• Anglia Ruskin University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Durham University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
De Montfort University Featured Masters Courses
University of Reading Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Cranfield University Featured Masters Courses
Bath Spa University Featured Masters Courses
"advanced" AND "manufactu…×
0 miles

Masters Degrees (Advanced Manufacturing)

We have 400 Masters Degrees (Advanced Manufacturing)

  • "advanced" AND "manufacturing" ×
  • clear all
Showing 1 to 15 of 400
Order by 
Manufacturing is at the heart of engineering, as everything in our daily lives needs to be made. Manufacturing engineers therefore play a vital role in the creation of wealth and in sustaining and improving the living standards of society. Read more
Manufacturing is at the heart of engineering, as everything in our daily lives needs to be made. Manufacturing engineers therefore play a vital role in the creation of wealth and in sustaining and improving the living standards of society. The Advanced Manufacturing Technology & Systems Management course is one of the most well-established of its kind in the UK, and it aims to provide our students with the tools, knowledge and understanding of this broad based discipline that demands expertise in many diverse topics.

This course is one of the most well-established of its kind in the UK, having evolved from the very successful MSc course in Machine Tool Technology, and is regularly updated in line with subject developments and changing industrial practices. Advanced Manufacturing Technology and Systems Management has developed into a broad based multi-disciplinary field, demanding expertise in many diverse topics. The structure of the course reflects this by requiring in-depth study of a number of topics ranging from the fundamentals of manufacturing processes to the management of manufacturing systems. More specialised study takes place during the dissertation project where students undertake individual research projects of industrial relevance. The MSc course has a strong practical orientation and it aims to produce engineers with the theoretical and practical experience which will enable them to analyse and investigate problems and to engage in design, development and research involving manufacturing technology. The course also prepares graduates for the management of manufacturing systems. Whilst the course is intended primarily for those wishing to pursue an industrial career, it is equally relevant as preparation for research in advanced manufacturing technology and systems management.

Teaching and learning

The Advanced Manufacturing Technology and Systems Management MSc is a full time course which is studied over 12 months and there is one start date each year in September.

Throughout the course you will develop advanced technical skills in both manufacturing technology and systems management, as well as soft skill such as team working, presenting and report writing, all of which will enable you to pursue a career in both general and specialised engineering industries or develop an in-depth knowledge for a career in research in industry or academia.
During the course you will visit a number of companies, such as Airbus and Jaguar Land Rover, and have the opportunity to attend industrial guest lectures, which will not only further enhance your understanding of manufacturing but also to give you an insight into the practical application of many of the subject areas you will be studying. Moreover, many of the dissertation projects, one of which you will be working on as part of this course, originate from and are run in collaboration with industry.

Career opportunities

The Advanced Manufacturing Technology and Systems Management MSc has a strong focus on employability, which will give you the best chance of securing your ideal job after graduation. Most academics who teach on this course have strong links with industry, which you will benefit from, not only by having the opportunity to visit a number of companies and attend industrial talks but also to work on a dissertation project that is closely related to an industrial problem.

Each year Manchester careers fairs, workshops and presentations attract more than 600 exhibitors and 20,000 visitors illustrating how employers target Manchester graduates.

After graduating with an MSc in Advanced Manufacturing Technology and Systems Management you will be in a strong position to seek employment with companies such as: Rolls Royce, Airbus, BAE Systems, Siemens, Jaguar Land Rover, Bentley Motors, Nissan Motor Company, Bombardier Transportation, to name just a few.

Destination of Leavers Survey
Every year our The University of Manchester conducts a destination of leavers survey with students six months after they have graduated. A small selection of these destinations since 2010 is listed below:
-Rolls Royce (Design Engineer)
-The University of Manchester (PhD Researcher)
-University of Sheffield (PhD Researcher)
-BAE Systems (Design Engineer)
-Airbus UK (Research and Technology Engineer)
-Siemens
-Tata Steel

Accrediting organisations

The Institution of Mechanical Engineers has accredited the Advanced Manufacturing Technology and Systems Management MSc course under license from the UK regulator, the Engineering Council. This allows satisfactory completion of the Advanced Manufacturing Technology and Systems Management MSc to contribute towards the academic requirements for registration with the Institution as a Chartered Engineer.

Read less
The Advanced Manufacturing Systems MSc course is designed to address the challenges of modern manufacturing and enterprise systems. Read more

About the course

The Advanced Manufacturing Systems MSc course is designed to address the challenges of modern manufacturing and enterprise systems. It covers a breadth of subjects that enable candidates to appreciate and deal with complexities of modern industrial environments.

The location for this course:
Brunel’s main campus in Uxbridge, West London, where the course is offered as a 1-year full-time, or 3-to-5 years distance learning programme.

The programme has been designed after extensive consultation with industry and is suitable for:
Recent engineering and technology graduates who have decided to move into manufacturing and related disciplines.
Established manufacturing engineers working in industry and faced with the challenge of new areas of responsibility.
Managers and designers working in manufacturing organisations who need to invest in their personal career development.
Professionals from engineering, technology or appropriate business backgrounds working in advisory, consultancy or research roles, who need to familiarise themselves with advanced manufacturing systems.

