• University of Surrey Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
University of London International Programmes Featured Masters Courses
University of Cambridge Featured Masters Courses
Cass Business School Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
University of Leeds Featured Masters Courses
"advanced" AND "process" …×
0 miles

Masters Degrees (Advanced Process Control)

We have 187 Masters Degrees (Advanced Process Control)

  • "advanced" AND "process" AND "control" ×
  • clear all
Showing 1 to 15 of 187
Order by 
The Applied Process Control MSc/PGDip will qualify you to manage the challenges of modern process control and process automation technology. Read more
The Applied Process Control MSc/PGDip will qualify you to manage the challenges of modern process control and process automation technology. It will provide you with advanced understanding of the principles of chemical engineering, and process control and automation methodologies.

Control Engineers apply engineering principles to design, build, and manage sophisticated computer-based instrumentation and control systems in the manufacturing industries. This sector depends on process control and automation technology to maintain a competitive edge.

Through this course you will understand the fundamental principles of chemical engineering and key aspects of:
-Mathematics
-Statistics
-Information technology
-Process control and automation methodologies

The interdisciplinary nature of this course qualifies you to manage the challenges of modern process control technology.

Engineers with training in these areas are in demand and enjoy a wide range of careers in the chemical and process industries.

The course is delivered by the School of Chemical Engineering and Advanced Materials.

Delivery

The MSc requires you to study 120 credits of taught modules and undertake a 60 credit research project. The PGDip requires 120 credits of taught modules only.

Modules to the value of 60 credits are delivered in both semester one and semester two. The Research project is carried out in semester three (June to August).

You have the opportunity to attend lectures and seminars from external industry lecturers. Some of the research projects are industry based and involve guidance from industrial supervisors.

The majority of the modules in semester one run for the duration of the semester, whereas most of the semester two modules are delivered in blocks, ie over one week. All teaching is carried out during weekdays.

Facilities

We have a Process Control laboratory with four control rigs operated by computer control systems. These rigs are equipped with industrial scale instrumentations.

We also have a dedicated postgraduate computer cluster with relevant software, including:
-MATLAB
-Simulink
-Aspen HYSYS
-Multivariate statistical data analysis and monitoring tools (Pre-screen, MultiData, and BatchData)

The Robinson Library has a large collection of text books and journals used by the course.

Read less
Engineers are the key to the development of society and solving the problems the world currently faces. They have the power to make the world fundamentally different. Read more
Engineers are the key to the development of society and solving the problems the world currently faces. They have the power to make the world fundamentally different.

The Master of Advanced Engineering is the key transitional stage in your career, transforming you into a global leader. Gain a depth of knowledge, mastering the crucial skills to become a leading contributor in your field.

Customise your degree - the Master of Advanced Engineering offers flexibility to complete your Master degree in just one year, or you can choose a two year option.

This course is designed to extend your knowledge in your chosen specialisation area and advance your leadership and complex problem-solving skills in a cross cultural environment.

Understand, reflect critically upon and apply methods in at least one specialist engineering area to design solutions to complex, multifaceted engineering problems.

Common core units will develop crucial skills in areas such as data analysis and entrepreneurship, translating theory into engineering practice. In discipline core units you will identify, interpret and critically appraise current developments and technologies within your specialisation.

Enhancement units are designed to provide breadth and are taken from either another engineering specialisation or in complementary areas such as information technology and business.

In addition, the two year version of the program offers a range of technical electives that will deepen your understanding of a specific topic, and two, year- long engineering project units. You will work closely with an academic on a topic of your choice and immerse yourself in a multidisciplinary design project.

The Master of Advanced Engineering could also be your stepping stone to a research degree. All of this in highly interactive, expert led classes.

Visit the website http://www.study.monash/courses/find-a-course/2016/advanced-engineering-e6001?domestic=true

Overview

Please select a specialisation for more details:

Chemical engineering

Your qualification will be a Master of Advanced Chemical Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Chemical Engineering allows you to engage in the areas of study including advanced reaction engineering, process design and optimization, conversion of bioresources into fuel, materials and specialty chemicals, and nanostructured membranes for sustainable separations and energy production with an emphasis on the latest developments in the field. In this course, you will develop specialised knowledge and skills that are important to Chemical Engineers in industry and research. This course provides graduates with enhanced opportunities for advancement in their careers.

Civil engineering (Infrastructure systems)

Your qualification will be a Master of Advanced Civil Engineering (Infrastructure Systems)

The Master of Advanced Civil Engineering (Infrastructure Systems) will equip graduates to work with in the area of infrastructure engineering and management. It will provide the fundamental knowledge associated with interfacing both structural and geotechnical designs for infrastructure systems. The program is designed to equip you with advanced skills necessary for managing the challenges posed by ageing and leading designs of new complex infrastructure systems. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills, as well as to develop theoretical and applied knowledge in the area of infrastructure engineering and management.

Civil engineering (Transport)

Your qualification will be a Master of Advanced Civil Engineering (Transport)

Please note that this specialisation is available only in Clayton.

The Master of Advanced Civil Engineering (Transport) program deals with the fundamental knowledge associated with transport engineering and management, traffic engineering, intelligent transport systems and transport planning. The program in is a response to the growing need for engineers with broad awareness of the characteristics and significance of transport, including its technological, economic and social impact. At the same time, the program outlines the state-of-the-art of transport engineering, as it may be applied to the solution of real problems in the planning, design, management and operation of transport facilities. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills as well as to develop theoretical and applied knowledge in the area of transport engineering and management.

Civil engineering (Water)

Your qualification will be a Master of Advanced Civil Engineering (Water)

Please note that this specialisation is available only in Clayton.

The Master of Advanced Civil Engineering (Water) allows you to major in water resources engineering and management. This program deals with the fundamental knowledge associated with surface and ground water flow, stormwater management, water quality, flood forecasting and mitigation. The program is designed to equip you with advanced skills necessary for managing the challenges posed by changing climatic condition on water resource management. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills as well as to develop theoretical and applied knowledge in the area of water resources engineering and management.

Electrical engineering

Your qualification will be a Master of Advanced Electrical Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Electrical Engineering will give you a broad introduction to advanced techniques in signal processing, communications, digital systems and electronics. The units have been chosen around the common theme of embedded systems: special purpose computing systems designed for specific applications. They are found just about everywhere including in consumer electronics, transportation systems, medical equipment and sensor networks. The course will mix theory and practice and will contain a significant amount of hands-on learning in laboratories and team-based design projects.

Energy and sustainability engineering

Your qualification will be a Master of Advanced Engineering (Energy and Sustainability)

Please note that this specialisation is available only in Malaysia.

The Master of Advanced Engineering (Energy and Sustainability) is designed for qualified engineers keen to deepen their knowledge in the energy and sustainability area. The course provides foundations in general engineering through engineering analysis and entrepreneurship units. Students can major in this program by examining energy and sustainability area from a multi-disciplinary perspective. Students can also choose elective units such as environment and air pollution control and smart grids to further enhance their knowledge in this area or undertake a minor research work to pursue a topic of interest related to this area.

