• Goldsmiths, University of London Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
King’s College London Featured Masters Courses
University of Reading Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Loughborough University Featured Masters Courses
"advanced" AND "software"…×
0 miles

Masters Degrees (Advanced Software Engineering)

  • "advanced" AND "software" AND "engineering" ×
  • clear all
Showing 1 to 15 of 692
Order by 
The Advanced Software Engineering MSc is a newly redesigned course that enables graduates enable students to extend their knowledge of, and gain valuable experience in, software engineering as it applies to a number of new and important areas of IT and computing. Read more
The Advanced Software Engineering MSc is a newly redesigned course that enables graduates enable students to extend their knowledge of, and gain valuable experience in, software engineering as it applies to a number of new and important areas of IT and computing.

Graduates will be able to follow a flexible program of study designed to lead to, and enhance, a career in software engineering with a focus on new technologies and areas of application, such as cybersecurity, big data, or mobile application development.

The rapid pace of technical change in software development is notorious and this has been accompanied and compounded by an increase in the complexity of the systems that are developed. Recently this has been most noticeable in the increase in mobile computing and the use of sophisticated hardware that require developer knowledge of new paradigms.

Many applications that run on these systems whether mobile or stationary are distributed in nature and will consume web services provided by service-oriented architectures and cloud-based platforms. There has also been an increase in the use of virtualisation techniques for providing flexible and maintainable systems. Businesses are now regularly using virtualised systems and techniques to lower cost and complexity and increase availability in computing environments.

The surge in cybersecurity issues and threats facing businesses and organisations that depend on IT systems has meant that software engineers need a thorough understanding of security when building and maintaining software applications and systems.

There is an acknowledged national shortage of IT and computing skills in the workforce. In the specific area of software development, a number of factors contribute to this. Most obviously, the rate of technological change means that an individual's specific knowledge frequently becomes out of date. Secondly, many significant technological developments originate in industry rather than academia, and are not yet firmly embedded in undergraduate curricula. Finally, many people enter the software industry without a specific educational background in computer science and acquire much vital knowledge in the workplace in relatively ad hoc ways.

In response to this, for many years the Department of Computer Science has been running courses that combine an emphasis on methodical approaches to the development of software applications and information systems with a determination to equip graduates with a portfolio of relevant research-oriented and practical skills and knowledge to compliment and expand their own knowledge.

The rationale behind the MSc in Advanced Software Engineering is to draw on this experience to provide an education that will cover in-depth specific skills and best current practice in software development where there is currently a significant skills shortage, whilst at the same time instilling important research-based skills that will equip students for independent lifelong learning in fast-changing and technically challenging environment.

Course content

The Masters of Science in Advanced Software Engineering takes into account the emerging needs of industry underpinned by theory and software engineering practices. As a consequence the modules emphasise both the critical conceptual underpinnings as well as the practical skills for each subject.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-ADVANCED SOFTWARE DESIGN
-ENTERPRISE DEVELOPMENT
-CONCURRENCY AND PARALLELISM
-RESEARCH METHODS AND PROFESSIONAL PRACTICE
-ADVANCED SOFTWARE ENGINEERING PROJECT

Option modules - In addition you will pursue a pathway of your choice, selected with the guidance and advice of our academic staff. You can chose up to five of the following pathways modules:
-BIG DATA THEORY AND PRACTICE
-ADVANCED BIG DATA ANALYTICS
-CLOUD COMPUTING APPLICATIONS
-DATA MINING & MACHINE LEARNING
-DATA VISUALISATION AND DASHBOARDING
-CYBERSECURITY THREATS AND COUNTERMEASURES
-INTERNET SECURITY
-MOBILE APPLICATION DEVELOPMENT
-MOBILE AND UBIQUITOUS COMPUTING
-USABILITY AND USER EXPERIENCE DESIGN
-FREE CHOICE MODULE

Associated careers

Graduates will typically be part of a team working on sophisticated n-tier applications, as a designer, programmer, systems administrator or systems analyst (among others). Graduates will also find positions within new and established businesses that specialise in mobile applications. Other roles are possible in computer science research for either a commercial enterprise or academic institution. Further PhD study opportunities within the University of Westminster are also an option.

Read less
The Advanced Software Engineering MSc is a newly redesigned course that enables graduates enable students to extend their knowledge of, and gain valuable experience in, software engineering as it applies to a number of new and important areas of IT and computing. Read more
The Advanced Software Engineering MSc is a newly redesigned course that enables graduates enable students to extend their knowledge of, and gain valuable experience in, software engineering as it applies to a number of new and important areas of IT and computing.

Graduates will be able to follow a flexible program of study designed to lead to, and enhance, a career in software engineering with a focus on new technologies and areas of application, such as cybersecurity, big data, or mobile application development.

The rapid pace of technical change in software development is notorious and this has been accompanied and compounded by an increase in the complexity of the systems that are developed. Recently this has been most noticeable in the increase in mobile computing and the use of sophisticated hardware that require developer knowledge of new paradigms.