Aims

Demonstrate how the technological and human resources of manufacturing are organised to make products in the most competitive way.
Provide a thorough knowledge of the potential and limitations of new manufacturing technologies.
Illustrate the essential role of the human resource and its effective integration into the manufacturing system.
Give the sound theoretical underpinning necessary to exploit the potential of modern manufacturing systems.
Fit management and strategic theories into the realities of modern manufacturing by demonstrating a positive applications approach.
Encourage work on real industrial problems, giving confidence in the ideas underlying manufacturing and the practicalities of implementing these ideas.

Course Content

Modes of Study

1 Year Full-Time:
The taught element of the course (September to April) includes eight modules
delivery will be by a combination of lectures, tutorials and group/seminar work
a further four months (May to September) is spent undertaking the dissertation.

3-5 Years Distance Learning:
The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace.

There is no requirement to attend lectures at Brunel University - instead, you follow a structured programme of self-study at home or at work. Students are supplied with a study pack in the form of text books and CD-ROMs which are supported by e-learning web based lecture materials.

You can take between three and five years to complete the course, it is entirely up to you how long you take but usually the minimum is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

Compulsory modules

Systems Modelling and Simulation
Manufacturing Systems, Design and Economics
Sustainable Design and Manufacture
Advanced Manufacturing Measurement
Robotics and Manufacturing Automation
Computer Aided Engineering 1
Dissertation

Optional modules (choose two modules)

Design of Mechatronics Systems (full-time students only)
Project Management
Quality Management and Reliability
Logistics and Global Supply Chain Management (distance learning only)
Managing People and Organisations (distance learning only)

Special Features

From Brunel University
The top graduate (highest grade in the same year) from the course will be considered for a full or partial scholarship to cover tuition fees (normally three years) for the candidate to pursue research in the same area for PhD.

Applicants who have had exceptional achievements such as wining national or International Scientific Olympiads or nationally or internationally recognised inventions can also apply for Full or Partial scholarships to cover their tuition fees whilst reading AMS.

http://www.brunel.ac.uk/study/postgraduate-fees-and-funding/funding

The course is underpinned by the current research still being carried out by the staff in the former academic unit Advanced Manufacturing and Enterprise Engineering which promotes manufacturing as a discipline.  Thus the academics teaching on the Advanced Manufacturing Systems MSc which were part of this unit have strong research portfolios in manufacturing. This research has been judged world leading.  In the 2014 Research Excellence Framework, academics teaching on the course were involved with Brunel’s General engineering submission, one of one of the largest in the UK. The area’s percentage of world leading research doubled, with a significant increase in our research judged as internationally excellent as well. The impact of over 75% of this research was judged to be world leading or internationally excellent. This placed the discipline in the top 20% in the UK terms of research power.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

The course is accredited by the Institution of Mechanical Engineering (IMechE) and the Institution of Engineering and Technology (IET). This will provide a route to Chartered Engineer status in the UK, if you have a qualifying first degree. Please check with the relevant professional body.

Assessment

Assessment is by a combination of assignments and examinations.
Examinations can be taken either at Brunel University London or in the country you are resident in. We have an extensive network of organisations (universities, colleges and British Council Offices) throughout the world that will provide invigilation services.
The cost of invigilation away from Brunel is your responsibility. The exams are held in May and September each year.

Read less
Engineering Doctorates in Advanced Manufacturing for Engineers and Scientists. University of Strathclyde – Advanced Forming Research Centre (AFRC) Department for Design, Manufacture and Engineering Management (DMEM). Read more
Engineering Doctorates in Advanced Manufacturing for Engineers and Scientists

University of Strathclyde – Advanced Forming Research Centre (AFRC) Department for Design, Manufacture and Engineering Management (DMEM)

(4 year programme) fully funded scholarships available for an Engineering Doctorate in Advanced Manufacturing (EngD)

September 2014

This Engineering Doctorate is offered by the Advanced Manufacturing Industrial Doctorate Centre (AMIDC) (http://www.strath.ac.uk/afrc/amidc). The Centre, which focuses on developing new and enhanced manufacturing techniques within the forming sector is a joint collaboration between Strathclyde’s Advanced Forming Research Centre (AFRC) and the Department of Design, Manufacture and Engineering Management (DMEM). The AMIDC is the only established forging and forming research centre in the UK.

Students will undertake focused research to understand and develop solutions to the technical issues associated with manufacturing in an industrial context. The outputs from these projects will contribute valuable research to support the Manufacturing Industry, and working within sponsored companies will enable EngD candidates to help resolve issues and push the boundaries of current manufacturing techniques.

We are currently looking for outstanding graduates to join our September 2014 cohort who have achieved or are expected to achieve a first or second class Honours degree in Engineering, Science or Technology subject, or a Masters in Engineering.

Funding Opportunities

UK applicants are eligible to apply for the full scholarship (covering fees and stipend) The annual tax-free stipend starting at 15k.

EU applicants who have been resident in the UK for 3 years or more are also eligible for the full (stipend and fees) scholarship. EU applicants who have not been resident in the UK for 3 years or more are eligible for fees only support but can apply for partial University funding.

Overseas applicants are not eligible for EPSRC funding support as part of this programme, but can apply for partial University funding or on a self funded basis.

