• University of Southampton Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
King’s College London Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Leeds Featured Masters Courses
Cranfield University Featured Masters Courses
Bath Spa University Featured Masters Courses
"advanced" AND "engineeri…×
0 miles

Masters Degrees (Advanced Engineering Materials)

We have 542 Masters Degrees (Advanced Engineering Materials)

  • "advanced" AND "engineering" AND "materials" ×
  • clear all
Showing 1 to 15 of 542
Order by 
Engineers are the key to the development of society and solving the problems the world currently faces. They have the power to make the world fundamentally different. Read more
Engineers are the key to the development of society and solving the problems the world currently faces. They have the power to make the world fundamentally different.

The Master of Advanced Engineering is the key transitional stage in your career, transforming you into a global leader. Gain a depth of knowledge, mastering the crucial skills to become a leading contributor in your field.

Customise your degree - the Master of Advanced Engineering offers flexibility to complete your Master degree in just one year, or you can choose a two year option.

This course is designed to extend your knowledge in your chosen specialisation area and advance your leadership and complex problem-solving skills in a cross cultural environment.

Understand, reflect critically upon and apply methods in at least one specialist engineering area to design solutions to complex, multifaceted engineering problems.

Common core units will develop crucial skills in areas such as data analysis and entrepreneurship, translating theory into engineering practice. In discipline core units you will identify, interpret and critically appraise current developments and technologies within your specialisation.

Enhancement units are designed to provide breadth and are taken from either another engineering specialisation or in complementary areas such as information technology and business.

In addition, the two year version of the program offers a range of technical electives that will deepen your understanding of a specific topic, and two, year- long engineering project units. You will work closely with an academic on a topic of your choice and immerse yourself in a multidisciplinary design project.

The Master of Advanced Engineering could also be your stepping stone to a research degree. All of this in highly interactive, expert led classes.

Visit the website http://www.study.monash/courses/find-a-course/2016/advanced-engineering-e6001?domestic=true

Overview

Please select a specialisation for more details:

Chemical engineering

Your qualification will be a Master of Advanced Chemical Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Chemical Engineering allows you to engage in the areas of study including advanced reaction engineering, process design and optimization, conversion of bioresources into fuel, materials and specialty chemicals, and nanostructured membranes for sustainable separations and energy production with an emphasis on the latest developments in the field. In this course, you will develop specialised knowledge and skills that are important to Chemical Engineers in industry and research. This course provides graduates with enhanced opportunities for advancement in their careers.

Civil engineering (Infrastructure systems)

Your qualification will be a Master of Advanced Civil Engineering (Infrastructure Systems)

The Master of Advanced Civil Engineering (Infrastructure Systems) will equip graduates to work with in the area of infrastructure engineering and management. It will provide the fundamental knowledge associated with interfacing both structural and geotechnical designs for infrastructure systems. The program is designed to equip you with advanced skills necessary for managing the challenges posed by ageing and leading designs of new complex infrastructure systems. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills, as well as to develop theoretical and applied knowledge in the area of infrastructure engineering and management.

Civil engineering (Transport)

Your qualification will be a Master of Advanced Civil Engineering (Transport)

Please note that this specialisation is available only in Clayton.

The Master of Advanced Civil Engineering (Transport) program deals with the fundamental knowledge associated with transport engineering and management, traffic engineering, intelligent transport systems and transport planning. The program in is a response to the growing need for engineers with broad awareness of the characteristics and significance of transport, including its technological, economic and social impact. At the same time, the program outlines the state-of-the-art of transport engineering, as it may be applied to the solution of real problems in the planning, design, management and operation of transport facilities. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills as well as to develop theoretical and applied knowledge in the area of transport engineering and management.

Civil engineering (Water)

Your qualification will be a Master of Advanced Civil Engineering (Water)

Please note that this specialisation is available only in Clayton.

The Master of Advanced Civil Engineering (Water) allows you to major in water resources engineering and management. This program deals with the fundamental knowledge associated with surface and ground water flow, stormwater management, water quality, flood forecasting and mitigation. The program is designed to equip you with advanced skills necessary for managing the challenges posed by changing climatic condition on water resource management. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills as well as to develop theoretical and applied knowledge in the area of water resources engineering and management.

Electrical engineering

Your qualification will be a Master of Advanced Electrical Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Electrical Engineering will give you a broad introduction to advanced techniques in signal processing, communications, digital systems and electronics. The units have been chosen around the common theme of embedded systems: special purpose computing systems designed for specific applications. They are found just about everywhere including in consumer electronics, transportation systems, medical equipment and sensor networks. The course will mix theory and practice and will contain a significant amount of hands-on learning in laboratories and team-based design projects.

Energy and sustainability engineering

Your qualification will be a Master of Advanced Engineering (Energy and Sustainability)

Please note that this specialisation is available only in Malaysia.

The Master of Advanced Engineering (Energy and Sustainability) is designed for qualified engineers keen to deepen their knowledge in the energy and sustainability area. The course provides foundations in general engineering through engineering analysis and entrepreneurship units. Students can major in this program by examining energy and sustainability area from a multi-disciplinary perspective. Students can also choose elective units such as environment and air pollution control and smart grids to further enhance their knowledge in this area or undertake a minor research work to pursue a topic of interest related to this area.