Many applications that run on these systems whether mobile or stationary are distributed in nature and will consume web services provided by service-oriented architectures and cloud-based platforms. There has also been an increase in the use of virtualisation techniques for providing flexible and maintainable systems. Businesses are now regularly using virtualised systems and techniques to lower cost and complexity and increase availability in computing environments.

The surge in cybersecurity issues and threats facing businesses and organisations that depend on IT systems has meant that software engineers need a thorough understanding of security when building and maintaining software applications and systems.

There is an acknowledged national shortage of IT and computing skills in the workforce. In the specific area of software development, a number of factors contribute to this. Most obviously, the rate of technological change means that an individual's specific knowledge frequently becomes out of date. Secondly, many significant technological developments originate in industry rather than academia, and are not yet firmly embedded in undergraduate curricula. Finally, many people enter the software industry without a specific educational background in computer science and acquire much vital knowledge in the workplace in relatively ad hoc ways.

In response to this, for many years the Department of Computer Science has been running courses that combine an emphasis on methodical approaches to the development of software applications and information systems with a determination to equip graduates with a portfolio of relevant research-oriented and practical skills and knowledge to compliment and expand their own knowledge.

The rationale behind the MSc in Advanced Software Engineering is to draw on this experience to provide an education that will cover in-depth specific skills and best current practice in software development where there is currently a significant skills shortage, whilst at the same time instilling important research-based skills that will equip students for independent lifelong learning in fast-changing and technically challenging environment.

Course content

The Masters of Science in Advanced Software Engineering takes into account the emerging needs of industry underpinned by theory and software engineering practices. As a consequence the modules emphasise both the critical conceptual underpinnings as well as the practical skills for each subject.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-ADVANCED SOFTWARE DESIGN
-ENTERPRISE DEVELOPMENT
-CONCURRENCY AND PARALLELISM
-RESEARCH METHODS AND PROFESSIONAL PRACTICE
-ADVANCED SOFTWARE ENGINEERING PROJECT

Optional modules - In addition you will pursue a pathway of your choice, selected with the guidance and advice of our academic staff. You can chose up to five of the following pathways modules:
-BIG DATA THEORY AND PRACTICE
-ADVANCED BIG DATA ANALYTICS
-CLOUD COMPUTING APPLICATIONS
-DATA MINING & MACHINE LEARNING
-DATA VISUALISATION AND DASHBOARDING
-CYBERSECURITY THREATS AND COUNTERMEASURES
-INTERNET SECURITY
-MOBILE APPLICATION DEVELOPMENT
-MOBILE AND UBIQUITOUS COMPUTING
-USABILITY AND USER EXPERIENCE DESIGN
-FREE CHOICE MODULE

Associated careers

Graduates will typically be part of a team working on sophisticated n-tier applications, as a designer, programmer, systems administrator or systems analyst (among others). Graduates will also find positions within new and established businesses that specialise in mobile applications. Other roles are possible in computer science research for either a commercial enterprise or academic institution. Further PhD study opportunities within the University of Westminster are also an option.

Read less
For graduates with a computer science background, an MSc in Advanced Software Engineering will enable you to gain a thorough understanding of the role of IT in enterprise and how information systems impact on business and organisational processes. Read more
For graduates with a computer science background, an MSc in Advanced Software Engineering will enable you to gain a thorough understanding of the role of IT in enterprise and how information systems impact on business and organisational processes. Delivered by of the Department of Informatics, which has an enviable reputation for research-led teaching and project supervision from leading experts in their field.

Key benefits

- Unrivalled location in the heart of London giving access to major libraries and leading scientific societies, including the BCS Chartered Institute for IT and the Institution of Engineering and Technology (IET).

- Equips students with advanced software engineering skills so that they are prepared to play a creative and leading role in the professional and research community.

- Develops critical awareness and appreciation of the changing role of computing in society, motivating graduates to pursue continuing professional development and further research.

- Access to speakers of international repute through seminars and external lectures, enabling students to keep abreast of emerging knowledge in advanced computing and related fields.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/advanced-software-engineering-msc.aspx

Course detail

- Description

This programme focuses on advanced techniques for the development of software systems, with an emphasis on the construction and management of internet-oriented, agent-oriented and large software systems. It is built around taught core modules such as software design and architecture and a group project that provides experience of working in a syndicate to design, implement and document a substantial software product.

These modules are complemented by a range of optional modules that relate to various aspects of computing. The final part of the programme is an individual project which is closely linked with the Department's research activities.

- Course purpose

For graduates with substantial experience of computer science, this programme will develop your expertise and skills in software engineering, preparing you for a career in software engineering, software maintenance and software testing. Research for your individual project will provide valuable preparation for a career in research or industry.

- Course format and assessment

Lectures; tutorials; seminars; laboratory sessions; optional career planning workshops. Assessed through: coursework; written examinations; final project report.