Materials engineering

Your qualification will be a Master of Advanced Materials Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Materials Engineering encompasses practical aspects of the key classes of materials such as metals, polymers, biomaterials, nanomaterials and energy-related materials. This program particularly focuses on the most up-to-date aspects of the field, along with the utilisation of materials and their electronic, chemical and mechanical properties as underpinned by the microstructures that are revealed by modern characterisation techniques. This program is designed to prepare students to appreciate and exploit the central role of materials in addressing the present technical, economic and environmental problems involved in the design and construction of engineering structures, processes and devices. This course is ideally suited for new graduates as well as professional engineers who are eager to advance their applied knowledge in the area of Materials Engineering.

Mechanical engineering

Your qualification will be a Master of Advanced Mechanical Engineering

Please note that this specialisation is available only in Clayton.

Most modern engineering projects are multidisciplinary in nature and require a broad range of skills, proficiencies and perspectives to accomplish the task. The Master of Advanced Mechanical Engineering takes a systems approach to the design, monitoring and performance of complex mechanical engineering systems in the fields of renewable energy, aerospace, buildings, transportation, and biomedical devices. The systems approach also permeates the design of the course: four discipline-based core units are vertically integrated so that common problems are examined from different perspectives, culminating in a sustainable systems unit.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/engineering

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/advanced-engineering-e6001?domestic=true#making-the-application

Read less
Control Engineering is a multi-disciplinary subject, with applications across a wide range of industrial sectors. The Control Systems Group in… Read more

Control Engineering is a multi-disciplinary subject, with applications across a wide range of industrial sectors. The Control Systems Group in the School of Electrical and Electronic Engineering at the University of Manchester has been running an MSc course in Advanced Control and Systems Engineering since 1968. The course is geared for graduates from a variety of scientific and engineering disciplines.

The aims of the course are to:

  • provide an advanced education in control and systems engineering, emphasising modern theoretical developments and their practical application
  • give a sound fundamental understanding of the principles underlying the operation of control systems
  • enable students to apply modern control principles in various areas of industry

Students acquire a range of intellectual skills that cover the design, analysis and simulation of control systems. A strong emphasis is placed on practical and transferable skills through laboratory exercises and the use of software packages.

Coursework and assessment

The taught part of the course comprises six course units of 15 credits each. This is assessed by written examinations, coursework and laboratory reports.

A strong feature of the course is the dissertation project, which constitutes 60 Credits. The project introduces students to cutting edge control theory and applications.

Course unit details

Typical course units include Control and Computer Laboratory, Linear Optimal Control, Intelligent Systems, Non-linear Controllers & Systems, Self-tuning and Adaptive Systems, Manufacturing Automation and Data Engineering, Fault Detection and Diagnosis, and Process Control Systems.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

In 2008 we celebrated the 40 th anniversary of our MSc course. In that time graduates of the course have achieved top ranking industrial and academic positions in their home countries, in the UK and around the world.

Graduates from the course are employed in a variety of industries, including process and petro-chemical industries, manufacturing, power generation and the automotive and aerospace sectors. Recently there has been a surge in demand for control engineers in the field of biomedicine. More generally feedback control and systems engineering skills play an important part in an ever widening range of high tech applications.

The MSc can also be used a spring board for postgraduate research. Approximately 50% of the current PhD students in the Control Systems Group are graduates from the MSc course.



Read less
We worked with industry professionals to develop an MSc Applied Instrument and Control programme that is accredited by the Institute of Measurement and Control (InstMC). Read more

We worked with industry professionals to develop an MSc Applied Instrument and Control programme that is accredited by the Institute of Measurement and Control (InstMC). It covers both the latest developments in the field and the industry knowledge we've gained through years of experience.

You'll acquire a specialised skillset and expertise that's highly desirable to employers, making you a competitive candidate for rewarding careers in many industries, with oil and gas pathways available. The programme draws on relevant case studies with real-world implications, so you'll gain practical knowledge that you can apply on the job from day one.

The programme also fulfils the Engineering Council's further learning requirements for registration as a Chartered Engineer.

  • Gain a solid foundation in measurement science and control theory
  • Practise data acquisition and instrument networking
  • Study analysis of systems for condition monitoring
  • Investigate fault detection and control system design
  • Complete a hands-on project in the industry for experiential learning

At GCU, you'll find a welcoming community of people like yourself - hardworking, career-focused individuals with the vision and discipline to pursue meaningful work. We'll help you develop the tools to be successful, in your career and in your life.

We hope you'll use those tools to make a positive impact on your community and contribute to the common good through everything you do.

What you will study

The curriculum has been developed in consultation with industry and can be broadly grouped in three areas: the introduction of new facts and concepts in measurement and control; the application of facts and concepts to real measurement problems and systems; and subjects which are of general importance to the professional engineer, for example safety and safety management and management ethics and project planning.

Students complete eight taught modules - four in trimester A and four in trimester B; and a Masters project in trimester C.The MSc project will be carried out at the student's workplace; this can be in an area relevant to the company's production/maintenance function, thus providing maximum benefit to both the company and the individual.

Control Systems

Consolidates advanced classical and modern control design techniques emphasising the practical considerations in applying control design in an industrial environment. The appropriateness and difficulties encountered in applying various design techniques in practice will be explored. In particular system sensitivity, robustness and nonlinearity will be studied.

Data Acquisition and Analysis

Develops the ability to evaluate, in a given situation, the most appropriate strategy for acquiring data and understand the merits of this strategy with respect to other approaches. A range of modern time and frequency domain analysis techniques will also be discussed.

Industrial Case Studies

Following on from the foundation in measurement and instrumentation provided by the Measurement Theory and Devices module, students will now be equipped to study in depth instrumentation in industrial processes. This module will cover aspects of designing sensor systems for industrial measurements, instrument control, system troubleshooting and optimisation in industrial applications.

Distributed Instrumentation

Develops the ability to evaluate, in a given situation, the most appropriate strategy for acquiring and transmitting data and understand the merits of this strategy with respect to other approaches. A wide range of different instrument communication and networking techniques will be studied. In addition the module provides practical experience of hardware setup and software development, relating to these techniques.

Industrial Process Systems

Identification and system modelling from real data play an important role in this module. This approach thus leads to more complex and realistic models that can be used to design more robust and reliable controllers that take into account problematic physical effects such as time-delays and sensor noise. The module will cover more advanced aspects of control design such as feed forward and multivariable control.

Measurement Systems

A range of advanced measurement systems will be studied in depth. Sensors, signal processing, low-level signal measurements, noise-reduction methods and appropriate measurement strategies will be applied to industrial and environmental applications. The influence of environmental factors and operation conditions will be considered in relation to the optimisation of the measurement system.

Measurement Theory and Devices

Adopts a generalised approach to measurement theory and devices, allowing students to become familiar with the characteristics of measurement systems in terms of the underlying principles. In this way, the students will be able to develop a systems approach to problem solving. They should find this methodology to be a considerable benefit to them when they have to apply their expertise to solving more complex industrial measurement problems.