For more information on Strathclyde University tuition fees please visit:
http://www.strath.ac.uk/tuitionfees/

Other criteria for Eligibility for more information on eligibility please visit the
EPSRC studentship pages.

Please visit our website: http://www.strath.ac.uk/afrc/amidc/, or contact our Programme Coordinator: for more information.

Read less
This programme produces engineers who are highly skilled in the techniques of manufacturing management and its related technologies, providing the basis for effective careers as managers who can meet the challenges of the rapidly changing global manufacturing industry. Read more
This programme produces engineers who are highly skilled in the techniques of manufacturing management and its related technologies, providing the basis for effective careers as managers who can meet the challenges of the rapidly changing global manufacturing industry.

Core study areas include manufacturing system and process modelling, lean and agile manufacture engineering management and business studies, product information systems - product lifecycle management, the innovation process and project management, sustainable development, advanced manufacturing processes and automation, additive manufacturing and a project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/advanced-manuf-eng-mgt/

Programme modules

- Manufacturing System and Process Modelling
The objective of this module is to provide an understanding of manufacturing and its management that recognises breadth and depth of required resources and information. This is done through developing an understanding of the hierarchy of computer based modelling relevant to manufacturing, ranging from the detail of material behaviour in processed parts, through macroscopic process models to the integration of processes within manufacturing systems and higher level business processes.

- Lean and Agile Manufacture
This module allows students to gain an understanding of lean and agile concepts in the manufacturing business, including its distribution chains. Students will learn to specify, design and evaluate an appropriate lean or agile business system.

- Engineering Management and Business Studies
The aim of the module is to introduce the concepts of management techniques that are applicable to running an engineering company. Students will learn to evaluate commercial risk, plan and organise engineering activities for improved company effectiveness and communicate technical and business information to ensure maximum impact.

- Product Information Systems – Product Lifecycle Management
The objectives of this module are for students to understand and critically evaluate the emerging product information systems for designers in the form of Product Lifecycle Management (PLM) systems. Students will learn to use modern information and process modelling techniques to define the information integration and workflow requirements of a PLM configuration.

- The Innovation Process and Project Management
Students will establish a clear overview of the innovation process and an understanding of the essential elements within it. They will learn strategies for planning and carrying out innovative projects in any field.

- Sustainable Development: The Engineering Context
This module provides students with an understanding of the principles and practices of sustainable development and to provide them with an understanding of how engineers can help manufacturing businesses develop into more sustainable enterprises.

- Advanced Manufacturing Processes and Automation
Students will gain an in-depth knowledge of state-of-the-art manufacturing techniques, processes and technologies. They will learn to understand and critically evaluate advanced manufacturing processes and technologies, assessing their advantages and disadvantages.

- Additive Manufacturing
The module will introduce and develop the concepts of Additive Manufacturing (AM) and demonstrate the different AM techniques available at Loughborough University. The module will emphasise the strengths and weaknesses of the various technologies and highlight applications and case studies from the AM industry.

- Projects
In addition to the taught modules, all students undertake an individual major project. Part-time students normally undertake a major project that is based on the needs of their employing company.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling and independent research. Following eight taught modules, students pursue an individual project typically based on the diverse range of industrially focused manufacturing research strengths within the School. Part time students may base their projects on particular needs of their current employer.

Examinations are in January and May / June with coursework throughout the programme. The project is assessed by written report, presentation and exhibition.

Careers and further study

Within national or multinational manufacturing industry companies working as a Manufacturing Engineer, Project Engineer, Systems Analyst or Software Development Specialist. Graduates may also study for an MPhil or PhD with the School’s research groups.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a country outside the European Union. These scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why Choose Mechanical and Manufacturing Engineering at Loughborough?

The School of Mechanical and Manufacturing Engineering is a leader in technological research and innovation, with extensive national and international industrial links, and a long standing tradition of excellent teaching.

Our Industrial Advisory Committee, comprising of engineers at senior levels in the profession, ensures that our programmes contain the optimal balance of subjects and industrial relevance, with our programmes accredited by the Institution of Mechanical Engineers, Institution of Engineering and Technology and Institution of Engineering Designers.

- Facilities
The School has laboratories devoted to disciplines such as; dynamics and control, automation, fluid mechanics, healthcare engineering, internal combustion engines, materials, mechatronics, metrology, optical engineering, additive manufacturing, sports engineering, structural integrity and thermodynamics.

- Research
The School has a busy, multi-national community of well over 150 postgraduate research students who form an important part of our internationally recognised research activities.
We have seven key research centres (Electronics Manufacture, Intelligent Automation, Regenerative Medicine Embedded Intelligence, High Efficiency SCR for Low Emission Vehicles and High Value Manufacturing Catapult Centre) and we are a lead governing partner in the newly formed UK Manufacturing Technology Centre.