- Required Modules

- Individual Project
- Advanced Software Engineering: Software Measurement & Testing
- Group Project
- Software Design & Architecture

Career prospects

Via the Department’s Careers Programme, students are able to network with top employers and obtain advice on how to enhance career prospects. Our graduates have gone on to have very successful careers in industry and research. Our graduates work for software consultancy companies, specialised software development companies and the IT departments of large institutions (financial, telecommunications and public sector). Recent employers include, Ernst & Young, Accenture and M-Netics. Other graduates have entered into the field of academic and industrial research in areas such as software engineering, algorithms and computer networks.

How to apply: http://www.kcl.ac.uk/study/postgraduate/fees-and-funding/index.aspx

Read less
For graduates with a computer science background, Advanced Software Engineering with Management MSc will enable you to gain a thorough understanding of the role of IT in enterprise and how information systems impact on business and organisational processes. Read more
For graduates with a computer science background, Advanced Software Engineering with Management MSc will enable you to gain a thorough understanding of the role of IT in enterprise and how information systems impact on business and organisational processes. Delivered by of the Department of Informatics, which has an enviable reputation for research-led teaching and project supervision from leading experts in their field.

Key benefits

•Unrivalled location in the heart of London giving access to major libraries and leading scientific societies, including the BCS Chartered Institute for IT and the Institution of Engineering and Technology (IET).

• Equips students with advanced software engineering skills so that they are prepared to play a creative and leading role in the professional and research community.

• Develops critical awareness and appreciation of the changing role of computing in society, motivating graduates to pursue continuing professional development and further research.

• Access to speakers of international repute through seminars and external lectures, enabling students to keep abreast of emerging knowledge in advanced computing and related fields.

• One of the few one-year MSc programmes offered by Russell Group institutions that combines specialist education in Software Engineering with specialist Management education.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/advanced-software-engineering-with-management-msc.aspx

Course detail

- Description

This programme focuses on advanced techniques for the development of software systems, with an emphasis on the construction and management of internet-oriented, agent-oriented and large software systems. It is built around taught core modules such as software design and architecture and a group project that provides experience of working in a syndicate to design, implement and document a substantial software product. The programme also prepares students to take on certain, more senior roles in industry that require specialist management knowledge and problem solving skills related to Software Engineering.

These modules are complemented by a range of optional modules that relate to various aspects of computing. The final part of the programme is an individual project, which is closely linked with the Department's research activities.

- Course purpose

For graduates with substantial experience of computer science, this programme will develop your expertise and skills in software engineering, preparing you for a career in software engineering, software maintenance and software testing. Research for your individual project will provide valuable preparation for a career in research or industry.

- Course format and assessment

Lectures; tutorials; seminars; laboratory sessions; optional career planning workshops. Assessed through: coursework; written examinations; final project report.

Career prospects

Via the Department’s Careers Programme, students are able to network with top employers and obtain advice on how to enhance career prospects. Our graduates have gone on to have very successful careers in industry and research. Our graduates work for software consultancy companies, specialised software development companies and the IT departments of large institutions (financial, telecommunications and public sector). Recent employers include, Ernst & Young, Accenture and M-Netics. Other graduates have entered into the field of academic and industrial research in areas such as software engineering, algorithms and computer networks.

How to apply: http://www.kcl.ac.uk/study/postgraduate/fees-and-funding/index.aspx

Read less
This degree mirrors the two-year Masters programme structure that is common in the USA, and is an ideal stepping stone to a PhD or a career in industry. Read more
This degree mirrors the two-year Masters programme structure that is common in the USA, and is an ideal stepping stone to a PhD or a career in industry.

The optional professional placement component gives you the opportunity to gain experience from working in industry, which cannot normally be offered by the standard technically-focused one-year Masters programme.

PROGRAMME OVERVIEW

The Electronic Engineering Euromasters programme is designed for electronic engineering graduates and professionals with an interest in gaining further qualifications in advanced, cutting-edge techniques and technologies. Current pathways offered include:
-Communications Networks and Software
-RF and Microwave Engineering
-Mobile Communications Systems
-Mobile and Satellite Communications
-Mobile Media Communications
-Computer Vision, Robotics and Machine Learning
-Satellite Communications Engineering
-Electronic Engineering
-Space Engineering
-Nanotechnology and Renewable Energy
-Medical Imaging

Please note that at applicant stage, it is necessary to apply for the Electronic Engineering (Euromasters). If you wish to specialise in one of the other pathways mentioned above, you can adjust your Euromaster programme accordingly on starting the course.