Professional Practice

Develops the students' ability to select, develop and plan an MSc research project, to research and critically analyse the literature associated with the project and to present research findings effectively, it will also provide students with the ability to apply a competent process of thinking to project planning and give them a critical understanding of safe and ethical working.

Accreditation

The programme is accredited by the Institute of Measurement and Control (InstMC) as meeting the Engineering Council’s further learning requirements for registration as a Chartered Engineer.

Graduate prospects

The MSc Applied Instrumentation and Control offers graduates a highly focused skillset that's valuable to an extremely wide range of industries - any business that benefits from the measurement of process variables and environmental factors. For instance, chemicals, pharmaceuticals, optics and optoelectronics, medical instrumentation and more.

Across these industries, you might focus on computer-controlled instrumentation systems, process instrumentation, technical management and sales, process control and automation, sensor development and manufacturing, instrument networking, industrial development or test and measurement systems.

You might also pursue a career with a company that designs and manufactures measurement systems.



Read less
The graduate in Automation and Control Engineering is an expert who can actively participate and take the lead in the executive design and development of products and systems. Read more

Mission and goals

The graduate in Automation and Control Engineering is an expert who can actively participate and take the lead in the executive design and development of products and systems. She/he may take on full responsibility for designing, installing, testing and maintaining complex machines and systems. The goal of the Automation and Control Engineering programme is to provide the graduate with a strong background in fundamental scientific disciplines, such as mathematics and physics, in classical engineering fields, such as thermodynamics, mechanics, electric drives, automatic control, and in the disciplines of the information and telecommunication technology, like computer science, electronics, communication networks. Thanks to the interdisciplinary nature of her/his background, the graduate has all the necessary skills to design or manage systems resulting from the integration of highly diverse components and technologies. This flexibility both in the attitude and in the competences is a significant asset of the Automation and Control Engineer, in view of the large variety of possible applications, of the continuous and rapid evolution of the technologies, as well as of the dynamics of the job market.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

Career opportunities

Automation and Control Engineering offers challenging and fulfilling careers for engineering technologists in design, research and development, and technical support, in many fields where automation and control are of paramount importance, such as: (a) industry producing manufacturing systems, automatic machines, robotic systems, mechatronic systems; (b) process industry (pulp and paper, energy production and conversion, chemical and petrochemical industry, etc.); (c) transportation systems (ground, marine and aerospace), concerning both the development of vehicles (cars, boats, helicopters, aircrafts, satellites), and the design, management and control of infrastructures; (d) transportation and distribution networks; (e) food industry; (f) electrical appliances and domotics; (g) environmental resources.

Typical companies where the automation and control engineers may operate include those producing and selling automation systems (both hardware and software); companies that use automated production plants or that manage highly complex services; engineering and consulting firms that design and project complex, economically challenging and technologically advanced plants and systems.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Automation_Engineering.pdf
This programme aims at providing the graduates with sound engineering skills to design, develop, implement and manage automation systems for manufacturing plants, industrial processes, mechatronic devices, distribution networks and environmental systems. Graduates have a strong background in the classical engineering fields and in the information and telecommunication technology. The interdisciplinary nature of this programme provides the graduates with all the skills to design/manage systems resulting from the integration of highly diverse technologies.
Graduates will have wide employment opportunities in many fields: industry producing manufacturing systems, automatic machines, robotic systems, mechatronic systems, process industry, transportation systems, transportation and distribution networks, food industry, electrical appliances, home automation and environmental resources.
The programme is taught in English.

Subjects

The mandatory courses are:
- Advanced and multivariable control
- Automation and control laboratory
- Computer aided manufacturing
- Dynamics of electrical machines and drives
- Dynamics of mechanical systems
- Model identification and data analysis
- Software engineering

Among the optional courses:
- Automation and control in vehicles
- Automation of energy systems
- Control of industrial robots
- Production systems control
- Safety in automation systems
- Thesis and final exam

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This MSc in Advanced Engineering Design is aimed at high calibre and ambitious engineering graduates who want to gain expertise in systematically developing complex, multidisciplinary engineering design. Read more

About the course

This MSc in Advanced Engineering Design is aimed at high calibre and ambitious engineering graduates who want to gain expertise in systematically developing complex, multidisciplinary engineering design.

You will learn how to design products requiring embedded intelligence and comprehensive engineering analysis and how to use six CAE software packages.

The programme - accredited by the Institution of Mechanical Engineering (IMechE) - has been developed to fulfil the industry’s need for an integrated course that offers:
teaching of advanced theory, human factors and creativity tools essential to successful product development
training in software, research and applications
practical experience of applying your knowledge and skills through an integrating, real life group project.

Aims

Integration of mechanical, electrical, electronic and control knowledge into a single product is challenging – and this course allows you to appreciate the complexity of modern product design and to develop your expertise.

The Brunel programme aims to create the new generation of engineering designers who can combine knowledge from different areas and produce world class design.

Engineering design is the application of engineering principles, the experience of making, and use of mathematical models and analysis. The design and production of complex engineering products often require the use of embedded intelligence and detailed engineering analysis involving mechanical, electronic and control functions. Advanced theoretical knowledge and a wide range of computer driven tools, methods and methodologies are essential for this process – and the course provides graduates with these essentials.

Course Content

Continued design of modern complex products demands advanced knowledge in mechanical, electronic, manufacturing and control engineering disciplines and human factors in design, and an ability to use advanced engineering software packages, integrating application experience and a capacity to carry on learning.

The Advanced Engineering Design MSc has been developed to produce design engineers who can meet these demands. It contains six taught modules where advanced multi-disciplinary theory is taught. As part of the course, six engineering software packages are also taught. In order to give an integrating application experience in an industrial setup, 'Design Experience', a group project module with an industry, has been included as part of the curriculum.

The dissertation is aimed at providing training in carrying out an in-depth engineering task on a self-learning basis. By the end of the course you will become a confident design engineer equipped with high quality and advanced knowledge and skills to work on design tasks in an advanced computer assisted environment.

Compulsory Modules

Sustainable Design and Manufacture
Manufacturing Systems Design and Economics
Computer Aided Engineering 1
Computer Aided Engineering 2
Design Experience
Dissertation Project

Optional Modules (choose two modules)

Advanced Manufacturing Measurement
Human Factors in Design
Robotics and Manufacturing Automation
Design of Mechatronic Systems

Special Features

Special facilities

MSc Engineering Design students work in a well-equipped design studio with various experiential learning facilities, with computers available for your exclusive use of Engineering Design students.Our investment in laboratory facilities and staff ensures that we can provide an excellent experience in a friendly and supportive environment.