Materials engineering

Your qualification will be a Master of Advanced Materials Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Materials Engineering encompasses practical aspects of the key classes of materials such as metals, polymers, biomaterials, nanomaterials and energy-related materials. This program particularly focuses on the most up-to-date aspects of the field, along with the utilisation of materials and their electronic, chemical and mechanical properties as underpinned by the microstructures that are revealed by modern characterisation techniques. This program is designed to prepare students to appreciate and exploit the central role of materials in addressing the present technical, economic and environmental problems involved in the design and construction of engineering structures, processes and devices. This course is ideally suited for new graduates as well as professional engineers who are eager to advance their applied knowledge in the area of Materials Engineering.

Mechanical engineering

Your qualification will be a Master of Advanced Mechanical Engineering

Please note that this specialisation is available only in Clayton.

Most modern engineering projects are multidisciplinary in nature and require a broad range of skills, proficiencies and perspectives to accomplish the task. The Master of Advanced Mechanical Engineering takes a systems approach to the design, monitoring and performance of complex mechanical engineering systems in the fields of renewable energy, aerospace, buildings, transportation, and biomedical devices. The systems approach also permeates the design of the course: four discipline-based core units are vertically integrated so that common problems are examined from different perspectives, culminating in a sustainable systems unit.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/engineering

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/advanced-engineering-e6001?domestic=true#making-the-application

Read less
Due to the high volume of applications, this course is now over-subscribed. Applications for this course can still be made, and successful applicants will be added to a waiting list. Read more
Due to the high volume of applications, this course is now over-subscribed. Applications for this course can still be made, and successful applicants will be added to a waiting list. Places will be allocated from the waiting list on a first-come, first-served basis should places become available.

Please note, having a space on the waiting list is not a guarantee of an offer.

Aims

The programme aims to convey detailed knowledge of state-of-the-art materials systems, with a focus on composites, advanced alloys and functional and engineering ceramics. The students explore the technologies used in the manufacture and processing of advanced materials and develop an understanding of the relationships between composition, microstructure, processing and performance. The student learn how to assess materials performance in service and develop an understanding of the processes of degradation in hostile conditions. They are also trained in the essential skills needed to design and develop the next generation of high performance engineering materials, establishing a strong foundation for a future career in industry or research.

Course unit details

The taught units cover the structure and design of advanced engineering materials and provide graduates with an increased depth and breadth of knowledge of materials science, technology and engineering.

Taught units include:
-Introduction to Materials Science
-Industrial Processing of Materials
-Advanced Composite Materials
-High Performance Alloys
-Advanced Analytical Techniques
-Functional and Engineering Ceramics

Facilities

To underpin the research and teaching activities at the School, we have established state-of-the-art laboratories, which allow comprehensive characterisation and development of materials. These facilities range from synthetic/textile fibre chemistry to materials processing and materials testing.

To complement our teaching resources, there is a comprehensive range of electrochemical, electronoptical imaging and surface and bulk analytical facilities and techniques.

Career opportunities

Our graduates of this programme have gone on to fill key posts as materials scientists, engineers, managers and consultants in academia, industry and research and development. You may also be able to advance to PhD programmes within the School.

Accrediting organisations

The MSc in Advanced Engineering Materials is accredited by the Institute of Materials, Minerals and Mining (IoM3) with the award of Further Learning.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Engineering at Swansea University has key research strengths in materials for aerospace applications and steel technology. As a student on the Master's course in Materials Engineering, you will be provided with the depth of knowledge and breadth of abilities to meet the demands of the international materials industry.

Key Features of MSc in Materials Engineering

Through the MSc Materials Engineering course you will be provided with training and experience in a broad range of topic areas, including metallurgy and materials selection, modern methods used for engineering design and analysis, the relationship between structure, processing and properties for a wide range of materials, materials and advanced composite materials, structural factors that control the mechanical properties of materials, and modern business management issues and techniques.

The MSc Materials Engineering course is an excellent route for those who have a first degree in any scientific or technical subject and would like to become qualified in this field of materials engineering.

MSc in Materials Engineering programme is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Students must successfully complete Part One before being allowed to progress to Part Two.

The part-time scheme is a version of the full-time equivalent MSc scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Modules

Modules on the MSc Materials Engineering course can vary each year but you could expect to study:

Composite Materials

Polymer Processing

Environmental Analysis and Legislation

Communication Skills for Research Engineers

Simulation Based Product Design

Aerospace Materials Engineering

Structural Integrity of Aerospace Metals

Ceramics

Environmental Analysis and Legislation

Physical Metallurgy of Steels

Accreditation

The MSc Materials Engineering course at Swansea University is accredited by the Institute of Materials, Minerals and Mining (IOM3).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Within Engineering at Swansea University there are state-of-the-art facilities specific to Materials Engineering.

- Comprehensive computer systems for specialist and general purposes.

- World-leading equipment for characterisation of the mechanical properties of metallic, ceramic, polymeric and composite materials.

- Extensive range of laboratories housing scanning electron microscopes with full microanalysis and electron backscatter diffraction capabilities.

Careers

Materials engineering underpins almost all engineering applications and employment prospects are excellent.

