There is every possibility that you may contribute to published research and therefore you may be named as part of the research team, which would be a great start to a research career.

Study Abroad

We have exchange agreements with universities all over the world, including partners in Europe, Asia, the Americas and Oceania. If you take the Study Abroad option you will spend a semester at one of these partners, continuing your studies in English but in a new cultural and learning environment. Please note that this option may require you to obtain a visa for study in the other country.

With the increasing complexity of the engineering sector there is a requirement for engineering managers to be specialised not just in engineering, but also in wider business and management. This course has been specifically designed to meet the demands of today’s employers and provide a solid foundation for you to progress to management level.

Learn From The Best

You’ll be taught by tutors who have many years of experience in the various aspects of the engineering industry. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent. (Research Excellence Framework 2014.)

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. We’ve built up numerous industrial links during the 50+ years that we’ve been offering engineering courses. These links help ensure high quality placements and collaborative projects.

Northumbria has the advantage of being located in the North East of England, which is a centre of manufacturing and technical innovation. As well as Nissan, the region’s #1 company, there is a strong concentration of automotive, engineering, chemicals, construction and manufacturing companies.

Teaching And Assessment

The structure of this course has been designed to focus on engineering issues and processes, and how they apply to those in management positions.

This course incorporates six taught modules: research methods, project, programme and portfolio management; project change, risk and opportunities management; technology entrepreneurship and product development; engineering management data analysis and sustainable development for engineering practitioners.

Throughout the duration of this course you will build core skills in key areas such as management, business, finance and computing, providing you with a strong understanding of the day-to-day processes that underpin the smooth running of a successful organisation.

This course is primarily delivered by lectures and supporting seminars such as guided laboratory workshops or staffed tutorials. Assessments are undertaken in the form of exams, assignments, technical reports, presentations and project work. The Advanced Practice semester will be assessed via a report and presentation about your internship, study abroad or research group activities.

On completion of all taught modules you will undertake a substantial piece of research around a subject of particular interest to you and your own career aspirations.

Module Overview
Year One
KB7030 - Research Methods (Core, 20 Credits)
KB7031 - Project, Programme and Portfolio Management (Core, 20 Credits)
KB7033 - Project change, risk and opportunities management (Core, 20 Credits)
KB7040 - Sustainable Development for Engineering Practitioners (Core, 20 Credits)
KB7044 - Engineering Management Data Analysis (Core, 20 Credits)
KB7046 - Technology Entrepreneurship & Product Development (Core, 20 Credits)

Year Two
KB7052 - Research Project (Core, 60 Credits)
KF7005 - Engineering and Environment Advanced Practice (Core, 60 Credits)

Learning Environment

Throughout the duration of your course you will have access to our dedicated engineering laboratories that are continuously updated to reflect real-time industry practice.

Our facilities include mechanical and energy systems experimentation labs, rapid product development and performance analysis, materials testing and characterisation, 3D digital design and manufacturing process performance.

You will be given the opportunity to get hands-on with testing, materials processing, moulding, thermal analysis and 3D rapid manufacture to help you create the products and systems required for the projects you will work on during your course.

Your learning journey will also be supported by technology such as discussion boards and video tutorials. You will also participate in IT workshops where you will learn how to use the latest industry-standard software.

Videos of lectures will on many occasions be made available through Panopto video software to further support teaching delivery.

You will also have access to all Northumbria University’s state-of-the-art general learning facilities such as dedicated IT suites and learning areas.

Research-Rich Learning

When studying at Northumbria University you will be taught by out team of specialist staff who boast a wealth of multi-dimensional expertise. The programme is designed to be research-led, delivering up-do-date teaching that is often based on current research undertaken by our team.

Our teaching team incorporates a dynamic mix of research-active industrial practitioners, renowned researchers and technologists, whose combined knowledge ensures you leave with an in-depth understanding of key engineering management practice and research.

You will be encouraged to undertake your own research–based learning, where you will evaluate and critique scientific papers and write research-based reports based on the information gathered.

The department of Mechanical and Construction Engineering is a top-35 Engineering research department with 79% of our outputs ranked world-leading or internationally excellent according to the latest UK-wide research assessment exercise (REF2014, UoA15). This places us in the top quartile for world-leading publications among UK universities in general engineering.