- Career prospects
90% of our graduates were in employment or further study within six months of graduating. Our graduates go on to work with companies such as Airbus, BAE Systems, Caterpillar, EDF Energy, Ford, IBM, Jaguar Land Rover, Millbrook Proving Ground, Rolls Royce and Tata Steel.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/advanced-manuf-eng-mgt/

Read less
This course is run in collaboration with the Advanced Manufacturing Research Centre (AMRC), a world-class centre for advanced machining and materials research. Read more

About the course

This course is run in collaboration with the Advanced Manufacturing Research Centre (AMRC), a world-class centre for advanced machining and materials research. It covers the latest advances in manufacturing technology.

Subject areas include: work holding, measurement and assembly, materials science solutions, and novel manufacturing techniques and processes. You’ll also learn about the management of manufacturing innovation, from identifying products and processes through to integration.

Your career

Our courses are designed to prepare you for a career in industry. You’ll get plenty of practical research experience, as well as training in research methods and management. Recent graduates now work for Arup, Rolls-Royce and Network Rail.

A world-famous department

This is one of the largest, most respected mechanical engineering departments in the UK. Our reputation for excellence attracts world-class staff and students. They’re involved in projects like improving car designs and designing jaw replacements – projects that make a difference.

Our world-famous research centres include the Insigneo Institute, where we’re revolutionising the treatment of disease, and the Centre for Advanced Additive Manufacturing. We also work closely with the University’s Advanced Manufacturing Research Centre (AMRC).

Support for international students

Our students come from all over the world. We’ll help you get to know the department and the city. Your personal tutor will support you throughout your course and we can help you with your English if you need it.

Labs and equipment

We’ve just refurbished a large section of our lab space and invested over £350,000 in equipment including new fatigue testing facilities, a CNC milling centre, a laser scanning machine and a 3D printer.

Core modules

Information Management; Individual Research Project.

Examples of optional modules

A selection from: Additive Manufacturing; Design Innovation Toolbox; Robotics; Mechatronics; Vibrations and Acoustics; Experimental Stress Analysis; Feedback Systems Design; Advanced Finite Element Modelling.

Read less
Manufacturing and engineering are thriving sectors at the heart of the UK economy. They generate jobs, promote economic growth and increase global trade. Read more

Why this course?

Manufacturing and engineering are thriving sectors at the heart of the UK economy. They generate jobs, promote economic growth and increase global trade.

Manufacturing engineers therefore play a vital role in integrating technology and management within the sector to achieve added value and deliver superior performance.

This popular MSc programme is based within the Department of Design, Manufacture & Engineering Management, the only department in the UK combining end-to-end expertise from creative design, through engineering design, manufacture and management of the entire system.

This course is designed for:
- graduates with experience in manufacturing, engineering, design or business who wish to develop their manufacturing expertise. This course is ideal for graduates wishing to transfer smoothly and effectively to a career in the manufacturing sector of industry

- established manufacturing engineers, designers and managers working in the industry who are facing new challenges and increased areas of responsibility. New disruptive technologies also present a significant opportunity for existing professionals to further develop their career in advanced manufacturing technology systems

This course will prepare students for industrial careers within a reinvigorated global manufacturing sector. Students will develop specialist skills in areas such as:
- manufacturing automation
- advanced production techniques
- micro/nano-manufacturing
- materials and production technology
- strategic technology management

At the end of the course you'll have a greater understanding of the methods, tools and techniques relating to advanced manufacturing technology and systems.

You'll be able to apply your knowledge and skills by taking part in projects to solve some of the technological problems currently faced by industry.

The course is run jointly with the Advanced Forming Research Centre (AFRC), a £35 million facility developing forming and forging technologies to support the development of high integrity components. The AFRC is one of seven elite centres that form the UK High Value Manufacturing Catapult which is the catalyst for the future growth and success of manufacturing in the UK.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/advancedmanufacturingtechnologysystems/

- Funded places
There are a limited number of funded places (fees +£3,000 scholarship) available for this programme for students with home status for fees purposes (Scotland & EU). As these are allocated on a first-come, first-served basis, applicants are encouraged to apply as early as possible.

You’ll study

You'll take a combination of compulsory and optional taught modules.

Major projects

During the programme, you'll undertake an individual and group project.

For group projects, you'll have the opportunity to work with fellow students and an industrial client to address a practical problem. You'll gain direct industry experience, develop skills and manage a project through to completion. Previous students have worked with organisations such as Rolls Royce, BAE Systems and Weir Group.

For individual projects, you'll have the opportunity to combine the skills learned in other course modules and apply them to an industry-involved or funded project within a specific area of manufacturing.

Facilities

Our facilities provide you with a large range of rapid prototyping and manufacturing tools and machinery. These will help you to design, prototype, manufacture and perform research on a broad range of items.

The AFRC has invested £35M in equipment for the development of forming and forging technologies.

Teaching staff

Some of the key course content will be taught by leading experts in manufacturing technology and product design and engineering management. High-profile teaching staff include:
- Professor Yi Qin, internationally leading expert in Micro-Manufacturing and Forming technology
- Dr Andrzej Rosochowski, a leading expert in Ultra-fine Grained Metals and Processing
- Professor Alex Duffy, Editor of the Journal of Engineering Design and past President of the Design Society
- Professor Jonathan Corney, leading expert in CAD/CAM and Rapid Manufacturing
- Mr Gordon Mair – a pioneering researcher in Telepresence Research
- Dr Xiu-Tian Yan - Vice Chairman of the Mechatronics Forum

Learning & teaching

Lectures, tutorials and practical laboratories.