Industry-focused programme

The high standard of our research feeds directly into curriculum design and our teaching, ensuring our graduates are equipped with the most up-to-date techniques, methods and knowledge bases. Our teaching has an excellent reputation and is orientated to the expressed needs of modern enterprises and the industry.
The course is underpinned by the current research still being carried out by the staff in the former academic unit Advanced Manufacturing and Enterprise Engineering which promotes manufacturing as a discipline.  Thus the academics teaching on the Advanced Engineering Design which were part of this unit have strong research portfolios in manufacturing. This research has been judged world leading.  In the 2014 Research Excellence Framework, academics teaching on the course were involved with Brunel’s General engineering submission, one of one of the largest in the UK. The area’s percentage of world leading research doubled, with a significant increase in our research judged as internationally excellent as well. The impact of over 75% of this research was judged to be world leading or internationally excellent. This placed the discipline in the top 20% in the UK terms of research power.

Global reputation

With around 150 postgraduate students from all around the world and substantial research income from the EU, research councils and industry, we are a major player in the field of advanced manufacturing and enterprise engineering.
 
Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

The MSc Advanced Engineering Design is accredited by both the Institution of Mechanical Engineering (IMechE). This will provide a route to Chartered Engineer status in the UK.

Read less
Process systems engineering deals with the design, operation, optimisation and control of all kinds of chemical, physical, and biological processes through the use of systematic computer-aided approaches. Read more

Process systems engineering deals with the design, operation, optimisation and control of all kinds of chemical, physical, and biological processes through the use of systematic computer-aided approaches. Its major challenges are the development of concepts, methodologies and models for the prediction of performance and for decision-making for an engineered system.

Who is it for?

Suitable for engineering and applied science graduates who wish to embark on successful careers as process systems engineering professionals. 

The course equips graduates and practising engineers with an in-depth knowledge of the fundamentals of process systems and an excellent competency in the use of state-of-the-art approaches to deal with the major operational and design issues of the modern process industry. The course provides up-to-date technical knowledge and skills required for achieving the best management, design, control and operation of efficient process systems. 

Why this course?

Process systems engineering constitutes an interdisciplinary research area within the chemical engineering discipline. It focuses on the use of experimental techniques and systematic computer-aided methodologies for the design, operation, optimisation and control of chemical, physical, and biological processes, e.g. from chemical and petrochemical processes to pharmaceutical and food processes. 

A distinguished feature of this course is that it is not directed exclusively at chemical engineering graduates. Throughout the years, the course has evolved from discussions with industrial advisory panels, employers, sponsors and previous students. The content of the study programme is updated regularly to reflect changes arising from technical advances, economic factors and changes in legislation, regulations and standards.

By completing this course, a diligent student will be able to: 

  • Evaluate the technical, environmental and economic issues involved in the design and operation of process plants and the current practice in process industries.
  • Apply effectively the knowledge gained to the design, operation, optimisation and control of process systems via proper methodologies and relevant software.
  • Apply independent learning, especially via the effective use of information retrieval systems and a competent and professional approach to solving problems of industrial process systems.
  • Apply and critically evaluate key technical management principles, including project management, people management, technology marketing, product development and finance.
  • Apply advanced approaches and use effectively related tools in more specialised subjects related to process industries (for example risk management, biofuels or CFD tools).
  • Integrate knowledge, understanding and skills from the taught modules in a real-life situation to address problems faced by industrial clients; creating new problem diagnoses, designs, or system insights; and communicating findings in a professional manner in written, oral and visual forms.
  • Define a research question, develop aim(s) and objectives, select and execute a methodology, analyse data, evaluate findings critically and draw justifiable conclusions, demonstrating self-direction and originality of thought.
  • To communicate his/her individual research via a thesis and in an oral presentation in a style suitable for academic and professional

Accreditation

This MSc degree is accredited by Institution of Mechanical Engineers (IMechE)

Course details

The taught programme for the MSc in Process Systems Engineering is delivered from October to February and is comprised of six compulsory taught modules. There are four optional modules to select the remaining two modules from.

Group project

The Group Project, which runs between February and April, enables you to put the skills and knowledge developed during the course modules into practice in an applied context while gaining transferable skills in project management, teamwork and independent research. The group project is usually sponsored by industrial partners who provide particular problems linked to their plant operations. Projects generally require the group to provide a solution to the operational problem. Potential future employers value this experience. This group project is shared across the MSc in Process Systems Engineering and other courses, giving the added benefit of gaining new insights, ways of thinking, experience and skills from students with other backgrounds

During the project you will develop a range of skills including learning how to establish team member roles and responsibilities, project management, and delivering technical presentations. At the end of the project, all groups submit a written report and deliver a presentation to the industrial partner. This presentation provides the opportunity to develop interpersonal and presentation skills within a professional environment.

It is clear that the modern engineer cannot be divorced from the commercial world. In order to provide practice in this matter, a poster presentation will be required from all students. This presentation provides the opportunity to develop presentation skills and effectively handle questions about complex issues in a professional manner.

Part-time students are encouraged to participate in a group project as it provides a wealth of learning opportunities. However, an option of an individual dissertation is available if agreed with the Course Director.

Individual project

The individual research project allows you to delve deeper into a specific area of interest. As our academic research is so closely related to industry, it is very common for our industrial partners to put forward real-world problems or areas of development as potential research topics.

The individual research project component takes place between April/May and August for full-time students. For part-time students, it is common that their research projects are undertaken in collaboration with their place of work under academic supervision; given the approval of the Course Director.

Individual research projects undertaken may involve designs, computer simulations, feasibility assessments, reviews, practical evaluations and experimental investigations.

Assessment

Taught modules 40%, Group project 20% (dissertation for part-time students), Individual Research Project 40%

Funding

To help students in finding and securing appropriate funding we have created a funding finder where you can search for suitable sources of funding by filtering the results to suit your needs. Visit the funding finder.



Read less
Automation, control and robotics are pervasive enabling technologies found in almost every modern technical system, particularly in manufacturing and production. Read more

Automation, control and robotics are pervasive enabling technologies found in almost every modern technical system, particularly in manufacturing and production. They combine the diverse and rapidly expanding disciplines of automation, control, mechanics, software and signal processing.

This course is ideal if you wish to develop comprehensive knowledge and understanding of • classical and modern control theory • industrial automation • systems analysis • design and simulation • robotics.

You gain the ability to apply principles of modelling, classical and modern control concepts and controller design packages in various areas of industry. You also learn how to design and exploit automation and robotic systems in a range of manufacturing and industrial applications.

The course has six core modules which cover the major aspects of industrial automation and control systems engineering and robotics, ranging from classical linear control system design to non-linear, optimal and intelligent control systems, including distributed control systems, robotics, computer networks and artificial intelligence.

You also choose two optional modules relevant to automation and control to suit your interests. For example, if you wish to work in the manufacturing industry you can choose manufacturing systems or machine vision. There is the opportunity to study one or two management modules if you wish to apply yourself to a more managerial role.

To gain the masters you complete a major research-based project, which can be focused on an area of your particular interest or career need.

You work alongside staff from the Electrical, Electronic and Control Engineering Group and the Centre for Automation and Robotics Research (CARR) at Sheffield Hallam. This provides the opportunity to work with active researchers.