Give Your Career An Edge

With the increasing complexity of the engineering industry there is a requirement for managers to be specialised not just in engineering, but also the general business and management aspects of a company.

This course has been specifically designed to allow you to update, extend and deepen your knowledge to further enhance your career opportunities in both industry and entrepreneurship.

The MSc Engineering Management course will equip you with skills, tools, techniques and methods that are applicable to engineering companies and many other businesses in the UK and abroad.

The Advanced Practice semester will help you develop a track record of achievement that will help you stand out from other job applicants.

A two-year master’s course, like this one, will carry particular weight with employers. They’ll understand that you’ll have a deeper understanding of topics as well as more hands-on practical experience.

On completion of this course you will possess a deep understanding of engineering data analysis, research and project management, programme and portfolio management, project risk management and technology entrepreneurship.

Industry practice and subject benchmarking have strongly influenced the design of this course to ensure you will leave equipped with the skills that are required by today’s employers.

Your Future

The broad range of subjects covered on this course will prepare you for an array of careers within the engineering sector or a general business environment.

You may decide to pursue a career within general engineering, or a more specialised engineering sector.

This course emphasises entrepreneurship and enterprise, developing and enhancing the management and strategic skills that will prepare you for running your own business, should this be your aspiration. These core business skills will also prepare you for management jobs within engineering or another sector.

This course also sets a solid foundation for those wishing to pursue further study or a career within research or teaching.

Read less
Software engineers are in high demand, and Bristol is home to many high-tech companies seeking suitable graduates. The MSc Software Engineering gives you the latest knowledge and skills and guides you in applying them to develop different kinds of large, complex software systems. Read more
Software engineers are in high demand, and Bristol is home to many high-tech companies seeking suitable graduates. The MSc Software Engineering gives you the latest knowledge and skills and guides you in applying them to develop different kinds of large, complex software systems. The faculty's Software Engineering Research Group (SERG) reviews the course each year to ensure it provides what students and employees need. Students can link to SERG research and development activities and attend monthly research seminars from senior academics and key industrial professionals.

UWE Bristol's links with industrial partners encourage research and studies, and support the next step into PhD studies and further research. You will be taught by academics and professionals at the cutting edge of research and in collaboration with key partners such as Airbus, P3 Germany, SogeClair France, have the chance to develop advanced knowledge in the engineering of complex software systems, 'systems of systems' and critical aspects of the software development process. The course develops your knowledge and understanding of fundamental and advanced concepts of software engineering, using state-of-the-art techniques and research findings.

Key benefits

This course is accredited by the British Computer society (BCS) and fulfils the academic requirements for registration as a Chartered IT Professional. It also partially meets the academic requirements for CEng status.

Course detail

You'll learn the ethical issues involved in the engineering of software systems and undertake in-depth research in particular areas of software engineering. You'll also acquire the technical skills necessary for requirements engineering, architectural modelling of enterprise systems, implementation, configuration management, quality management, and effective project management applied in a group-based context.

You'll take a reflective and critical approach to your work and develop key transferable skills, such as critical thinking, problem management and research skills and methods underpinned by key emerging topics in software engineering and the MSc dissertation by research and development.

Modules

• Lifecycle Models and Project Management (15 credits)
• Requirements engineering (15 credits)
• Object-oriented analysis, design and programming (15 credits)
• Quality and Configuration Management (15 credits)
• Enterprise and System Architecture Modelling and Development (15 credits)
• Group Software Development Project (30 credits)
• Emerging Topics in Software Engineering (15 credits)
• Dissertation by Research and Development (60 credits)

Format

All modules are classroom-based, with extensive use of UWE Bristol's virtual learning environment, Blackboard. You also attend the campus to sit your exams.

Assessment

Most taught modules have written coursework and exam components. Coursework includes, but is not limited to, critical problem-solving components, advanced programming tasks, critical essays in relation to particular software engineering aspects, and group projects.

Careers / Further study

Graduates have a range of options for starting their software engineering careers, or for further advanced programmes of study. Possible industrial careers include senior roles as software engineers, requirements engineers, enterprise and software architects, configuration and quality managers, and software project managers.