Assessment

Major assessment formats are written assignments. There is also a group project and an individual Master project.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/

Read less
Modern manufacturing is a growing industry worldwide and is continually challenging engineers for more effective use of technology, management systems, production techniques and processes. Read more
Modern manufacturing is a growing industry worldwide and is continually challenging engineers for more effective use of technology, management systems, production techniques and processes.

The Advanced Manufacturing Systems and Technology MSc has been developed in conjunction with the industry partners to develop industry ready engineers.

The programme is designed to provide advanced level knowledge, breadth and depth for modern manufacturing engineers and managers.

Fully accredited by the Institute of Mechanical Engineers UK, this programme is constantly updated to reflect the latest developments in technology, management tools and methodologies.

This 12-month programme consists of compulsory and optional taught modules over two semesters and a major project starting in semester 2 and continuing through the summer.

Projects

Project work contributes 60 credits, which will be based on a topic of industrial or scientific relevance, and will be carried out in laboratories in the University or at an approved placement in industry. The project is examined by dissertation, and award of the MSc(Eng) degree will require evidence of in-depth understanding, mastery of research techniques, ability to analyse assembled data, and assessment of outcomes.

Why School of Engineering?

In the Research Excellence Framework 2014, our research was ranked 5th in UK for 4* and 3* research (world leading and internationally excellent research)

Our teaching programmes are also highly rated and this is underpinned by an extensive programme of research.

Outstanding facilities

The School of Engineering has a welldeserved and highly respected reputation for its excellent experimental and computational facilities. Our £32 million redevelopment includes the state-of-theart ‘Active Learning Labs’, a cutting-edge teaching facility, one of the largest and best equipped in Europe. We have two research-standard full motion flight simulators (one of which is unique in the academic world), mechanical robotics, wind turbines, water flumes, additive layer manufacturing and many more facilities.

Career prospects

We equip our students for rewarding careers and our graduates have found jobs in a wide range of industries and organisations, both in the UK and abroad.

Programmes include a strong practical element and incorporate the latest academic and industry research, enabling you to work effectively at the forefront of engineering.

When you graduate you can count on the University's Careers and Employability Service to help you plan your future.

Employers

We've consistently achieved the highest grades in research assessments and many of our research programmes are supported by industrial companies such:-

- Agusta Westland
- Airbus
- BAE Systems
- QinetiQ
- Unilever
- Jaguar
- Ford
- National and international bodies such as EPSRC and the European Commission.

Read less
This course is designed to respond to a growing shortage of workforce in manufacturing sector. Read more

Why take this course?

This course is designed to respond to a growing shortage of workforce in manufacturing sector. It intends to equip our students with relevant and up-to-date knowledge and skills of advanced design tools, materials, manufacturing processes and systems in conjunction with developing efficient operation and effective management skills. Integrating these will ensure our students to develop the technological and practical ability to meet manufacturing demand for product, company and market needs.

What will I experience?

On this course you can:

Use simulation and modelling application software for virtual design and manufacturing
Utilise our strong links with companies and investigate real industrial problems to enhance your understanding of the profession
Tie in the topic of your individual project with one of our research groups and benefit from the expertise of our actively researching academics

What opportunities might it lead to?

This course has been accredited by the Institution of Mechanical Engineers (IMechE) meeting the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). It will provide you with some of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng).

Here are some routes our graduates have pursued:

Design
Research and development
Product manufacture
Project management

Module Details

This course aims to provide you with the inter-disciplinary knowledge, attributes and skills necessary to apply the principles of advanced manufacturing systems within the manufacturing industry. You will study several key topics and also complete a four-month individual project tailored to your individual interests that can take place in our own laboratories or, by agreement, in industry.

Here are the units you will study:

Integrated Manufacturing Systems: Systems concepts and techniques are developed in logistics and manufacturing areas with a strong emphasis on simulation techniques and practical case study analysis.

Operations and Quality Management: A strategic approach is used with modern inventory and supply chain management and logistics tools and techniques. Management strategies are developed for quality, including quality systems and quality control.

Advanced Materials: This unit is designed to deal with a wide range of advanced materials for engineering applications. Teaching will address analytical and numerical methods to assess the strength, stiffness, toughness, non-linearity behaviours, vibration and failures of engineering materials for component and structure design.

Supply Chain Management: Supply chain management involves the coordination of production, inventory, location and transportation, among participants in a supply chain. This unit considers the principles and tools of supply chain management, with an emphasis on lean six sigma methods.

Virtual Systems Design and Simulation for Production: This unit is particularly designed to enhance students’ analytical knowledge and practical skills focusing on a sustainable development of systematic approaches and lean production methods to support manufacturing systems analysis, design and performance evaluation with an aid of using advanced computer design and modelling simulation tools.

CAD/CAM Systems: An integrated approach is used towards CAD and CAM. Significant practical hands-on experience is given with commercial level software. Emphasis is placed on case study analysis and system selection and evaluation.

Individual Project: A strong feature that comprises a third of the course. You will be encouraged to undertake projects where possible in industrial companies. However, we also use our extensive resources and staff skills to undertake them within the University.