Employment can be found in a very wide range of sectors, ranging from large-scale materials production through to R&D in highly specialised advanced materials in industries that include aerospace, automotive, manufacturing, sports, and energy generation, as well as consultancy and advanced research.

Materials engineering knowledge is vital in many fields and our graduates go on to successful careers in research and development, product design, production management, marketing, finance, teaching and the media, and entrepreneurship.

Links with Industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce

Airbus

Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.



Read less
Are you keen to develop your existing engineering skills and knowledge to master’s level?. The MSc Engineering Management course has been specifically designed to allow you to update, extend and deepen your understanding of engineering and management. Read more
Are you keen to develop your existing engineering skills and knowledge to master’s level?

The MSc Engineering Management course has been specifically designed to allow you to update, extend and deepen your understanding of engineering and management.

You will build on your current knowledge of subjects such as solid modelling and prototyping, computer aided design and engineering data analysis, whilst developing management and entrepreneurial skills that will enhance your career opportunities within engineering and the broader business environment.

In the second year, for one semester, you’ll undertake an internship, study in another country or join a research group. This valuable experience will enhance your employability and further develop your theoretical and practical skills.

Internship

This option offers the opportunity to spend three months working full-time in one of the many companies/industries with which we have close links. You may be able to extend this over more than one semester in cases where it is adjacent to a vacation period. We will endeavour to help those who prefer this option to find and secure a suitable position but ultimately we are in the hands of the employers who are free to decide who they take into their organisation.

Research

If you take this option, you will be assigned to our Engineering, Physics and Materials Research Group. There is every possibility that you may contribute to published research and therefore you may be named as part of the research team, which would be a great start to a research career.

Study Abroad

We have exchange agreements with universities all over the world, including partners in Europe, Asia, the Americas and Oceania. If you take the Study Abroad option you will spend a semester at one of these partners, continuing your studies in English but in a new cultural and learning environment. Please note that this option may require you to obtain a visa for study in the other country.

With the increasing complexity of the engineering sector there is a requirement for engineering managers to be specialised not just in engineering, but also in wider business and management. This course has been specifically designed to meet the demands of today’s employers and provide a solid foundation for you to progress to management level.

Learn From The Best

You’ll be taught by tutors who have many years of experience in the various aspects of the engineering industry. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent. (Research Excellence Framework 2014.)

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. We’ve built up numerous industrial links during the 50+ years that we’ve been offering engineering courses. These links help ensure high quality placements and collaborative projects.

Northumbria has the advantage of being located in the North East of England, which is a centre of manufacturing and technical innovation. As well as Nissan, the region’s #1 company, there is a strong concentration of automotive, engineering, chemicals, construction and manufacturing companies.

Teaching And Assessment

The structure of this course has been designed to focus on engineering issues and processes, and how they apply to those in management positions.

This course incorporates six taught modules: research methods, project, programme and portfolio management; project change, risk and opportunities management; technology entrepreneurship and product development; engineering management data analysis and sustainable development for engineering practitioners.

Throughout the duration of this course you will build core skills in key areas such as management, business, finance and computing, providing you with a strong understanding of the day-to-day processes that underpin the smooth running of a successful organisation.

This course is primarily delivered by lectures and supporting seminars such as guided laboratory workshops or staffed tutorials. Assessments are undertaken in the form of exams, assignments, technical reports, presentations and project work. The Advanced Practice semester will be assessed via a report and presentation about your internship, study abroad or research group activities.

On completion of all taught modules you will undertake a substantial piece of research around a subject of particular interest to you and your own career aspirations.

Module Overview
Year One
KB7030 - Research Methods (Core, 20 Credits)
KB7031 - Project, Programme and Portfolio Management (Core, 20 Credits)
KB7033 - Project change, risk and opportunities management (Core, 20 Credits)
KB7040 - Sustainable Development for Engineering Practitioners (Core, 20 Credits)
KB7044 - Engineering Management Data Analysis (Core, 20 Credits)
KB7046 - Technology Entrepreneurship & Product Development (Core, 20 Credits)

Year Two
KB7052 - Research Project (Core, 60 Credits)
KF7005 - Engineering and Environment Advanced Practice (Core, 60 Credits)

Learning Environment

Throughout the duration of your course you will have access to our dedicated engineering laboratories that are continuously updated to reflect real-time industry practice.

Our facilities include mechanical and energy systems experimentation labs, rapid product development and performance analysis, materials testing and characterisation, 3D digital design and manufacturing process performance.

You will be given the opportunity to get hands-on with testing, materials processing, moulding, thermal analysis and 3D rapid manufacture to help you create the products and systems required for the projects you will work on during your course.

Your learning journey will also be supported by technology such as discussion boards and video tutorials. You will also participate in IT workshops where you will learn how to use the latest industry-standard software.

Videos of lectures will on many occasions be made available through Panopto video software to further support teaching delivery.

You will also have access to all Northumbria University’s state-of-the-art general learning facilities such as dedicated IT suites and learning areas.

Research-Rich Learning

When studying at Northumbria University you will be taught by out team of specialist staff who boast a wealth of multi-dimensional expertise. The programme is designed to be research-led, delivering up-do-date teaching that is often based on current research undertaken by our team.

Our teaching team incorporates a dynamic mix of research-active industrial practitioners, renowned researchers and technologists, whose combined knowledge ensures you leave with an in-depth understanding of key engineering management practice and research.