Professional recognition

This course is seeking accreditation by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council for the purposes of fully meeting the academic requirements for registration as a Chartered Engineer. The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer; graduates who have a BEng (Hons) accredited for CEng will be able to show that they have satisfied the further learning requirement for CEng accreditation.

Course structure

Core modules

  • industrial automation
  • control of linear systems
  • advanced control methods
  • robotics
  • applicable artificial intelligence

Options

Choose two from

  • software engineering
  • computer networks
  • project and quality management
  • sustainability, energy and environmental management
  • machine vision
  • digital signals processing
  • manufacturing systems
  • mixed signal design
  • electrical energy systems
  • efficient machines and electromagnetic applications.

MSc

  • project and dissertation

Assessment

  • coursework
  • examination
  • presentation
  • MSc project report

Employability

This course provides you with the knowledge and skills for further advanced study in this area.

You can also apply your skills in an industrial setting for automated manufacturing, control system design, or in the wide range of industries that exploit intelligent robotics. Graduates from this course find career opportunities in areas including • automation and control • process and petrochemical • biomedical • manufacturing • energy • automotive • aerospace.

You can also pursue careers in engineering design and development, engineering research, engineering consultancy and engineering management.

Completing this course combined with further work-based experience enables you to gain Chartered Engineer status.



Read less
This is a multidisciplinary programme that bridges the fields of epidemiology, laboratory sciences and public health. It includes a strong practical component and the opportunity to undertake a research project overseas. Read more
This is a multidisciplinary programme that bridges the fields of epidemiology, laboratory sciences and public health. It includes a strong practical component and the opportunity to undertake a research project overseas. The course will train students in all aspects of the control of infectious diseases and prepare them for a career in a range of organisations.

This course will equip students with specialised skills that will facilitate a career in the control of infectious diseases as staff of health ministries, health departments, national or international disease control agencies, aid organisations or universities.

The majority of the research projects are performed overseas, with collaborating public health or research organisations and NGOs. Students are encouraged to take advantage of this overseas opportunity, which is crucial to the nature of the course.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/cid_progspec.pdf)
- Intercalating this course (http://www.lshtm.ac.uk/study/masters/intercalating/index.html)

Visit the website http://www.lshtm.ac.uk/study/masters/mscid.html

Objectives

By the end of this course students should be able to:

- investigate the transmission of endemic and epidemic infections

- select appropriate methods of control

- design, implement and evaluate co-ordinated control methods

- assess constraints of local public health delivery systems

- manage available resources in the context of the control of infectious diseases

- focus their efforts on particular geographical regions or specific diseases

Structure

Term 1:

After orientation, students take two compulsory modules: Basic Statistics and Introduction to Disease Agents & Their Control, which focus on the life cycle and characteristics of infectious disease agents according to their principal transmission routes; the principal intervention strategies used to combat infectious diseases; and examples of successes, partial successes and failures in intervention programmes against infectious diseases.

In addition, students take one of the following module combinations:

- Basic Epidemiology; Health Economics; and Health Policy, Process and Power
- Extended Epidemiology and Health Economics or Health Policy, Process and Power

An interdisciplinary approach is emphasised which takes account of the social, political and economic context in which health systems operate.

Terms 2 and 3:

Students take a total of five study modules, one from each timetable slot (Slot 1, Slot 2 etc.). The list below shows recommended modules. There are other modules which may be taken only after consultation with the Course Directors.

*Recommended modules

- Slot 1:

Designing Disease Control Programmes in Developing Countries*
Epidemiology & Control of Malaria*
Health Care Evaluation*
Childhood Eye Disease and Ocular Infections
Clinical Infectious Diseases 1: Bacterial & Viral Diseases & Community Health in Developing Countries
Clinical Virology
Economic Evaluation
Health Promotion Approaches and Methods
Maternal & Child Nutrition
Research Design & Analysis
Study Design: Writing a Study Proposal.

- Slot 2:

Clinical Bacteriology 1*
Conflict and Health*
Design & Analysis of Epidemiological Studies*
Population, Poverty and Environment*
Statistical Methods in Epidemiology*
Advanced Diagnostic Parasitology
Clinical Infectious Diseases 2: Parasitic Diseases & Clinical Medicine
Health Systems
Qualitative Methodologies

- Slot 3:

Applied Communicable Disease Control*
Control of Sexually Transmitted Infections*
Current Issues in Safe Motherhood & Perinatal Health*
Economic Analysis for Health Policy*
Medical Anthropology & Public Health*
Spatial Epidemiology in Public Health*
Tropical Environmental Health*
Vector Sampling, Identification & Incrimination*
Basic Parasitology
Clinical Infectious Diseases 3: Bacterial & Viral Diseases & Community Health in Developing Countries
Modelling & the Dynamics of Infectious Diseases
Nutrition in Emergencies
Organisational Management
Social Epidemiology

- Slot 4:

Clinical Bacteriology 2*
Epidemiology & Control of Communicable Diseases*
Analytical Models for Decision Making
Clinical Infectious Diseases 4: Parasitic Diseases & Clinical Medicine
Ethics, Public Health & Human Rights
Globalisation & Health; Sexual Health
Vector Biology & Parasite Infections

- Slot 5:

AIDS*
Applying Public Health Principles in Developing Countries*
Integrated Vector Management*
Advanced Statistical Methods in Epidemiology
Antimicrobial Chemotherapy
Integrating Module: Health Promotion
Integrating Module: Health Services Management
Mycology
Nutrition Programme Planning
Principles and Practice of Public Health

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/tcid.html

Project Report:
During the summer months (July - August), students complete a research project studying aspects of an intervention programme, for submission by early September. If appropriate, this may take the form of an optional period in a relevant overseas location. Most students on this course undertake projects overseas. Students undertaking projects overseas will require additional funding of up to £1,500 to cover costs involved.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/mscid.html#sixth

Read less
Why this course?. This course is mainly for engineering students from the UK and overseas who want to develop careers in the oil, gas, process and chemical industries. Read more

Why this course?

This course is mainly for engineering students from the UK and overseas who want to develop careers in the oil, gas, process and chemical industries. The course has a strong project-based approach and is relevant to the recruitment needs of a wide range of employers.

It meets accreditation requirements for the Institute of Chemical Engineers allowing graduates to apply for chartered engineer status.

Our course is one of the few MSc programmes to offer the module Safety Management Practices. It offers exposure to best industry practice and much required industrial training.

You’ll study

This is a modular course. To gain the Postgraduate Certificate you need to pass six modules.

The Diploma requires eight taught modules and a group project.

The MSc requires eight taught modules, a group design project and an individual research project. You'll work with our talented team of researchers on chemical engineering issues of the future.

The key areas of the programme are:

Chemical & Process Engineering

  • process design principles
  • safety management practices
  • energy systems
  • colloid engineering
  • multi-phase processing
  • petroleum engineering
  • environmental control technologies
  • process safety design
  • emerging technologies
  • programming & optimisation

Multidisciplinary Skills

  • project management
  • risk management
  • information management
  • understanding financial information

If you want to study the same scope of subjects but be part a sustainable engineering programme, you should apply for the MSc Sustainable Engineering: Chemical Processing pathway.