PROGRAMME STRUCTURE

This programme is studied full-time over 24 months and part-time over 60 months. It consists of ten taught modules and an extended project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Digital Communications
-Digital Signal Processing A
-Object Oriented Design and C++
-RF and Microwave Fundamentals
-Nanoscience and Nanotechnology
-Space Dynamics and Missions
-Space Systems Design
-Antennas and Propagation
-Image Processing and Vision
-Fundamentals of Mobile Communications
-Principles of Telecommunications and Packet Networks
-Space Robotics and Autonomy
-Speech and Audio Processing and Recognition
-Satellite Communication Fundamentals
-Satellite Remote Sensing
-Molecular Electronics
-RF Systems and Circuit Design
-Internet of Things
-Nanofabrication and Characterisation
-Space Avionics
-Applied Mathematics for Communication Systems
-Data and Internet Networking
-Digital Design with VHDL
-Computer Vision and Pattern Recognition
-Mediacasting
-Semiconductor Devices and Optoelectronics
-AI and AI Programming
-Advanced Signal Processing
-Advanced Guidance, Navigation and Control
-Image and Video Compression
-Launch Vehicles and Propulsion
-Advanced Mobile Communication Systems
-Microwave Engineering Optional
-Nanoelectronics and Devices
-Network and Service Management and Control
-Operating Systems for Mobile Systems Programming
-Advanced Satellite Communication Techniques
-Nanophotonics Principles and Engineering
-Mobile Applications and Web Services
-Spacecraft Structures and Mechanisms
-Space Environment and Protection
-Renewable Energy Technologies
-Engineering Professional Studies 1 (with industrial Placement)
-Engineering Professional Studies 1
-Engineering Professional Studies 2
-Extended Project

PARTNERS

The MSc Euromasters complies with the structure defined by the Bologna Agreement, and thus it is in harmony with the Masters programme formats adhered to in European universities. Consequently, it facilitates student exchanges with our partner universities in the Erasmus Exchange programme.

A number of bilateral partnerships exist with partner institutions at which students can undertake their project. Current partnerships held by the Department include the following:
-Brno University of Technology, Czech Republic
-University of Prague, Czech Republic
-Universität di Bologna, Italy
-Universität Politècnica de Catalunya, Barcelona, Spain
-Universita' degli Studi di Napoli Federico II, Italy

EDUCATIONAL AIMS OF THE PROGRAMME

The taught postgraduate degree programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in electronic engineering, physical sciences, mathematics, computing and communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

A graduate from this MSc programme should:
-Know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin electronic engineering
-Be able to analyse problems within the field of electronic engineering and find solutions
-Be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within electronic engineering
-Be aware of the societal and environmental context of his/her engineering activities
-Be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Be able to carry out research-and-development investigations
-Be able to design electronic circuits and electronic/software products and systems

Enhanced capabilities of MSc (Euromasters) graduates:
-Demonstrate transferable skills such as problem solving, analysis and critical interpretation of data, through the undertaking of the extended 90-credit project
-Know how to take into account constraints such as environmental and sustainability limitations, health and safety and risk assessment
-Have gained comprehensive understanding of design processes
-Understand customer and user needs, including aesthetics, ergonomics and usability
-Have acquired experience in producing an innovative design
-Appreciate the need to identify and manage cost drivers
-Have become familiar with the design process and the methodology of evaluating outcomes
-Have acquired knowledge and understanding of management and business practices
-Have gained the ability to evaluate risks, including commercial risks
-Understand current engineering practice and some appreciation of likely developments
-Have gained extensive understanding of a wide range of engineering materials/components
-Understand appropriate codes of practice and industry standards
-Have become aware of quality issues in the discipline

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Use of quantitative methods for problem solving. Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
The MSc in Advanced Software Engineering is a taught programme aimed at graduates from computing or related subjects who want to extend their knowledge and expertise in the field of Software Engineering. Read more
The MSc in Advanced Software Engineering is a taught programme aimed at graduates from computing or related subjects who want to extend their knowledge and expertise in the field of Software Engineering. The core modules cover advanced programming and cutting edge software engineering technologies, before leading onto modules on relevant Internet and computing topics.

Course Structure
The course is built from eight taught modules plus one project/dissertation module. Each of the eight modules lasts for approximately four weeks and consists of a combination of lectures, tutorials, private study and a mini project. Each of the modules is designed to build upon the student's growing knowledge and skills.

The final project module involves the design, implementation and evaluation of a significant information systems solution.

Core Modules
- Advanced Java with UML
- Software Dependability
- Advances in Software Engineering
- Enterprise and Distributed Systems
- Research Methods and Professional Issues
- Web Technology
- New Initiatives in Software Engineering
- Information Search for the WWW
- Dissertation

Read less
Computer science supports the build, development and use of computer systems. There is a growing need across the world for skilled, advanced computer science professionals. Read more

Why this course?

Computer science supports the build, development and use of computer systems.

There is a growing need across the world for skilled, advanced computer science professionals. This course helps you develop the skills necessary to design and deploy sophisticated modern software systems in a range of application areas.

You’ll improve your practical software engineering skills and learn new theories of software development. This course gives you the necessary qualifications to get a skilled position in the computing industry.

Our courses have some of the highest student satisfaction rates in the UK and our graduates are highly sought after.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/advancedsoftwareengineering/

You’ll study

Diploma and MSc students will study the following classes:
- Software Architecture and Design
- Advanced Topics in Software Engineering
- Designing Usable Systems
- Distributed Information Systems
- Mobile Software and Applications
- Personal Study
- Research Methods

You can also take a tailored programme of options from our other Masters classes. This allows you to graduate with a degree in Advanced Computer Science. Those who progress to the Masters will undertake an individual project.