Programme Assessment

You will be taught through a mixture of lectures, seminars, tutorials (personal and academic), laboratory sessions and project work. The course has a strong practical emphasis with a significant amount of your time spent our laboratories. We pride ourselves on working at the leading-edge of technology and learning practices.

A range of assessment methods encourages a deeper understanding of engineering and allows you to develop your skills. Here’s how we assess your work:

Written examinations
Coursework
Laboratory-based project work
A major individual project/dissertation

Student Destinations

The demand for more highly skilled manufacturing engineers is always present and it is generally accepted that there is a current shortage of engineers.

This course has a record of almost 100 per cent of our graduates gaining employment in relevant areas such as manufacturing and logistics management, systems engineering, production engineering, design engineering and project management. You could work for a large company, in the Armed Forces or in one of the many small companies within this sector. You could even start your own specialist company.

Roles our graduates have taken on include:

Manufacturing engineer
Product design engineer
Aerospace engineer
Application engineer

Read less
Enhance your knowledge and skills in the rapidly developing field of additive manufacturing (also known as 3D printing) and advanced manufacturing technologies with this MSc course. Read more
Enhance your knowledge and skills in the rapidly developing field of additive manufacturing (also known as 3D printing) and advanced manufacturing technologies with this MSc course. It's aimed at both new graduates and professional mechanical engineers.

The course has been developed to meet the demands of industry and will expose you to cutting-edge manufacturing techniques and applications. You’ll gain practical experience in research, including training in research methods and management.

There are specialist modules in additive manufacturing, state-of-the-art manufacturing technologies, materials and a broad range of modules in advanced mechanical engineering. You'll carry out a research project on additive manufacturing, working with cutting-edge technologies and relevant industrial sectors. Further optional modules are available, allowing you to customise the course based on your interests or career aspirations.

The investigative MSc project takes place within our internationally renowned Centre for Advanced Additive Manufacturing (AdAM) under the guidance of world-leading academics in this field.

The AdAM centre, with its state-of-the art facilities, carries out research in collaboration with industry in areas of process, material and design for aerospace, automotive and medical sectors.

Core modules

Information Management
Additive Manufacturing – Principles and Applications
Additive Manufacturing – Principles and Applications 2
Research Project

Optional modules

Design Innovation Toolbox
Engineering Marketable Solutions: Make a Change!
Aerospace Metals
Advanced Materials Manufacturing: Part I
Engineering Composite Materials
Signal Processing and Instrumentation
Condition Monitoring
Advanced Finite Element Modelling
Advanced Topics in Machining

Teaching

Lectures
Tutorials and example classes
Interactive workshops
Group presentation sessions
Individual research project

Assessment

Exams
Essays
Oral and poster presentations
Research project report

Read less
The aim of this course is to ensure graduates will be able to deal with complex issues both systematically and creatively and make sound judgements associated with rapid product manufacture by means of existing, new and emerging manufacturing processes. Read more
The aim of this course is to ensure graduates will be able to deal with complex issues both systematically and creatively and make sound judgements associated with rapid product manufacture by means of existing, new and emerging manufacturing processes. The course aims to ensure that graduates will be able to demonstrate self-direction and originality and are equipped with the appropriate knowledge to practise professionally and ethically in future employment roles. Thus, the course will:

Address industry’s demand for graduates who can apply innovative product manufacturing solutions to promote the rapid and cost effective manufacture of discrete parts and tooling across the engineering sector

Develop the ability to research a range of subject areas within manufacturing, mechanical, materials science and engineering disciplines, underpinning the ability to act autonomously in planning and implementing tasks at a professional or equivalent level

Generate graduates capable of synthesising their detailed understanding of engineering design and related material science in order to offer confident justified solutions to complex, unpredictable and open ended situations.

Read less
Manufacturing is changing. To increase productivity, companies have to be endlessly adaptable. This programme is designed for manufacturers of all sizes, in all sectors. Read more
Manufacturing is changing. To increase productivity, companies have to be endlessly adaptable.

This programme is designed for manufacturers of all sizes, in all sectors. It's about improving processes – not just on the production side, but in accounting, finance, marketing and sales. It's about streamlining supply chains, identifying new markets and understanding customers better.

But that's not all.

Because we want this to be a truly inspirational experience, we’re going to show you what the future looks like. On two week-long field trips, you’ll see for yourself how innovation is transforming manufacturing businesses in developed economies such as the UK or Germany and in emerging markets such as India.

The modules are directly relevant, whatever your company makes. And the innovative timetable means you can keep working while you study, constantly bringing fresh insight back into the business. This is no box-ticking exercise. This is executive education with purpose and drive.

Modules

Global Challenges: Ethics, Sustainability and the Future of Manufacturing
Accounting and Financial Management
Managing People
Operations and Supply Chain Management
Global and Managerial Economics
Corporate Finance
Strategic Marketing and B2B Sales
Corporate Strategy
Negotiation Skills
Technological Innovation and Corporate Entrepreneurship
Managing Complex Projects
Leading Change
Risk and Crisis Management
Process and Organisational Improvement
International Management Consultancy

Read less
This MSc in Advanced Engineering Design is aimed at high calibre and ambitious engineering graduates who want to gain expertise in systematically developing complex, multidisciplinary engineering design. Read more

About the course

This MSc in Advanced Engineering Design is aimed at high calibre and ambitious engineering graduates who want to gain expertise in systematically developing complex, multidisciplinary engineering design.