You’ll work on an individual research project with our highly talented team of leading researchers on chemical engineering issues of the future.

Facilities

We're one of the largest chemical engineering departments in the country.

We have new state-of-the-art research laboratories. These include experimental facilities for light scattering, spectroscopy, adsorption measurements and high pressure viscometry.

You'll have access to the department's own dedicated computer suite which is installed with industry standard software.

Accreditation

The course meets accreditation requirements for the Institute of Chemical Engineers allowing graduates to apply for chartered engineer status.

Learning & teaching

All classes are delivered over a twelve week period.

The Emerging Technologies module makes extensive use of external speakers who are leading practitioners in their field.

The Safety Management Practices module offers exposure to best industry practice and is one of a few MSc programmes to offer much required industrial training.

Assessment

Assessment is through a balanced work load of class based assessment, individual and group based projects and exams.

Careers

There is growing demand for high-calibre graduates who can develop and apply advanced process technologies in chemical and process industries.

Some students may be eligible to apply for PhD places in the department and across the Engineering faculty.



Read less
This Masters programme trains graduates of engineering, science or related disciplines in general and specialist process systems engineering subjects. Read more

This Masters programme trains graduates of engineering, science or related disciplines in general and specialist process systems engineering subjects.

Such areas are not generally covered in engineering and science curricula, and BSc graduates tend to be ill prepared for the systems challenges they will face in industry or academia on graduation.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Facilities, equipment and academic support

Modules related to the different groups are taught by a total of six full-time members of staff and a number of visiting lecturers.

As part of their learning experience, students have at their disposal a wide range of relevant software needed to support the programme material dissertation projects. In recent years, this work included the design of various knowledge-based and business systems on the internet, the application of optimisation algorithms, and semantic web applications.

Numerous laboratory facilities across the Faculty and the University are also available for those opting for technology-based projects, such as the process engineering facility, a control and robotics facility and signal processing labs.

The work related to the MSc dissertation can often be carried out in parallel with, and in support of, ongoing research. In the past, several graduates have carried on their MSc research to a PhD programme.

Career prospects

Engineers and scientists are increasingly expected to have skills in information systems engineering and decision-support systems alongside their main technical and/or scientific expertise.

Graduates of this programme will be well prepared to help technology-intensive organisations make important decisions in view of vast amounts of information by adopting, combining, implementing and executing the right technologies.

Educational aims of the programme

The programme aims to provide a highly vocational education which is intellectually rigorous and up-to-date. It also aims to provide the students with the necessary skills required for a successful career in the process industries.

This is achieved through a balanced curriculum with a core of process systems engineering modules supplemented by a flexible element by way of elective modules that permit students to pursue an element of specialisation relevant to their backgrounds, interests and/or career aspirations.

An integrated approach is taken so as to provide a coherent view that explores the interrelationships between the various components of the programme. The programme draws on the stimulus of the Faculty’s research activities.

The programme provides the students with the basis for developing their own approach to learning and personal development.

Programme learning outcomes

Knowledge and understanding

  • State-of- the-art knowledge in process systems engineering methods, in the areas of: modelling and simulation of process systems, mathematical optimization and decision making, process systems design, supply chain management, process and energy integration, and advanced process control technologies
  • Advanced level of understanding in technical topics of preference, in one or more of the following aspects: renewable energy technologies, refinery and petrochemical processes, biomass processing technologies, and knowledge-based systems

Intellectual / cognitive skills

The programme aims to strengthen cognitive skills of the students, particularly in the aspects of problem definition, knowledge and information acquiring, synthesis, and creativity, as collectively demonstrable through the successful completion of the research dissertation. The key learning outcomes include the abilities to:

  • Select, define and focus upon an issue at an appropriate level
  • Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
  • Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills

The programme primarily aims to develop skills for applying appropriate methods to analyse, develop, and assess process systems and technologies. The key learning outcomes include the abilities to:

  • Assess the available systems in the process industries
  • Design and/or select appropriate system components, and optimise and evaluate system design
  • Apply generic systems engineering methods such as modelling, simulation, and optimization to facilitate the assessment and development of advanced process technologies and systems

Key / transferable skills

The programme aims to strengthen a range of transferable skills which are relevant to the needs of existing and future professionals in knowledge intensive industries irrespective of their sector of operation. The key learning outcomes include the further development of the skills in the following areas:

  • Preparation and delivery of communication and presentation
  • Report and essay writing
  • Use of general and professional computing tools
  • Collaborative working with team members
  • Organising and planning of work
  • Research into new areas, particularly in the aspect of literature review and skills acquisition

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This programme explores technology across a wide scope of engineering disciplines and will train you in general and specialist process systems engineering – crucial aspects for finance, industrial management and computer-integrated manufacturing. Read more

This programme explores technology across a wide scope of engineering disciplines and will train you in general and specialist process systems engineering – crucial aspects for finance, industrial management and computer-integrated manufacturing.

There is a wide selection of modules on offer within the programme. All taught modules are delivered by qualified experts in the topics and academic members of University staff, assisted by specialist external lecturers.

Our programme combines high-quality education with substantial intellectual challenges, making you aware of current technologies and trends while providing a rigorous training in the fundamentals of the subject.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

The programme combines advanced material in two popular and complementary topics: systems engineering and environmental engineering. The key learning outcome is a balanced combination of systems and environmental skills and prepares students in a competitive market where both topics appear attractive.

The programme will provide training in general and specialist process and environmental systems engineering subjects, and prepare the students for the systems challenges they will face in industry or academia upon graduation.

The programme disseminates technology with a wide scope among engineering disciplines, with a wide selection of modules on offer. All taught modules are delivered by qualified experts in the topics and academic members of the university staff, assisted by specialist external lecturers.

The programme provides high-quality education with substantial intellectual challenges, commensurate with the financial rewards and job satisfaction when venturing into the real world. A key component is to make the student aware of current technologies and trends, whilst providing a rigorous training in the fundamentals of the subject.

Programme learning outcomes

Knowledge and understanding

The programme aims to develop the knowledge and understanding in both process and environmental systems engineering. The key learning outcomes include:

  • State-of- the-art knowledge in process and environmental technologies, in the areas of: life cycle assessment and sustainable development, modelling and simulation of process systems, mathematical optimization and decision making, process systems design, and process and energy integration
  • Advanced level of understanding in technical topics of preference, in one or more of the following aspects: general renewable energy technologies, and solar energy in particular; advanced process control

Intellectual / cognitive skills

The programme aims to strengthen cognitive skills of the students, particularly in the aspects of problem definition, knowledge and information acquiring, synthesis, and creativity, as collectively demonstrable through the successful completion of the research dissertation.