You will be encouraged to undertake your own research–based learning, where you will evaluate and critique scientific papers and write research-based reports based on the information gathered.

The department of Mechanical and Construction Engineering is a top-35 Engineering research department with 79% of our outputs ranked world-leading or internationally excellent according to the latest UK-wide research assessment exercise (REF2014, UoA15). This places us in the top quartile for world-leading publications among UK universities in general engineering.

Give Your Career An Edge

With the increasing complexity of the engineering industry there is a requirement for managers to be specialised not just in engineering, but also the general business and management aspects of a company.

This course has been specifically designed to allow you to update, extend and deepen your knowledge to further enhance your career opportunities in both industry and entrepreneurship.

The MSc Engineering Management course will equip you with skills, tools, techniques and methods that are applicable to engineering companies and many other businesses in the UK and abroad.

The Advanced Practice semester will help you develop a track record of achievement that will help you stand out from other job applicants.

A two-year master’s course, like this one, will carry particular weight with employers. They’ll understand that you’ll have a deeper understanding of topics as well as more hands-on practical experience.

On completion of this course you will possess a deep understanding of engineering data analysis, research and project management, programme and portfolio management, project risk management and technology entrepreneurship.

Industry practice and subject benchmarking have strongly influenced the design of this course to ensure you will leave equipped with the skills that are required by today’s employers.

Your Future

The broad range of subjects covered on this course will prepare you for an array of careers within the engineering sector or a general business environment.

You may decide to pursue a career within general engineering, or a more specialised engineering sector.

This course emphasises entrepreneurship and enterprise, developing and enhancing the management and strategic skills that will prepare you for running your own business, should this be your aspiration. These core business skills will also prepare you for management jobs within engineering or another sector.

This course also sets a solid foundation for those wishing to pursue further study or a career within research or teaching.

Read less
The University of Bath Civil Engineering. Innovative Structural Materials MSc is a full-time, one-year taught postgraduate course. Read more

The University of Bath Civil Engineering: Innovative Structural Materials MSc is a full-time, one-year taught postgraduate course.

Students study a range of modules before carrying out an individual research dissertation project in order to complete their Master of Science degree.

The course produces graduates with an in-depth and practical understanding of the use of innovative structural engineering materials in the provision of sustainable and holistic construction solutions for the built environment.

The use of construction materials is key to infrastructural development globally. New approaches are now needed for innovative renewable and low carbon structural engineering materials.

This MSc course will not only help prepare you for an exciting career in the industry, but it will also help prepare you to continue your studies onto a Doctor of Philosophy research programme.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/structural-engineering/

Learning outcomes

The course is aimed at engineering and science graduates who wish to work in the construction industry.

As a student you will be provided with the practical knowledge and tools to support you in the use of innovative structural engineering materials in the context of sustainable and holistic construction. You will also learn how to harness that knowledge in a business environment. You will gain analytical and team working skills to enable you to deal with the open-ended problems typical of structural engineering practice.

The MSc is based on research expertise of the BRE Centre for Innovative Construction Materials (http://www.bath.ac.uk/ace/research/cicm/) and is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree. Please visit the Joint Board of Moderators (http://www.jbm.org.uk/) for further information about accreditation.

Collaborative working

The course includes traditionally taught subject-specific units and business and group-orientated modular work. These offer you the chance to gain experience in design, project management and creativity, while working with students from other subjects.

Project Work

Group project work:

In semester 2 you undertake a cross-disciplinary group activity for your professional development, simulating a typical industrial work situation.

Individual project work:

In the final semester, you undertake an individual research project directly related to key current research at the University, often commissioned by industry.

Structure in detail

A full list of units can be found on the programme catalogue (http://www.bath.ac.uk/catalogues/2015-2016/ar/ar-proglist-pg.html#AC).

Semester 1 (October-January)

The first semester provides a foundation in the most significant issues relating to the sustainable use of innovative structural engineering materials in design and construction; and involves units in natural building materials, advanced timber engineering, advanced composites, sustainable concrete technology and architectural structures.

- Five taught compulsory units

- Includes coursework involving laboratory or small project sessions.

- Typically each unit consists of 22 hours of lectures and 11 hours of tutorials, and may additionally involve a number of hours of laboratory activity and field trips with approximately 65-70 hours of private study (report writing, laboratory results processing and revision for examinations).

Semester 2 (February-May)

Semester 2 consists of a further 30 credits comprising of five core 6 credit units. These units include:

- Materials engineering in construction

- Advanced timber engineering

- Engineering project management.

Students will undertake a group-based design activity and an individual project scoping and planning unit (Project Unit 1). The group-based activity involves application of project management techniques and provides the basis for an integrated approach to Engineering, but with the possibility of specialising in the chosen master's topic.

It is a feature of this programme that the project work proceeds as far as possible in a way typical of best industrial practice. The Semester 2 project activities have significant planning elements including the definition of milestones and deliverables according to a time-scale, defined by the student in consultation with his/her academic supervisor and (where appropriate) his/her industrial advisor.

Summer/Dissertation Period (June-September)

Individual project leading to MSc dissertation.