You will learn how to design products requiring embedded intelligence and comprehensive engineering analysis and how to use six CAE software packages.

The programme - accredited by the Institution of Mechanical Engineering (IMechE) - has been developed to fulfil the industry’s need for an integrated course that offers:
teaching of advanced theory, human factors and creativity tools essential to successful product development
training in software, research and applications
practical experience of applying your knowledge and skills through an integrating, real life group project.

Aims

Integration of mechanical, electrical, electronic and control knowledge into a single product is challenging – and this course allows you to appreciate the complexity of modern product design and to develop your expertise.

The Brunel programme aims to create the new generation of engineering designers who can combine knowledge from different areas and produce world class design.

Engineering design is the application of engineering principles, the experience of making, and use of mathematical models and analysis. The design and production of complex engineering products often require the use of embedded intelligence and detailed engineering analysis involving mechanical, electronic and control functions. Advanced theoretical knowledge and a wide range of computer driven tools, methods and methodologies are essential for this process – and the course provides graduates with these essentials.

Course Content

Continued design of modern complex products demands advanced knowledge in mechanical, electronic, manufacturing and control engineering disciplines and human factors in design, and an ability to use advanced engineering software packages, integrating application experience and a capacity to carry on learning.

The Advanced Engineering Design MSc has been developed to produce design engineers who can meet these demands. It contains six taught modules where advanced multi-disciplinary theory is taught. As part of the course, six engineering software packages are also taught. In order to give an integrating application experience in an industrial setup, 'Design Experience', a group project module with an industry, has been included as part of the curriculum.

The dissertation is aimed at providing training in carrying out an in-depth engineering task on a self-learning basis. By the end of the course you will become a confident design engineer equipped with high quality and advanced knowledge and skills to work on design tasks in an advanced computer assisted environment.

Compulsory Modules

Sustainable Design and Manufacture
Manufacturing Systems Design and Economics
Computer Aided Engineering 1
Computer Aided Engineering 2
Design Experience
Dissertation Project

Optional Modules (choose two modules)

Advanced Manufacturing Measurement
Human Factors in Design
Robotics and Manufacturing Automation
Design of Mechatronic Systems

Special Features

Special facilities

MSc Engineering Design students work in a well-equipped design studio with various experiential learning facilities, with computers available for your exclusive use of Engineering Design students.Our investment in laboratory facilities and staff ensures that we can provide an excellent experience in a friendly and supportive environment.

Industry-focused programme

The high standard of our research feeds directly into curriculum design and our teaching, ensuring our graduates are equipped with the most up-to-date techniques, methods and knowledge bases. Our teaching has an excellent reputation and is orientated to the expressed needs of modern enterprises and the industry.
The course is underpinned by the current research still being carried out by the staff in the former academic unit Advanced Manufacturing and Enterprise Engineering which promotes manufacturing as a discipline.  Thus the academics teaching on the Advanced Engineering Design which were part of this unit have strong research portfolios in manufacturing. This research has been judged world leading.  In the 2014 Research Excellence Framework, academics teaching on the course were involved with Brunel’s General engineering submission, one of one of the largest in the UK. The area’s percentage of world leading research doubled, with a significant increase in our research judged as internationally excellent as well. The impact of over 75% of this research was judged to be world leading or internationally excellent. This placed the discipline in the top 20% in the UK terms of research power.

Global reputation

With around 150 postgraduate students from all around the world and substantial research income from the EU, research councils and industry, we are a major player in the field of advanced manufacturing and enterprise engineering.
 
Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

The MSc Advanced Engineering Design is accredited by both the Institution of Mechanical Engineering (IMechE). This will provide a route to Chartered Engineer status in the UK.

Read less
This new course has been established with the Institute for Innovation and Sustainable Engineering (IISE) and with funding from HEFCE. Read more

About this course:

This new course has been established with the Institute for Innovation and Sustainable Engineering (IISE) and with funding from HEFCE. It’s appropriate to both recent graduates and those in work, and is ideal for students who have undertaken study in other subjects who wish to start a career in manufacturing and other high-tech industries.

Additive manufacturing (AM) is an emerging advanced manufacture technology. By combining study in this area with advanced materials, you’ll gain an understanding of the challenges in using this technology to produce specific properties in components using this technique. Materials and their ability to be designed and manufactured sustainably in complex geometries is particularly important to innovation in the industries of automobiles, trains and planes, as well as architecture and biomedical applications. There are growing opportunities for graduates who can forge a future for companies in the exciting area of materials and manufacturing development.

This intellectually stimulating and research orientated course will provide you with the innovative skills and understanding of advanced materials and additive manufacturing and their applications. You’ll have access to facilities and specialist staff at our research centre, IISE, which contains an advanced machining and additive manufacturing facility. You’ll also take advantage of our excellent teaching resources on campus, which will be complemented by our new £14 million engineering building, opening in 2017.