This course paves the way for PhD research studies in software engineering at UWE Bristol, or elsewhere. If you take the PhD route at UWE Bristol, you will have opportunities to work with senior SERG researchers and use some of your MSc Software Engineering modules for some of the 60-credit requirements for the PhD degree.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
The global shortage of qualified civil engineers includes specialists in water engineering and this MSc programme helps redress this imbalance by providing graduates with an advanced knowledge and skill base to equip them for senior industry roles. Read more

About the course

The global shortage of qualified civil engineers includes specialists in water engineering and this MSc programme helps redress this imbalance by providing graduates with an advanced knowledge and skill base to equip them for senior industry roles.

Brunel’s MSc in Water Engineering is unique in providing specialist knowledge on the critical sub-topics of water and wastewater management and engineering, desalination systems, building water services engineering, industrial waste water management, and water in health care.

The programme demonstrates the links between theory and practice by including input from our industrial partners and through site visits. This is a key aspect for establishing a competitive and high added value course that provides adequate links with industry.

Features of the course include:

Students’ skills in gathering and understanding complex information from a variety of sources (including engineering, scientific and socio-economic information) will be developed in an advanced research methods module. 

Issues relating to risk and health and safety will be introduced in the research methods module and built on in specialist modules. 

Generic modules in financial and project management will underpin specialist modules focusing on water engineering topics.

Real problem-solving examples – starting from basic principles, to the identified problem, the solution, the implementation process and was implemented and the end result. 

Real case studies – demonstrating how environmental and economic sustainability is considered within civil engineering, particularly in water resources management.

Aims

Problems associated with water resources, access, distribution and quality are amongst the most important global issues in this century. Water quality and scarcity issues are being exacerbated by rising populations, economic growth and climate change*.

Brunel's programme in Water Engineering aims to develop world class and leading edge experts on water sustainability who are able to tackle the industry’s complex challenges at a senior level. During the programme you will also learn about the development and application of models that estimate the carbon and water footprint within the energy and food sector.

The MSc is delivered by experienced industry professionals who bring significant practical experience to the course – and the University’s complete suite of engineering facilities and world-class research experience are set up for development and engineering of advanced systems, testing a variety of processes, designs and software tools.

*Recent figures indicate that 1.1 billion people worldwide do not have access to clean drinking water, while 2.6 billion do not have adequate sanitation (source: WHO/UNICEF 2005). 

Course Content

The primary aim of this programme is to create master’s degree graduates with qualities and transferable skills for demanding employment in the water engineering sector. Graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level.

Specific aims are as follows:

- To provide education at postgraduate level in civil engineering. 
- To develop the versatility and depth to deal with new, complex and unusual challenges across a range of water engineering issues, drawing on an understanding of all aspects of water engineering principles. 
- To develop imagination, initiative and creativity to enable graduates to follow a successful engineering career with national and international companies and organisations. 
- To provide a pathway that will prepare graduates for successful careers including, where appropriate, progression to Chartered Engineer status.

The programme will provide opportunities for students to develop and demonstrate knowledge and understanding, qualities, skills and other attributes in the following areas:

Knowledge and understanding of:

- The principles of water engineering, including fluid mechanics, hydrology, and sustainable design. 
- Specialist areas that impact on the successful application of water engineering knowledge projects, e.g. sustainable construction management, financial management and risk analysis. 
- The interplay between engineering and sustainability in complex, real-world situations.

At the cognitive level students will be able to:

- Select, use and evaluate appropriate investigative techniques.
- Assemble and critically analyse relevant primary and secondary data.
- Recognise and assess the problems and critically evaluate solutions to challenges in managing water engineering projects.
- Evaluate the environmental and financial sustainability of current and potential civil engineering activities.

Personal and transferable skills that students develop will allow them to:

- Define and organise a substantial advanced investigation. 
- Select and employ appropriate advanced research methods. 
- Organise technical information into a concise, coherent document.
- Effectively employ a variety of communication styles aimed at different audiences. 
- Plan, manage, evaluate and orally-presented personal projects. 
- Work as part of, and lead, a team.