Depending on the chosen area of interest, the individual project may involve theoretical and/or experimental activities; for both such activities students can use the department computer suites and well-equipped and newly refurbished laboratories for experimental work. The individual projects are generally carried out under the supervision of a member of academic staff.

There may be an opportunity for some projects to be carried out with the Building Research Establishment (BRE).

Subjects covered

- Advanced structures

- Advanced composites in construction

- Advanced timber engineering

- Materials engineering in construction

- Natural building materials

- Sustainable concrete technology

About the department

The Department of Architecture and Civil Engineering brings together the related disciplines of Architecture and Civil Engineering. It has an interdisciplinary approach to research, encompassing the fields of Architectural History and Theory, Architectural and Structural Conservation, Lightweight Structures, Hydraulics and Earthquake Engineering and Dynamics.

Our Department was ranked equal first in the Research Excellence Framework 2014 for its research submission in the Architecture, Built Environment and Planning unit of assessment.

Half of our research achieved the top 4* rating, the highest percentage awarded to any submission; and an impressive 90% of our research was rated as either 4* or 3* (world leading/ internationally excellent in terms of originality, significance and rigour).

The dominant philosophy in the joint Department is to develop postgraduate programmes and engage in research where integration between the disciplines is likely to be most valuable. Research is carried out in collaboration with other departments in the University, particularly Management, Computer Science, Mechanical Engineering, and Psychology.

Find out how to apply here - http://www.bath.ac.uk/study/pg/apply/

Funding

The following postgraduate funding may be available to study the Civil Engineering: Innovative Structural Materials MSc at The University of Bath.

UK postgraduate loans:

Erasmus funding:

Funding from FindAMasters:

Fees

UK / EU: £9.500

International: £20,300



Read less
This programme (See http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/ ) aims to develop the knowledge and skills of a Bachelor’s-level graduate Mechanical Engineering to Masters level through advanced teaching, design work and research. Read more

Overview

This programme (See http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/ ) aims to develop the knowledge and skills of a Bachelor’s-level graduate Mechanical Engineering to Masters level through advanced teaching, design work and research. As such it is also an opportunity for candidates from a different Engineering background to develop key Mechanical Engineering knowledge and skills required for their professional development. A key objective of the programme is to be an accredited route to becoming Chartered Engineer.

This programme makes use of masters-level courses in the Energy Sciences and Manufacture & Design complemented with specialist courses from relevant MSc courses offered by the institute. We have seen a growing need for an advanced mechanical engineering programme at the request of applicants, and our industry partners. This programme has been specifically developed to meet this need and to encourage students of this field into further learning.

The Scottish Funding Council has made available 20 scholarships covering fees only to students with Scottish backgrounds. 6 of these places are reserved for applicants to this programme in the first instance. The remaining places are spread over all our Energy based MSc programmes. There is no separate application process for this. If you are eligible, you will be considered automatically. You will be notified through the summer if you have been selected.

Programme content

Semester One - Mandatory
- B81PI Professional and Industrial Studies
This course is specifically designed to meet the master’s level outcome requirements in the areas of professional development and practice for chartered engineering status. This multi-disciplinary course uses industrial speakers and speakers from those in the university involved in bridging the gap between academia and industrial application.

- B51GS Specialist Engineering Technologies 1
The first of the specialist engineering technologies courses is based on computational fluid dynamics and assessed by a group project

Optional (Choose two)
- B51DE Engineering Design
In this course students interact with companies in a real life small R&D project supplied by the industrial partners. Working in teams, the students have to manage the design of a prototype, product or system and interact with the industrial contact putting into practice problem-solving skills from other engineering topics studied elsewhere in the programme.

- B51EK Fluids 1
Fluid mechanics applied to aerodynamics, including ideal flows, boundary layers, and aerofoils and their use for analysis and design purposes.

- B51EM Advanced Mechanics of Materials 1
Advanced classical mechanics including 3D stress and strain with particular application to thin walled vessels. Fatigue analysis and design for fatigue limit.

- B51EO Dynamics 1
To provide students with a thorough understanding of vibration theory and an appreciation of its application in an engineering environment

- B51EQ Thermodynamics 1
Thermodynamic cycles including heat engines and reverse heat engines and means of evaluating best performance.

- G11GA Flame Appraisal
Introduction to the stages required for evaluating an oilfield for production. This covers geological considerations and fluid flow from oil bearing rock.

Semester Two – Mandatory

- B81EZ Critical Analysis and Research Preparation
This course provides research training and addresses literature review skills, project planning, data analysis and presentation with a focus to critically discuss literature, and use data to support an argument.

- B51HB Failure Accident Analysis
To acquaint students with the potential causes of material, structure or component failure; framework under which a failure or forensic engineering investigation should be carried out and give them the opportunity to work case studies through from information-gathering to preparation of reports and an awareness of fire and explosion engineering.

- B51GT Specialist Engineering Technologies 2
To present advanced theory and practice in important or emerging areas of technology including non-linear final element materials to include contact mechanics, design of components subjected to high stress applications.

Optional (Choose one)
- B51EL Fluids 2
To provide a methodology for analysing one-dimensional compressible flow systems.