The key learning outcomes include the abilities to:

  • Select, define and focus upon an issue at an appropriate level
  • Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
  • Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills

The programme primarily aims to develop skills for applying appropriate methods to analyse, develop, and assess process and environmental systems and technologies. The key learning outcomes include the abilities to:

  • Assess the available systems in the process industries with focus on environmental challenges
  • Design and/or select appropriate system components, and optimise and evaluate system design
  • Apply generic systems engineering methods such as modelling, simulation, and optimization to facilitate the assessment and development of advanced process and environmental technologies and systems

Key / transferable skills

The programme aims to strengthen a range of transferable skills which are relevant to the needs of existing and future professionals in knowledge intensive industries irrespective of their sector of operation. The key learning outcomes include the further development of the skills in the following areas:

  • Preparation and delivery of communication and presentation
  • Report and essay writing
  • Use of general and professional computing tools
  • Collaborative working with team members
  • Organising and planning of work
  • Research into new areas, particularly in the aspect of literature review and skills acquisition

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This programme produces engineers who are highly skilled in the techniques of manufacturing management and its related technologies, providing the basis for effective careers as managers who can meet the challenges of the rapidly changing global manufacturing industry. Read more
This programme produces engineers who are highly skilled in the techniques of manufacturing management and its related technologies, providing the basis for effective careers as managers who can meet the challenges of the rapidly changing global manufacturing industry.

Core study areas include manufacturing system and process modelling, lean and agile manufacture engineering management and business studies, product information systems - product lifecycle management, the innovation process and project management, sustainable development, advanced manufacturing processes and automation, additive manufacturing and a project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/advanced-manuf-eng-mgt/

Programme modules

- Manufacturing System and Process Modelling
The objective of this module is to provide an understanding of manufacturing and its management that recognises breadth and depth of required resources and information. This is done through developing an understanding of the hierarchy of computer based modelling relevant to manufacturing, ranging from the detail of material behaviour in processed parts, through macroscopic process models to the integration of processes within manufacturing systems and higher level business processes.

- Lean and Agile Manufacture
This module allows students to gain an understanding of lean and agile concepts in the manufacturing business, including its distribution chains. Students will learn to specify, design and evaluate an appropriate lean or agile business system.

- Engineering Management and Business Studies
The aim of the module is to introduce the concepts of management techniques that are applicable to running an engineering company. Students will learn to evaluate commercial risk, plan and organise engineering activities for improved company effectiveness and communicate technical and business information to ensure maximum impact.

- Product Information Systems – Product Lifecycle Management
The objectives of this module are for students to understand and critically evaluate the emerging product information systems for designers in the form of Product Lifecycle Management (PLM) systems. Students will learn to use modern information and process modelling techniques to define the information integration and workflow requirements of a PLM configuration.

- The Innovation Process and Project Management
Students will establish a clear overview of the innovation process and an understanding of the essential elements within it. They will learn strategies for planning and carrying out innovative projects in any field.

- Sustainable Development: The Engineering Context
This module provides students with an understanding of the principles and practices of sustainable development and to provide them with an understanding of how engineers can help manufacturing businesses develop into more sustainable enterprises.

- Advanced Manufacturing Processes and Automation
Students will gain an in-depth knowledge of state-of-the-art manufacturing techniques, processes and technologies. They will learn to understand and critically evaluate advanced manufacturing processes and technologies, assessing their advantages and disadvantages.

- Additive Manufacturing
The module will introduce and develop the concepts of Additive Manufacturing (AM) and demonstrate the different AM techniques available at Loughborough University. The module will emphasise the strengths and weaknesses of the various technologies and highlight applications and case studies from the AM industry.

- Projects
In addition to the taught modules, all students undertake an individual major project. Part-time students normally undertake a major project that is based on the needs of their employing company.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling and independent research. Following eight taught modules, students pursue an individual project typically based on the diverse range of industrially focused manufacturing research strengths within the School. Part time students may base their projects on particular needs of their current employer.

Examinations are in January and May / June with coursework throughout the programme. The project is assessed by written report, presentation and exhibition.

Careers and further study

Within national or multinational manufacturing industry companies working as a Manufacturing Engineer, Project Engineer, Systems Analyst or Software Development Specialist. Graduates may also study for an MPhil or PhD with the School’s research groups.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a country outside the European Union. These scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why Choose Mechanical and Manufacturing Engineering at Loughborough?

The School of Mechanical and Manufacturing Engineering is a leader in technological research and innovation, with extensive national and international industrial links, and a long standing tradition of excellent teaching.

Our Industrial Advisory Committee, comprising of engineers at senior levels in the profession, ensures that our programmes contain the optimal balance of subjects and industrial relevance, with our programmes accredited by the Institution of Mechanical Engineers, Institution of Engineering and Technology and Institution of Engineering Designers.

- Facilities
The School has laboratories devoted to disciplines such as; dynamics and control, automation, fluid mechanics, healthcare engineering, internal combustion engines, materials, mechatronics, metrology, optical engineering, additive manufacturing, sports engineering, structural integrity and thermodynamics.

- Research
The School has a busy, multi-national community of well over 150 postgraduate research students who form an important part of our internationally recognised research activities.
We have seven key research centres (Electronics Manufacture, Intelligent Automation, Regenerative Medicine Embedded Intelligence, High Efficiency SCR for Low Emission Vehicles and High Value Manufacturing Catapult Centre) and we are a lead governing partner in the newly formed UK Manufacturing Technology Centre.

- Career prospects
90% of our graduates were in employment or further study within six months of graduating. Our graduates go on to work with companies such as Airbus, BAE Systems, Caterpillar, EDF Energy, Ford, IBM, Jaguar Land Rover, Millbrook Proving Ground, Rolls Royce and Tata Steel.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/advanced-manuf-eng-mgt/

Read less
Who is it for?. Whether you are a new graduate or an engineering professional, this course has been designed to help you develop advanced skills in thermofluids science and technology, fluid dynamics, structural analysis, heat conversion and recovery. Read more

Who is it for?

Whether you are a new graduate or an engineering professional, this course has been designed to help you develop advanced skills in thermofluids science and technology, fluid dynamics, structural analysis, heat conversion and recovery. You will learn with leading experts in the field on modules informed by the latest developments in technology and practice.

This course is designed to help you meet the challenges of the rapidly changing global market, with a focus on advanced thermal power, systems and processes. As a result, your studies will prepare you for a successful career in a wide range of engineering enterprises.

Objectives

The programme has been developed from our research strength in fluid dynamics, structural mechanics, mathematical modelling in CAD, renewable and sustainable energy, gas turbine engineering, IC engines and powertrain, and advanced heat transfer.

The Advanced Mechanical Engineering MSc will help you:

  • Gain advanced knowledge of the latest technological developments in advanced mechanical engineering, particularly in thermo-fluids applications.
  • Acquire an in-depth understanding of the fundamentals, practical skills and an appreciation of the latest developments in engineering solutions in the energy and transport sectors.
  • Demonstrate a knowledge and understanding of the general areas of Mechanical Engineering subjects and to extended knowledge of underlying principles of modern methods of control and design of vehicle and power  train systems.
  • Assess the behaviour of mechanical, aeronautical or electrical systems.
  • Apply advanced methods of analysis to mechanical, aeronautical or electrical systems.
  • Gain extended knowledge of the underlying principles of modern methods of design of mechanical, aeronautical or electrical systems with appropriate methods.
  • Appreciate advanced computer methods, e.g. CFD and CAD, using different software techniques.