Typical Modules

Each taught module will count for 15 credits, approximating to 150 learning hours. The Master's programme can be taken full time, over 12 months. The first eight months of the full time course will eight taught modules. For the final four months, students will complete a dissertation counting for 60 credits. Modules cover:

Sustainable Project Management
GIS and Data Analysis
Water Infrastructure Engineering
Risk and Financial Management
Hydrology & Hydraulics
Water Treatment Engineering
Water Process Engineering
Research Methods
Civil Engineering Dissertation

Teaching

Our philosophy is to underpin theoretical aspects of the subject with hands-on experience in applying water engineering techniques. Although you may move on to project management and supervision roles, we feel it important that your knowledge is firmly based on an understanding of how things are done. To this end, industrial partners will provide guest lectures on specialist topics.

In addition to teaching, water engineering staff at Brunel are active researchers. This keeps us at the cutting edge of developments and, we hope, allows us to pass on our enthusiasm for the subject.

How many hours of study are involved?

Contact between students and academic staff is relatively high at around 20 hours per week to assist you in adjusting to university life. As the course progresses the number of contact hours is steadily reduced as you undertake more project-based work.

How will I be taught?

Lectures:
These provide a broad overview of the main concepts and ideas you need to understand and give you a framework on which to expand your knowledge by private study.
Laboratories:
Practicals are generally two- or three-hour sessions in which you can practise your observational and analytical skills, and develop a deeper understanding of theoretical concepts.
Design Studios:
In a studio you will work on individual and group projects with guidance from members of staff. You may be required to produce a design or develop a solution to an engineering problem. These sessions allow you to develop your intellectual ability and practice your teamwork skills.
Site visits:
Learning from real-world examples in an important part of the course. You will visit sites featuring a range of water engineering approaches and asked to evaluate what you see.
One-to-one:
On registration for the course you will be allocated a personal tutor who will be available to provide academic and pastoral support during your time at university. You will get one-to-one supervision on all project work.

Assessment

Several methods of assessment are employed on the course. There are written examinations and coursework. You will undertake projects, assignments, essays, laboratory work and short tests.

Project work is commonplace and is usually completed in groups to imitate the everyday experience in an engineering firm, where specialists must pool their talents to design a solution to a problem.

In this situation you can develop your management and leadership skills and ensure that all members of the group deliver their best. Group members share the mark gained, so it is up to each individual to get the most out of everyone else.

Special Features

Extensive facilities
Students can make the most of laboratory facilities which are extensive, modern and well equipped. We have recently made a major investment in our Joseph Bazalgette Laboratories which includes hydraulic testing laboratory equipment and facilities such as our open channel flow flumes.

Personal tutors
Although we recruit a large number of highly qualified students to our undergraduate, postgraduate and research degrees each year, we don’t forget that you are an individual. From the beginning of your time here, you are allocated a personal tutor who will guide you through academic and pastoral issues.

World-class research
The College is 'research intensive' – most of our academics are actively involved in cutting-edge research. Much of this research is undertaken with collaborators outside the University, including construction companies, water utilities, and other leading industrial firms. We work with universities in China, Poland, Egypt, Turkey, Italy, Denmark and Japan. This research is fed directly into our courses, providing a challenging investigative culture and ensuring that you are exposed to up-to-date and relevant material throughout your time at Brunel.

Strong industry links
We have excellent links with business and industry in the UK and overseas. This means:
Your degree is designed to meet the needs of industry and the marketplace.
The latest developments in the commercial world feed into your course.
You have greater choice and quality of professional placements.
We have more contacts to help you find a job when you graduate.

Visting Professors 
The Royal Academy of Engineering - UK’s national academy for engineering has appointed senior industrial engineers as visiting professors at Brunel University London.
The Visting Professors Scheme provides financial support for experienced industrial engineers to deliver face-to-face teaching and mentoring at a host of institutions. Our engineering undergraduates will benefit from an enhanced understanding of the role of engineering and the way it is practised, along with its challenges and demands. 

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This course has been designed in close consultation with the industry and is accredited as a designated 'technical' MSc degree by the Join Board of Moderators (JBM). The JBM is made up of Institution of Highways and Transport and the Institution of Highway Engineeres respectively.