- B51EN Advanced Mechanics of Materials 2
To provide students with an opportunity to: carry out advanced analyses of mechanics of materials problems; analyse mechanics of materials where time is a significant additional variable; use final element analysis for cases involving viscoelasticity and complex geometry
engage with the findings of recent research in a mechanics of materials topic

- B51EP Dynamics 2
To provide students with a thorough understanding of control theory and an appreciation of the subject of environmental acoustics and passive noise control

- B51ER Thermodynamics 2
Investigation of heat transfer mechanisms with a view to the design of effective heat exchangers for given operating conditions. The study of radiation heat transfer and combustion equilibrium.

- B51DF Engineering Manufacture
To provide the student with a detailed understanding of the importance and integration of advanced manufacturing technology and manufacturing systems within the context of product engineering. On completion, the students should have acquired a detailed understanding of the product development process from initial conception through to product support as well as appreciate the impact of each stage of the process on the business and organisationally with respect to information dependence and manufacturing processes employed.

- G11GD Flame Development
A continuation of Flame Appraisal, this course looks at the well-head arrangement for oil extraction. This is an introduction to drilling engineering and the techniques required for oil extraction.

Semester 3 – Mandatory

- B51MD Masters Dissertation
An individual project led by a research active member of staff on a current research theme with the aim of leading to the production of a journal article.

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Advanced Mechanical Engineering. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Read less
If you’re a graduate from a science, mathematics, technology or another engineering discipline, this programme provides the knowledge and skills to convert… Read more

If you’re a graduate from a science, mathematics, technology or another engineering discipline, this programme provides the knowledge and skills to convert to a specialism in materials science and engineering or metallurgy to meet the present needs and future challenges of advanced materials and manufacturing in areas such as transportation, bioengineering, energy, electronics and information technology, sport and sustainable development.

Alternatively, if you’re already a professional engineer in the materials sector, you’ll have the chance to expand your expertise to enhance your career prospects.

Core modules cover key topics such as materials structures, processing-structure-property relationships, characterisation and failure analysis. You’ll also choose one from three groups of optional modules to focus your specialism to suit your own career plans and interests. Taught by experts in world-class facilities, you’ll gain the skills to thrive in a growing and fast-changing field.

Specialist facilities

You’ll benefit from the chance to study in cutting-edge facilities where our researchers are pushing the boundaries of materials science and engineering and metallurgy. We have state-of-the-art preparative facilities for making and characterising a wide range of materials, as well as equipment and instrumentation for carrying out more fundamental studies into their process-microstructure-property relationships.

Accreditation

The course is designed to provide graduates with the educational base required for Chartered Engineer (CEng) status. Accreditation is currently being sought from IoM3

Course content

Compulsory modules at the beginning of the programme lay the foundations of your studies in materials science or metallurgy. You’ll learn about processing-structure-property relationships, which lie at the heart of the discipline, as well as examining topics such as mechanical, physical and chemical behaviour, phase transformations and how the structure and local chemistry of materials may be characterised. You’ll cover materials and process selection and their role in design, and extend this into the principles and practice of failure analysis.

This prepares the way for three sets of specialist modules: you can decide to specialise in metallurgy, functional and nanomaterials or take a broader materials science approach covering metals, ceramics, polymers, composites and biomaterials. You’ll complete your taught modules either by studying a module in materials modelling (if you already hold an accredited Engineering degree) or participating in an industry-focused interdisciplinary design project.

You will complete your programme with a major individual research project of your own. With guidance from your supervisor, you will work on a topic related to the internationally-leading materials and metallurgical research carried out in the University, or you could propose a topic of your own related to your own professional work or that of an industrial sponsor.

Want to find out more about your modules?

Take a look at the Materials Science and Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Research Project (MSc) 60 credits
  • Phase Transformations and Microstructural Control 15 credits
  • Structure-Property Relationships 15 credits
  • Materials Selection and Failure Analysis 15 credits
  • Materials Structures and Characterisation 15 credits

Optional modules

  • Team Design Project 15 credits
  • Biomaterials and Applications 15 credits
  • Materials Modelling 15 credits
  • Materials for Functional Applications 30 credits
  • Metals and Alloys 15 credits
  • Ceramics, Polymers and Composites 15 credits
  • Nanomaterials 15 credits
  • Process Metallurgy 15 credits
  • Extractive Metallurgy 15 credits

For more information on typical modules, read Materials Science and Engineering MSc in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of the discipline through lectures, seminars, tutorials, small group work and project meetings. Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments, vivas and projects.

Projects

The research project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects by MSc Materials Science and Engineering students have included:

  • Hydrothermal synthesis of metal oxide nanoparticles
  • Temperature variable X-ray diffraction of high temperature piezoelectric material BiFeO3-KBiTiO3-PbTiO3
  • Fabrication of glass waveguide devices by femtosecond laser inscription
  • Microstructure development in drop-tube processed cast iron
  • Validation of cooling rate models of drop-tube processing
  • Characterisation of graphite nanoplatelets (GNPs) produced by solvent exfoliation of graphite
  • Studies of the effect of milling variables in the production of nanoparticles
  • Microstructural investigation of spray atomized powders

Career opportunities

There is currently an increasingly high demand for qualified materials scientists, materials engineers and metallurgists.

Career prospects are excellent and cover a wide range of industries concerned with the research and development of new and improved materials, materials synthesis and commercial production, and materials exploitation in cutting-edge applications in engineering and technology.