Individual project/dissertation (MSc students only)

You’ll take on an individual research project on an approved topic related to your selected pathway. You’ll pursue a specific interest in further depth, giving scope for original thought, research and technical presentation of complex ideas.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at the University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.
To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

The course is taught through lectures, tutorials and practical laboratories.

Careers

There'll be opportunities for you to meet industry employers and take part in recruitment events.

As a graduate of advanced software engineering you could be an analyst, architect or developer. There's a demand for advanced practitioners and researchers in the growing area of embedded systems development.

How much will I earn?

- Systems analyst - typical salaries for junior analysts are around £25,000. More experienced analysts earn £40,000 a year, on average.*
- Applications developer - graduate salaries start at around £20,000. This can vary depending on the size of the employer and the sector which you are working in. The typical salary range for a senior applications developer is approximately £45,000 to £50,000.*

*Information is intended only as a guide.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/

Read less
The MSc in Advanced Software Engineering is a taught programme aimed at graduates from computing or related subjects who want to extend their knowledge and expertise in the field of Software Engineering. Read more
The MSc in Advanced Software Engineering is a taught programme aimed at graduates from computing or related subjects who want to extend their knowledge and expertise in the field of Software Engineering. The core modules cover advanced programming and cutting edge software engineering technologies, before leading onto modules on relevant Internet and computing topics.

Course Structure

The course is built from eight taught modules plus one project/dissertation module. Each of the eight modules lasts for approximately four weeks and consists of a combination of lectures, tutorials, private study and a mini project. Each of the modules is designed to build upon the student's growing knowledge and skills.

The final project module involves the design, implementation and evaluation of a significant information systems solution.

Core Modules

•Advanced Java with UML
•Software Dependability
•Advances in Software Engineering
•Enterprise and Distributed Systems
•Research Methods and Professional Issues
•Web Technology
•New Initiatives in Software Engineering
•Information Search for the WWW
•Dissertation

Read less
At the University of Surrey we leads the way in areas such as nanotechnology, vision and signal processing, mobile and wireless communications, multimedia engineering and space and satellite engineering. Read more
At the University of Surrey we leads the way in areas such as nanotechnology, vision and signal processing, mobile and wireless communications, multimedia engineering and space and satellite engineering.

PROGRAMME OVERVIEW

Our MSc Euromasters programme is designed for electronic engineering students and professionals with an interest in gaining further qualifications in advanced, cutting-edge techniques and technologies in the selected pathway, with enhanced project, as well as training in transferable skills including business awareness and management.

We offer numerous Electronic Engineering MScs in more specialised fields of study, from space engineering to mobile communications systems, and if you wish to specialise in one of these pathways you can adjust your course accordingly.

The advanced taught technical content is in sub-disciplines of electronic engineering closely aligned with the internationally-leading research conducted in the four research centres of the Department of Electrical and Electronic Engineering.

PROGRAMME STRUCTURE

This programme is studied part-time over 48 months. It consists of eight taught modules and a standard project. Each student will undertake one short course, following which they will be provided with distance learning material in order to study for the subsequent assessment. The students may be assessed for either one or two modules from the short course they undertake.

Typically a student would complete two modules and therefore up to two short courses within the space of year, though they are at liberty to study for more modules if they have the time. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Digital Communications
-Digital Signal Processing A
-Object Oriented Design and C++
-RF and Microwave Fundamentals
-IP Networking Protocols and Technologies
-Nanoscience and Nanotechnology
-Space Dynamics and Missions
-Space Systems Design
-Antennas and Propagation
-Image Processing and Vision
-Fundamentals of Mobile Communication
-Principles of Telecommunications and Packet Networks
-Space Robotics and Autonomy
-Speech and Audio Processing and Recognition
-Satellite Communication Fundamentals
-Satellite Remote Sensing
-RF Systems and Circuit Design
-Spacecraft System Design
-Satellite Communications
-Internet of Things
-Space Avionics
-Applied Mathematics for Communication Systems
-Data and Internet Networking
-Digital Design with VDHL
-Computer Vision and Pattern Recognition
-Mediacasting
-Semiconductor Devices and Optoelectronics
-AI and AI Programming
-Advanced Signal Processing
-Advanced Guidance, Navigation and Control
-Image and Video Compression
-Launch Vehicles and Propulsion
-Advanced Mobile Communication Systems
-Microwave Engineering
-Nanoelectronics and Devices
-Operating Systems for Mobile Systems Programming
-Advanced Satellite Communication Techniques
-Nanophotonics Principles and Engineering
-Mobile Applications and Web Services
-Spacecraft Structures and Mechanisms
-Space Environment and Protection
-Renewable Energy Technologies
-60-Credit Standard Project

EDUCATIONAL AIMS OF THE PROGRAMME

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

A graduate from this MSc Programme should:
-Know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin electronic engineering
-Be able to analyse problems within the field of electronic engineering and find solutions
-Be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within electronic engineering
-Be aware of the societal and environmental context of his/her engineering activities
-Be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Be able to carry out research-and-development investigations
-Be able to design electronic circuits and electronic/software products and systems

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resource
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
We are placing ever greater demands on the Internet, and traditional telecommunication infrastructures are migrating to Internet-based architectures and protocols. Read more
We are placing ever greater demands on the Internet, and traditional telecommunication infrastructures are migrating to Internet-based architectures and protocols.