1. This means this course provides Further Learning for a Chartered Engineer who holds a CEng accredited first degree (full JBM listing of accredited degrees).
2. As a designated ‘technical’ MSc, it will also allow suitable holders of an IEng accredited first degree to meet the educational base for a Chartered Engineer.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Civil Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Civil Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Swansea University has an excellent reputation for civil engineering, the department is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

Key Features of MSc in Civil Engineering

The MSc Civil Engineering course aims to provide advanced training in civil engineering analysis and design, particularly in modelling and analysis techniques.

As a student on the MSc Civil Engineering course you will be provided with in-depth knowledge and exposure to conventional and innovative ideas and techniques to enable you to develop sound solutions to civil engineering problems.

Through the MSc Civil Engineering course, you will also be provided with practical computer experience through the use of computational techniques, using modern software, to provide a solution to a range of current practical civil engineering applications. This will enable you to apply the approach with confidence in an industrial context.

Civil Engineering at Swansea University is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

As a student on the Master's course in Civil Engineering, you will find the course utilises the expertise of academic staff to provide high-quality postgraduate training.

Modules

Modules on the MSc Civil Engineering course typically include:

Water and Wastewater Infrastructure

Finite Element Computational Analysis

Advanced Structural Design

Fluid-Structure Interaction

Entrepreneurship for Engineers

Computational Plasticity

Numerical Methods for Partial Differential Equations

Computational Case Study

Reservoir Modelling and Simulation

Dynamics and Transient Analysis

Coastal Engineering

Coastal Processes and Engineering

Flood Risk Management

Accreditation

The MSc Civil Engineering course at Swansea University is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

See http://www.jbm.org.uk for further information.

This degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Hardware includes a 450 cpu Cluster, high-end graphics workstations and high-speed network links. Extensive software packages include both in-house developed and 'off-the-shelf' commercial.

Links with Industry

Strong interaction and cooperation is forged with the construction industry and relevant member institutions of the Joint Board of Moderators (JBM), particularly the Institution of Civil Engineers (ICE) and the Institution of Structural Engineers (IStructE).

These companies actively engaged with Civil Engineering at Swansea University: Atkins, Arup, Balfour Beatty Civil Engineering Ltd, Black and Veatch Ltd, City and Council of Swansea, Dean and Dyball, Halcrow UK, Hyder (Cardiff), Interserve Ltd, the Institution of Civil Engineers (ICE), Laing O’Rourke, Mott MacDonald Group Ltd, Veryard Opus.

Career Prospects

The civil engineering sector is one of the largest employers in the UK and demand is strong for civil engineering graduates. Thie MSc Civil Engineering course also equips you with the skills to be involved in other engineering projects and provides an excellent basis for a professional career in structural, municipal and allied engineering fields.

The MSc Civil Engineering is suitable for those who would like to prepare for an active and responsible career in civil engineering design and construction. Practising engineers will have the chance to improve their understanding of civil engineering by attending individual course modules.

Student Quotes

“I decided to study at the College of Engineering as it is a highly reputable engineering department.

My favourite memories of the course are the practical aspects and the lab work. Group projects have given me the opportunity to work in a team to overcome engineering-based problems. Studying at the College of Engineering has given me a good knowledge of engineering principles and has helped me to apply this to real life problems.

As part of my time here, I took part in the IAESTE programme. I worked with the Department of Civil Engineering at the University of Manipal, Southern India, on a development project involving an irrigation system.

My future plan is to get some experience in an engineering firm, and hopefully, this experience will allow me to work abroad for an NGO on further development projects."

Thomas Dunn, MSc Civil Engineering



Read less
WHAT YOU WILL GAIN. - Practical guidance from biomedical engineering experts in the field. - 'Hands on' knowledge from the extensive experience of the lecturers, rather than from only the theoretical information gained from books and college reading. Read more
WHAT YOU WILL GAIN

- Practical guidance from biomedical engineering experts in the field
- 'Hands on' knowledge from the extensive experience of the lecturers, rather than from only the theoretical information gained from books and college reading
- Credibility as a biomedical engineering expert in your firm
- Skills and know-how in the latest technologies in biomedical engineering
- Networking contacts in the industry
- Improved career prospects and income
- An EIT Advanced Diploma of Biomedical Engineering

Next intake is scheduled for June 06, 2017. Applications are now open; places are limited.