Upon completion of this degree, you’ll have the potential to apply for professional accreditation as a Chartered Engineer.

Core and optional modules:

You'll study modules such as:

3D Printing
Research Methods: Application and Evaluation
Environmental Risk and Responsibility
Additive Manufacture Processes
Advanced Materials
Design and Materials Selection
CPD and Strategic Management
Additive Manufacturing Applications
Data Visualisation Science
Independent Scholarship (Technology)

Read less
This online Advanced Materials and Additive Manufacturing MSc, covers an advanced emerging area of manufacturing technology, also referred to as 3D printing. Read more
This online Advanced Materials and Additive Manufacturing MSc, covers an advanced emerging area of manufacturing technology, also referred to as 3D printing. You will study a wide range of topics that will equip you with the knowledge and confidence in this everchanging area of engineering. These include: Additive Manufacturing Applications, Advanced Materials Science and Data Science Visualisation to name a few.

It is designed for both engineering graduates and also as a conversion programme for students who have other analytical qualifications. If you would like to know more about this course, visit our website.

Become a Chartered Engineer

Not only will you be studying a advanced new area of study, this online degree also equips you with the knowledge and academic underpinning to be able to apply for Chartered Engineer status once you've graduated.

When can I start?

Choose from three start dates – January, May or September.
Visit our website to learn more.

Read less
The Engineering Management MSc programme helps you master current and emerging engineering management issues and the management principles that underpin effective strategies and outcomes. Read more

About the course

The Engineering Management MSc programme helps you master current and emerging engineering management issues and the management principles that underpin effective strategies and outcomes.

Balancing academic theory with practical opportunities, it equips you to handle the diverse management responsibilities that require knowledge in finance, systems thinking, operations, human resources and the design and management of the supply chain.

You will understand the way in which finance and assets are managed within the business, appreciate the concepts and principles of marketing and customer care and learn effective team working and motivation techniques – as well as a range of transferable skills.

Aims

Studying management within the MSc Engineering Management programme allows you to obtain an understanding of how an engineering organisation is managed internally and operates from a corporate perspective.

Increasingly employers are looking for students who can demonstrate a strong understanding, not just in the technical (your first degree), but also in managing people, processes, understanding business models especially in relation to the supply chain, and corporate strategy.

Most students choosing this programme are looking to demonstrate a broad range of management knowledge and skills that can be used together with their technical background to obtain management positions in their careers.

The course is intended to benefit a wide range of participants, in particular:

Engineering and technology graduates who aspire to management positions.
Established engineers working in industry and faced with the challenge of new areas of responsibility following promotion to management positions.
Managers working in engineering organisations who have the technical knowledge and skills but need to broaden their experience and update their expertise.
Others with engineering, technology or appropriate business backgrounds, working in advisory, consultancy or research roles, who need to familiarise themselves with engineering management principles and practices.
European and other overseas engineers who wish to broaden their education in the United Kingdom.

Course Content

Modes of Study

1 Year Full-Time: The taught element of the course (September to April) includes eight modules; delivery will be by a combination of lectures, tutorials and group/seminar work. A further four months (May to September) is spent undertaking the dissertation.

3-5 Years by Distance Learning: The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace. For more information regarding distance learning please see website

http://www.brunel.ac.uk/study/postgraduate/Engineering-Management-MSc

Typical Modules

Compulsory Modules

Logistics and Global Supply Chain Management
Manufacturing Systems Design and Economics
Quality Management and Reliability
Managing People and Organisations
Project Management
Dissertation
Systems Modelling and Simulation

Optional Modules (choose two)

Advanced Manufacturing Measurement
Sustainable Design and Manufacture
Global Manufacturing
Robotics and Manufacturing Automation
Financial Management

Special Features

Research

The course is underpinned by the current research still being carried out by the staff in the former academic unit Advanced Manufacturing and Enterprise Engineering which promotes manufacturing as a discipline.  Thus the academics teaching on the Engineering Management MSc which were part of this unit have strong research portfolios in manufacturing. This research has been judged world leading.  In the 2014 Research Excellence Framework, academics teaching on the course were involved with Brunel’s General engineering submission, one of one of the largest in the UK. The area’s percentage of world leading research doubled, with a significant increase in our research judged as internationally excellent as well. The impact of over 75% of this research was judged to be world leading or internationally excellent. This placed the discipline in the top 20% in the UK terms of research power.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

The MSc Engineering Management is accredited by both the Institution of Mechanical Engineering (IMechE) and the Institution of Engineering and Technology (IET). This will provide a route to Chartered Engineer status in the UK.

Teaching

Students are supplied with a study pack in the form of text books and CD-ROMs which are supported by e-learning web based lecture materials.

Students can take between three and five years to complete the course, it is entirely up to you how long you take but usually the minimum is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

Assessment

Assessment is by a combination of assignments and examinations. Examinations can be taken either at Brunel University or in the country you are resident in (the latter on the Distance Learning mode only). We have an extensive network of organisations (universities, colleges and British Council Offices) throughout the world that will provide invigilation services. The cost of invigilation away from Brunel is your responsibility. The exams are held in May and September each year.


 

Read less

Show 10 15 30 per page



Cookie Policy    X