This programme benefits from the research that experts in our 5G Innovation Centre are undertaking to lead the world in the race to the next generation of communications networks.

PROGRAMME OVERVIEW

Our MSc in Communications, Networks and Software covers the key aspects of the changing Internet environment, in particular the convergence of computing and communications underpinned by software-based solutions.

Some of our students undertaking their project are able to work on one of our wide range of testbeds, such as internet technologies, wireless networking, network management and control, and internet-of-things (IoT) applications.

We also have specialist software tools for assignments and project work, including OPNET, NS2/3, and various system simulators.

PROGRAMME STRUCTURE

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Object Oriented Design and C++ (+Lab)
-Fundamentals of Mobile Communications
-Principles of Telecommunications and Packet Networks
-Speech and Audio Processing and Recognition
-Internet of Things
-Applied Mathematics for Communication Systems
-Data and Internet Networking Compulsory
-Advanced Signal Processing
-Mobile Communications B
-Network and Service Management and Control
-Operating Systems for Mobile Systems Programming
-Advanced 5G Wireless Technologies
-Standard Project

EDUCATIONAL AIMS OF THE PROGRAMME

The taught postgraduate degree programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing and Communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

A graduate from this MSc Programme should:
-Know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin communications, networks and software
-Be able to analyse problems within the field of communications, networks and software and more broadly in electronic engineering and find solutions
-Be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within communications, networks and software
-Be aware of the societal and environmental context of his/her engineering activities
-Be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Be able to carry out research-and-development investigations
-Be able to design electronic circuits and electronic/software products and systems

PROGRAMME LEARNING OUTCOMES

The Department's taught postgraduate programmes are designed to enhance the student's technical knowledge in the topics within electronic and electrical engineering that he/she has chosen to study, and to contribute to the Specific Learning Outcomes set down by the Institution of Engineering and Technology (IET) (which is the Professional Engineering body for electronic and electrical engineering) and to the General Learning Outcomes applicable to all university graduates.

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Workshop and laboratory skills. Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
-Relevant part of: Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Taught by internationally-recognised experts in the University’s Advanced Technology Institute (ATI), this programme will see you discover the practical implementation of nanoscience and quantum engineering, nanomaterials, nanotechnology for renewable energy generation and storage. Read more
Taught by internationally-recognised experts in the University’s Advanced Technology Institute (ATI), this programme will see you discover the practical implementation of nanoscience and quantum engineering, nanomaterials, nanotechnology for renewable energy generation and storage.

You will gain specialised skills through an individual research project within our research groups, using state-of-the-art equipment and facilities.

PROGRAMME OVERVIEW

The programme's broad theme is the practical implementation of nanoscience and quantum engineering, nanomaterials and nanotechnology.

The programme covers the fundamentals behind nanotechnology and moves on to discuss its implementation using nanomaterials – such as graphene – and the use of advanced tools of nanotechnology which allow us to see at the nanoscale, before discussing future trends and applications for energy generation and storage.

You will gain specialised, practical skills through an individual research project within our research groups, using state-of-the-art equipment and facilities. Completion of the programme will provide you with the skills essential to furthering your career in this rapidly emerging field.

The delivery of media content relies on many layers of sophisticated signal engineering that can process images, video, speech and audio – and signal processing is at the heart of all multimedia systems.

Our Mobile Media Communications programme explains the algorithms and intricacies surrounding transmission and delivery of audio and video content. Particular emphasis is given to networking and data compression, in addition to the foundations of pattern recognition.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and an extended project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-RF and Microwave Fundamentals
-Nanoscience and Nanotechnology
-Molecular Electronics
-RF Systems and Circuit Design
-Nanofabrication and Characterisation
-Energy Economics and Technology
-Semiconductor Devices and Optoelectronics
-Microwave Engineering
-Nanoelectronics and Devices
-Nanophotonics Principles and Engineering
-Renewable Energy Technology
-Engineering Professional Studies 1
-Engineering Professional Studies 2
-Extended Project

NANOTECHNOLOGY AT SURREY

We are one of the leading institutions developing nanotechnology and the next generation of materials and nanoelectronic devices.

Taught by internationally-recognised experts within the University’s Advanced Technology Institute (ATI), on this programme you will discover the practical implementation of nanoscience and quantum engineering, nanomaterials and nanotechnology.

You will gain specialised skills through an individual research project within our research groups, using state-of- the-art equipment and facilities.