Careers support

You’ll have access to the wide range of engineering and computing careers resources held by our Employability team in our dedicated Employability Suite. You’ll have the chance to attend industry presentations book appointments with qualified careers consultants and take part in employability workshops. Our annual Engineering and Computing Careers Fairs provide further opportunities to explore your career options with some of the UKs leading employers.

The University's Careers Centre also provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
This Master of Science programme is taught entirely in English to stimulate the student in acquiring greater familiarity with the terminology used internationally. Read more

Mission and Goals

This Master of Science programme is taught entirely in English to stimulate the student in acquiring greater familiarity with the terminology used internationally. The objective of the programme is to prepare a professional figure expert in materials and in the design of processes and manufactured goods. Within the scope of the study plan a number of specific specialisations are foreseen:
- Surface Engineering
- Polymer Engineering
- Nanomaterials and Nanotechnology
- Engineering Applications
- Micromechanical Engineering

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/materials-engineering-and-nanotechnology/

Career Opportunities

The Master of Science graduate in Materials and Nanotechnology Engineering has the ability to devise and manage innovation in the materials industry; he/she finds employment mainly in companies specialised in producing, processing and design various materials and components, as well as in the area of the development of new applications in the mechanical, chemical, electronics, energy, telecommunications, construction, transport, biomedical, environmental and restoration industries as well as in research and development centres of companies and public bodies.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Materials_Engineering_and_Nanotechnology_04.pdf
The Master of science programme aims at preparing specialists with strong technical skills for innovation of processes and applications of new materials and nanotechnologies. One of the major focuses of the MSc is on sustainable technologies and nanotechnologies for advanced applications. The city of Milan and its surroundings are fertile ground for social and technical culture, with a variety of small enterprises open to innovation and new technologies and working in niche fields, where non-traditional materials are key to future developments. The job market welcomes Material Engineers as professionals capable of handling complex problems directly related to the production, treatment and applications of materials, acknowledging the high level of education obtained at the Politecnico di Milano through original methodologies and new technologies.
The programme is taught in English.

Subjects

- Mathematical methods for materials engineering
- Advanced materials chemistry
- Polymer science and engineering
- Principles of polymer chemistry + Fundamentals of polymer mechanics
- Solid state physics
- Mechanical behavior of materials
- Cementitous and ceramic materials engineering
- Advanced Materials
- Functional materials + nanostructured materials
- Durability of materials
- Failure and control of Materials
- Surface engineering
- Thesis work

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/materials-engineering-and-nanotechnology/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/materials-engineering-and-nanotechnology/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Your programme of study. Read more

Your programme of study

Have you ever wanted to invent something mechanical, prevent environmental damage to a building from floods, fire, explosions, landslides and other natural disasters, understand risks and reliability across buildings, renewables, and other areas? Do you want to improve quality of life across environmental remediation, farming, smart grid, green technology, food production, housing, transportation, safety, security, healthcare and water? Do you find it fascinating to try to make things work from what you have available? There will be plenty of major challenges to get involved with in the coming years crossing over into Nano technologies, advanced materials, electronic printing, grapheme technologies, wearable's, 3d printing, renewables and recycling and biotechnologies. Technology now means that you can design and engineer from anywhere in the world, including your home. Advanced Mechanical Engineering looks at computational mechanics, response to materials and reliability engineering. The Victorians set up some of the most advanced mechanical engineering of our times and in many ways they were the biggest mechanical engineering innovators ever.

This programme specialises in mechanical engineering so you are becoming proficient in designing anything that has background moving parts to allow it to work such as engines, motor driven devices and the effects of nature on mechanical objects and their ability to perform. You also look at how material composition can alter performance issues and provide new innovative methods to solve challenges in every day life and natural and other risks to machinery in all situations.  Your employment options are very varied, you may want to work within consumer goods to design and improve everyday objects like white goods, or you may like to be involved in very large scale hydro electric and power driving machinery in energy , manufacturing or large scale developments, or you may decide to get involved in innovation and enterprise yourself.

Courses listed for the programme

SEMESTER 1

Compulsory Courses

Computational Fluid Dynamics

Numerical Simulation of Waves

Advanced Composite Materials

Optional Courses

Fire and Explosion Engineering

Structural Dynamics

SEMESTER 2

Compulsory Courses

Finite Element Methods

Mathematical Optimisation

Engineering Risk and Reliability Analysis

Optional Courses

Project Management

Risers Systems Hydrodynamics

Renewable Energy 3 (Wind, Marine and Hydro

SEMESTER 3

Project

Find out more detail by visiting the programme web page;

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1037/advanced-mechanical-engineering/

Why study at Aberdeen?