INTRODUCTION

Biomedical engineering is the synergy of many facets of applied science and engineering. The advanced diploma in biomedical engineering provides the knowledge and skills in electrical, electronic engineering required to service and maintain healthcare equipment. You will develop a wide range of skills that may be applied to develop software, instrumentation, image processing and mathematical models for simulation. Biomedical engineers are employed in hospitals, clinical laboratories, medical equipment manufacturing companies, medical equipment service and maintenance companies, pharmaceutical manufacturing companies, assistive technology and rehabilitation engineering manufacturing companies, research centres. Medical technology industry is one of the fast-growing sectors in engineering field. Join the next generation of biomedical engineers and technicians and embrace a well paid, intensive yet enjoyable career by embarking on this comprehensive and practical program. It provides a solid overview of the current state of biomedical engineering and is presented in a practical and useful manner - all theory covered is tied to a practical outcomes. Leading biomedical/electronic engineers with several years of experience in biomedical engineering present the program over the web using the latest distance learning techniques.

There is a great shortage of biomedical engineers and technicians in every part of the world due to retirement, restructuring and rapid growth in new industries and technologies. Many companies employ electrical, electronic engineers to fill the vacancy and provide on the job training to learn about biomedical engineering. The aim of this 18-month eLearning program is to provide you with core biomedical engineering skills to enhance your career prospects and to benefit your company/institution. Often universities and colleges do a brilliant job of teaching the theoretical topics, but fail to actively engage in the 'real world' application of the theory with biomedical engineering. This advanced diploma is presented by lecturers who are highly experienced engineers, having worked in the biomedical engineering industry. When doing any program today, a mix of both extensive experience and teaching prowess is essential. All our lecturers have been carefully selected and are seasoned professionals.

This practical program avoids weighty theory. This is rarely needed in the real world of industry where time is short and immediate results, based on hard-hitting and useful know-how, is a minimum requirement. The topics that will be covered are derived from the acclaimed IDC Technologies' programs attended by over 500,000 engineers and technicians throughout the world during the past 20 years. And, due to the global nature of biomedical engineering today, you will be exposed to international standards.

This program is not intended as a substitute for a 4 or 5 year engineering degree, nor is it aimed at an accomplished and experienced professional biomedical engineer who is working at the leading edge of technology in these varied fields. It is, however, intended to be the distillation of the key skills and know how in practical, state-of-the-art biomedical engineering. It should also be noted that learning is not only about attending programs, but also involves practical hands-on work with your peers, mentors, suppliers and clients.

WHO WOULD BENEFIT

- Electrical and Electronic Engineers
- Electrical and Electronic Technicians
- Biomedical Equipment/Engineering Technician
- Field Technicians
- Healthcare equipment service technicians
- Project Engineers and Managers
- Design Engineers
- Instrumentation Engineers
- Control Engineers
- Maintenance Engineers and Supervisors
- Consulting Engineers
- Production Managers
- Mechanical Engineers
- Medical Sales Engineers

In fact, anyone who wants to gain solid knowledge of the key elements of biomedical engineering in order to improve work skills and to create further job prospects. Even individuals who are working in the healthcare industry may find it useful to attend to gain key, up to date perspectives.

COURSE STRUCTURE

The program is composed of 18 modules. These cover the basics of electrical, electronic and software knowledge and skills to provide you with maximum practical coverage in the biomedical engineering field.

The 18 modules will be completed in the following order:

- Basic Electrical Engineering
- Technical and Specification Writing
- Fundamentals of Professional Engineering
- Engineering Drawings
- Printed Circuit Board Design
- Anatomy and Physiology for Engineering
- Power Electronics and Power Supplies
- Shielding, EMC/EMI, Noise Reduction and Grounding/Earthing
- Troubleshooting Electronic Components and Circuits
- Biomedical Instrumentation
- Biomedical Signal Processing
- C++ Programming
- Embedded Microcontrollers
- Biomedical Modelling and Simulation
- Biomedical Equipment and Engineering Practices
- Biomedical Image Processing
- Biomechanics and Assistive Technology
- Medical Informatics and Telemedicine

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customised to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your enquiry regarding courses fees and payment options, please enquire via the below button and we will respond within 2 business days.

Read less

Show 10 15 30 per page



Cookie Policy    X