The ATI is a £10 million investment in advanced research and is the flagship institute of the University of Surrey in the area of nanotechnology and nanomaterials. The ATI brings together under one roof the major research activities of the University from the Department of Electronic Engineering and the Department of Physics in the area of nanotechnology and electronic devices.

EDUCATIONAL AIMS OF THE PROGRAMME

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing and Communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:
-Underpinning learning – know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin Nanoscience and nanotechnology for renewable systems
-Engineering problem solving - be able to analyse problems within the field of nanoscience and nanotechnology and more broadly in electronic engineering and find solutions
-Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within Nanoscience, nanotechnology and nanoelectronics for renewable energy
-Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
-Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Research and development investigations - be able to carry out research-and- development investigations
-Design - where relevant, be able to design electronic circuits and electronic/software products and systems
-Demonstrate transferable skills such as problem solving, analysis and critical interpretation of data, through the undertaking of the extended 90-credit project
-Know how to take into account constraints such as environmental and sustainability limitations, health and safety and risk assessment
-Have gained comprehensive understanding of design processes
-Understand customer and user needs, including aesthetics, ergonomics and usability.
-Have acquired experience in producing an innovative design
-Appreciate the need to identify and manage cost drivers
-Have become familiar with the design process and the methodology of evaluating outcomes
-Have acquired knowledge and understanding of management and business practices
-Have gained the ability to evaluate risks, including commercial risks
-Understand current engineering practice and some appreciation of likely developments
-Have gained extensive understanding of a wide range of engineering materials/components
-Understand appropriate codes of practice and industry standards
-Have become aware of quality issues in the discipline

PROGRAMME LEARNING OUTCOMES

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering.

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Surrey’s satellite and space technology programmes are renowned internationally, and our graduates are held in equally high regard. Read more
Surrey’s satellite and space technology programmes are renowned internationally, and our graduates are held in equally high regard.

The Masters in Satellite Communications Engineering is a leader in Europe in equipping students with the necessary background to enter the satellite industry or to continue on to a research degree.

PROGRAMME OVERVIEW

Our Masters programme in Satellite Communications Engineering is designed to give you the specialist multidisciplinary skills required for careers in the satellite and space industries.

We have an exceptional concentration of academic staff experienced in the satellite area, in addition to well-established contacts with all the major satellite manufacturers, operators and service providers.

Industry participates in the MSc programme in both lecturing and projects, and facilitates excellent engagement for our students. Graduation from this programme will therefore make you very attractive to the relevant space-related industries that employ over 6,500 people in the UK alone.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a project.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Digital Communications
-Space Dynamics & Missions
-Space Systems Design
-Antennas and Propagation
-Principles of Telecommunications & Packet Networks
-Satellite Communications Fundamentals
-RF Systems & Circuit Design
-Data & Internet Networking
-Advanced Guidance, Navigation & Control
-Launch Vehicles & Propulsion
-Network & Service Management & Control
-Advanced Satellite Communication Techniques
-Spacecraft Structures and Mechanisms
-Standard Project

FACILITIES, EQUIPMENT AND SUPPORT

Through consistent investment, we have built up an impressive infrastructure to support our students and researchers. The University of Surrey hosts Surrey Space Centre – a unique facility comprising academics and engineers from our own spin-out company, Surrey Satellite Technology Ltd.

Our mission control centre was designed and developed by students to support international CubeSat operations as part of the GENSO network, and it also supports the development of the University’s own educational satellites.

Our teaching laboratories provide ‘hands-on’ experience of satellite design and construction through the use of EyasSAT nano-satellite kits. They also house meteorological satellite receiving stations for the live reception of satellite weather images.

Elsewhere, our fully equipped RF lab has network analyser, signal and satellite link simulators. The Rohde and Schwartz Satellite Networking Laboratory includes DVBS2-RCS generation and measurement equipment, and roof-mounted antennas to communicating live with satellites.

A security test-bed also exists for satellite security evaluation. We have a full range of software support for assignments and project work, including Matlab, and you will be able to access system simulators already built in-house.

Satellite Communications Engineering students can also make use of SatNEX, a European Network of Excellence in satellite communications supported by ESA; a satellite platform exists to link the 22 partners around Europe. This is used for virtual meetings and to participate in lectures and seminars delivered by partners.

Our own spin-out company, Surrey Satellite Technology Ltd, is situated close by on the Surrey Research Park and provides ready access to satellite production and industrial facilities. In addition, we have a strategic relationship with EADS Airbus Europe-wide and several other major communications companies.

EDUCATIONAL AIMS OF THE PROGRAMME

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). The programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:
-Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin satellite communications engineering.
-Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
-Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within satellite communications engineering.
-Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
-Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Research & development investigations - be able to carry out research-and- development investigations
-Design - where relevant, be able to design electronic circuits and electronic/software products and systems

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:
-General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering.

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
This MSc focuses on the methodologies and technologies that address the challenges that companies are facing for competing in the volatile markets of today. Read more
This MSc focuses on the methodologies and technologies that address the challenges that companies are facing for competing in the volatile markets of today. It looks at how to generate applications from high-level business models to reduce time-to-market and development costs and how to evolve legacy systems and promote business processes in an economy dominated by the need to offer and integrate, on demand, new services.