Accreditation

The course has been accredited regularly by the Institution of Mechanical Engineers (IMechE), on behalf of the Engineering Council, as fully meeting the academic requirement for registration as a Chartered Engineer. Accreditation takes place every five years and currently the course is going through the re-accreditation process.

Academic facilities

The department has extensive experimental and computational facilities that you can use during your studies, particularly during the work leading to your dissertation. This includes:

  • Micro-gas turbine test cells, which are currently used to develop new technology for utilisation with concentrated solar power.
  • Fuel injection with applications in the automotive industry.
  • Screw compressors and expanders.
  • High-speed aerodynamic measurements test rigs and wind tunnels

The department also has a parallel computing cluster with licences to the most commonly used computational software in addition to in-house developed programmes.

Teaching and learning

The programme comprises lectures, assessed assignments and technical visits.

Teaching by academics and industry professionals whose work is internationally recognised. Seminar series and talks are conducted by visiting speakers.

Assessment

Assessment is based on marks obtained throughout the year for courseworks, class tests, and end-of-year examinations followed by dissertation. Modules, based on coursework only, are assessed through substantial individually designed courseworks, assignments and small projects. IT skill is assessed through submitted work on design reports and computational courseworks.

Modules

On this MSc, there are eight taught modules equating to 120 credits, plus a dissertation of 60 credits. The taught part of the MSc is structured into modules of 15 credits each.

The dissertation provides a stimulating and challenging opportunity to apply knowledge and develop a deep understanding in a specialised topic of your choice. Dissertations can be research- or industry-inspired, allowing you to prepare for your future career choices. Successful industrial projects often lead to the recruitment of students by the collaborating company.

The course follows a weekly teaching structure delivered at City, throughout the year at the rate of four days per week. Completion of modules and examinations will lead to the award of a Postgraduate Diploma. The completion of modules, examinations and dissertation will lead to the award of an MSc degree.

Core modules

6 Core Modules, 15 credits each (90 credits):

  • MEM106 Advanced Structural Mechanics (15 credits)
  • MEM107 Advanced Heat Transfer (15 credits)
  • MEM108 IC Engine and Vehicle propulsion (15 credits)
  • AEM301 Advanced Computational Fluid Dynamics (15 credits)
  • AEM305 Gas Turbine Engineering (15 credits)
  • ETM051 Professional Industrial Management Studies (15 credits)

Plus the individual project (EPM949); 60 credits.

Elective modules

Elective modules, choice of two, 15 credits each (30 credits):

  • MEM102 Combustion Fundamentals and Applications (15 credits)
  • EPM707 Finite Element Methods (15 credits)
  • EPM767 Mathematical Modelling in CAD (15 credits)
  • EPM879 Renewable Energy Fundamentals & Sustainable Energy Technologies (15 credits)
  • EPM501 Power Electronics (15 credits)

Career prospects

This Masters is geared towards preparing you for a successful career in mechanical engineering, providing you with highly sought-after, in-depth knowledge of fundamental theory and hands-on experience in the field of mechanical technology. The course also features industry-based projects that can provide you with employment opportunities.

Recent graduate employment destinations include:

  • Ford
  • Rolls Royce
  • Lotus
  • BP
  • Howden
  • Shell
  • Heliex
  • Sortex
  • Transport for London
  • Jaguar
  • Delphi
  • Holroyd


Read less
Project management processes are about implementing methodologies, knowledge, skills and techniques to successfully accomplish projects in an efficient and effective manner. Read more

Project management processes are about implementing methodologies, knowledge, skills and techniques to successfully accomplish projects in an efficient and effective manner. Whether you are managing a complex project, bringing a new product to market or managing an organisational change, this course provides you with the skills and knowledge to plan, implement, control and deliver your projects at strategic and operational levels.

Course details

There are three routes you can select from to gain a postgraduate Master’s award:

  • MSc Project Management – one year full time
  • MSc Project Management – two years part time
  • MSc Project Management (with Advanced Practice) – two years full time

The one-year programme is a great option if you want to gain a traditional MSc qualification – you can find out more here. This two-year master’s degree with advanced practice enhances your qualification by adding to the one-year master’s programme an internship, research or study abroad experience. This course develops the competencies required by project managers in the modern engineering, manufacturing, construction, telecom, process, oil and gas industries.

The MSc Project Management (with Advanced Practice) offers you the chance to enhance your qualification by completing an internship, research or study abroad experience in addition to the content of the one-year MSc.

You gain significant analytical, interpersonal and practical competencies through tailored modules that cover advance planning and visualisation, risk management, procurement and contract strategy, health and safety, managing operations and finance, project management and enterprise, and managing change or PRINCE2®. You also undertake a major research project that allows you to specialise in a field of interest to you. Teesside University has a strong research record in project management.This course is suitable if you are a new or recent university graduates seeking a career in project management. It is also suitable if you are a practitioner with relevant industrial experience intending to undertake a project management role and responsibilities within your organisation.

What you study

Course structure

Core modules

  • Advanced Project Planning and Visualisation
  • Managing Operations and Finance
  • Practical Health and Safety Skills
  • Procurement and Contract Strategy
  • Project Management and Enterprise
  • Research and Study Skills
  • Research Project (Advanced Practice)
  • Risk Management in Projects

and one optional module

  • Managing Change
  • Managing Projects with PRINCE2®

Advanced Practice options

  • Research Internship
  • Study Abroad
  • Vocational Internship

Modules offered may vary.

Teaching

How you learn

The course is delivered using a series of lectures, tutorials and laboratory sessions. Project modelling and case studies are a key feature in your learning. We invite project managers from organisations from diverse engineering sectors (for example, manufacturing, process, oil and gas, construction, telecoms, IT, finance) as industry speakers on the course.

In addition to the taught sessions, you undertake a substantive MSc research project and the Advanced Practice module. This module enables you to experience and develop employability or research attributes and experiential learning opportunities in either an external workplace, internal research environment or by studying abroad. You also critically engage with either external stakeholders or internal academic staff, and reflect on your own personal development through your Advanced Practice experience.

How you are assessed

Assessment varies from module to module. The assessment methodology could include in-course assignments, presentations and/or formal examinations.

Your Advanced Practice module is assessed by an individual written reflective report (3,000 words) together with a study or workplace log, where appropriate, and through a poster presentation.

Employability

As a project manager, your skills will be in demand by companies and organisations worldwide. The most common industries include engineering, process and oil and gas, construction, manufacturing, digital, IT and telecoms. Average salaries are around £52,000. Experienced and high-profile project managers can earn upwards of £60,000 a year or around £600 a day for shorter projects or freelance work.



Read less

Show 10 15 30 per page



Cookie Policy    X