Over the course of this degree, you will develop a deep understanding of the nature and impact of current challenges faced by the IT industry so that you know what is expected from a mature professional. You will also develop an awareness of the methodologies and technologies that are available within computer science to address these challenges, so that you can evaluate and analyse specific situations and make informed choices.

You will have opportunities to develop your interpersonal, communication, decision-making, and problem-solving skills, and to use these skills in an imaginative way.

This MSc course will provide you with the knowledge and research skills to continue your studies at PhD level.

Start Dates

Campus-based: October and January each year.
Distance Learning: September and January each year.

(Please note: due to regular enhancement of the University’s courses, please refer to Leicester’s own website (http://www.le.ac.uk) or/and Terms and Conditions (http://www2.le.ac.uk/legal) for the most accurate and up-to-date course information. We recommend that you familiarise yourself with this information prior to submitting an application.)

Read less
Accredited by the British Computer Society. We teach you how to build robust, effective software systems, and how to critique and evaluate the latest software engineering techniques. Read more

About the course

Accredited by the British Computer Society

We teach you how to build robust, effective software systems, and how to critique and evaluate the latest software engineering techniques. Through project work, you’ll learn how to apply your knowledge in the real world.

Genesys: learning on the job

Genesys Solutions is unique: an IT company run by students, with its own premises next to the department. As a student on this course you can join the company to work on software projects for real clients in a real business environment.

Prepare for your career

Our courses give you experience of how real-world projects work. We consult with big employers to ensure that you develop the skills and the personal qualities they’re looking for.

You’ll learn about the issues that matter in global business and industry. Our graduates go into academic and industrial research, the software industry, banking and finance. They work for companies such as Logica, IBM, Hewlett Packard, PWC, Vodafone, the BBC and HSBC.

About us

Our challenge is to use computation to understand all kinds of systems: computer systems, living systems and cognitive systems. Our research areas include robotics, machine learning, speech and language processing, virtual reality, computational systems biology and software verification and testing. It’s work that makes a difference to people’s lives.

Network and hardware

We have our own high-performance network so you can access our advanced computing facilities. There are labs for teaching smaller groups, wi-fi coverage throughout the department, and you can connect your own laptop to the network. Mobile devices and tablets are available for you to borrow for project work.

We also use specialised equipment: an immersive virtual reality facility, robotics hardware and an acoustic booth for speech processing research.

Core modules

Object-Oriented Programming and Software Design; Research Methods and Professional Issues; Dissertation Project; Testing and Verification in Safety-Critical Systems.

Examples of optional modules

Text Processing; Modelling and Simulation of Natural Systems; Speech Processing; Theory of Distributed Systems; 3D Computer Graphics; Computer Security and Forensics; Intelligent Web; Machine Learning and Adaptive Intelligence; Software and Hardware Verification; Software Development for Mobile Devices; Speech Technology; Virtual Environments and Computer Games Technology; Natural Language Processing; Java E-Commerce; Network Performance Analysis; Genesys Solutions (Software House) modules.

Teaching and assessment

We use lectures, tutorials and group work. You can also learn on the job in our student- run software engineering and consultancy business, Genesys Solutions. Assessment is by formal examinations, coursework assignments and a dissertation.

Read less
Surrey were the pioneers of sophisticated ‘micro-satellites’ in the 1980s. Read more
Surrey were the pioneers of sophisticated ‘micro-satellites’ in the 1980s.

Since then, our sustained programme of building complete satellites, performing mission planning, working with international launch agencies and providing in-orbit operations has kept us at the forefront of the space revolution –utilising new advances in technology to decrease the cost of space exploration.

PROGRAMME OVERVIEW

Our Masters in Space Engineering programme is designed to give you the specialist multidisciplinary knowledge and skills required for a career working with space technology and its applications.

Surrey students have access to all aspects of the design and delivery of spacecraft and payloads, and as a result are very attractive to employers in space-related industries.

As we develop and execute complete space missions, from initial concept to hardware design, manufacturing and testing, to in orbit operations (controlled by our ground station at the Surrey Space Centre), you will have the chance to be involved in, and gain experience of, real space missions.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Space Dynamics and Missions
-Space Systems Design
-Space Robotics and Autonomy
-Satellite Remote Sensing
-RF Systems and Circuit Design
-Space Avionics
-Advanced Guidance, Navigation and Control
-Launch Vehicles and Propulsion
-Advanced Satellite Communication Techniques
-Spacecraft Structures and Mechanisms
-Space Environment and Protection
-Standard Project

EDUCATIONAL AIMS OF THE PROGRAMME

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:
-Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin space engineering.
-Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
-Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within space engineering.
-Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
-Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Research & development investigations - be able to carry out research-and- development investigations
-Design - where relevant, be able to design electronic circuits and electronic/software products and systems

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering.

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less

Show 10 15 30 per page



Cookie Policy    X