  • Your skills and knowledge can have huge application potential within newly disruptive industries affecting life and work
  • You can improve employability in Aerospace, Marine, Defences, Transport Systems and Vehicles
  • Some of the knowledge you build directly relates to industries in Aberdeen such as the energy industry.
  • Mechanical Engineering cuts into high growth Industry 4.0 and IOT related areas across many areas disrupted by climate, population growth, and quality of life
  • We ensure close links with industries to attend industry events, visits and teaching by professionals from the industry
  • Graduates are very successful and many work in senior industry roles

Where you study

  • University of Aberdeen
  • 12 Months Full Time
  • September start

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen: - abdn.ac.uk/study/student-life

Other engineering disciplines you may be interested in:

Global Subsea Engineering

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1070/global-subsea-engineering/

Subsea Engineering

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1082/subsea-engineering/

Oil and Gas Engineering

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1074/oil-and-gas-engineering/

Oil and Gas Structural Engineering

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/217/oil-and-gas-structural-engineering/

Petroleum Engineering

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/222/petroleum-engineering/

Renewable Energy Engineering

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1077/renewable-energy-engineering/

Reservoir Engineering

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/283/reservoir-engineering/

Safety and Reliability Engineering

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1078/safety-and-reliability-engineering/



Read less
Would you like to stand out in the employment job market by advancing your current qualification to master’s level?. The MSc Mechanical Engineering course will provide you with advanced knowledge and skills in key aspects of mechanical engineering. Read more
Would you like to stand out in the employment job market by advancing your current qualification to master’s level?

The MSc Mechanical Engineering course will provide you with advanced knowledge and skills in key aspects of mechanical engineering. Throughout the duration of this course you will develop a critical awareness of ethical and environmental considerations, in addition to learning about advanced mechanical engineering practice and theory.

In the second year, for one semester, you’ll undertake an internship, study in another country or join a research group. This valuable experience will enhance your employability and further develop your theoretical and practical skills.

Accredited by the Institution of Mechanical Engineers (IMechE), this course fully meets the academic requirements to become a Chartered Engineer.

At a time when there is an international shortage of mechanical engineers there has never been a better time to enter this dynamic and rewarding industry.

Learn From The Best

You’ll be taught by tutors who have many years of experience in the various aspects of the engineering industry. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent. (Research Excellence Framework 2014.)

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. We’ve built up numerous industrial links during the 50+ years that we’ve been offering engineering courses. These links help ensure high quality placements and collaborative projects.

Northumbria has the advantage of being located in the North East of England, which is a centre of manufacturing and technical innovation. As well as Nissan, the region’s #1 company, there is a strong concentration of automotive, engineering, chemicals, construction and manufacturing companies.

Teaching And Assessment

The initial semesters of this course focus on taught subjects that cover topics such as computational fluid dynamics and heat transfer, multidisciplinary design and engineering optimisation, composite materials and lightweight structures, advanced stress and analysis and thermo-mechanical energy conversion systems.

Teaching is primarily delivered by lectures, seminars and workshops, all of which are assessed by methods such as assignments, exams and technical reports. All of this course’s assessments have been devised to closely mirror the outputs required in a real working environment.

On completion of the taught modules you will undertake a substantial piece of research related to an area of mechanical engineering that particularly interests you. Our teaching team will be on-hand to offer support and guidance throughout every stage of your course.

The Advanced Practice semester will be assessed via a report and presentation about your internship, study abroad or research group activities.

Module Overview
Year One
KB7001 - Computational Fluid Dynamics and Heat Transfer (Core, 20 Credits)
KB7006 - Composite Materials and Lightweight Structures (Core, 20 Credits)
KB7008 - Advanced Stress and Structural Analysis (Core, 20 Credits)
KB7030 - Research Methods (Core, 20 Credits)
KB7042 - Thermo-Mechanical Energy Conversion Systems (Core, 20 Credits)
KB7043 - Multidisciplinary Design & Engineering Optimisation (Core, 20 Credits)

Year Two
KB7052 - Research Project (Core, 60 Credits)
KF7005 - Engineering and Environment Advanced Practice (Core, 60 Credits)

Learning Environment

Throughout the duration of your course you will have access to our dedicated engineering laboratories that are continuously updated to reflect real-time industry practice.

Our facilities include mechanical and energy systems experimentation labs, rapid product development and performance analysis, materials testing and characterisation, 3D digital design and manufacturing process performance.

You will be given the opportunity to get hands-on with testing, materials processing, moulding, thermal analysis and 3D rapid manufacture to help you create the products and systems required for the projects you will work on during your course.

Your learning journey will also be supported by technology such as discussion boards and video tutorials. You will also participate in IT workshops where you will learn how to use the latest industry-standard software.

Videos of lectures will on many occasions be made available through Panopto video software to further support teaching delivery.

You will also have access to all Northumbria University’s state-of-the-art general learning facilities such as dedicated IT suites and learning areas.

Research-Rich Learning

When studying at Northumbria University you will be taught by our team of specialist staff who boast a wealth of multi-dimensional expertise.

Our teaching team includes a dynamic mix of research-active industrial practitioners, renowned researchers and technologists, whose combined knowledge ensures you leave with an in-depth understanding of key mechanical engineering practice and research.

You will be encouraged to undertake your own research–based learning where you will evaluate and critique scientific papers and write research-based reports based on the information gathered.

We aim to regularly welcome industry specialists to deliver guest lecturers to further enable you to understand real-world issues and how they link to the concepts, theories and philosophies taught throughout your course.

The department of Mechanical and Construction Engineering is a top-35 Engineering research department with 79% of our outputs ranked world-leading or internationally excellent according to the latest UK-wide research assessment exercise (REF2014, UoA15). This places us in the top quartile for world-leading publications among UK universities in General Engineering.

Give Your Career An Edge

The MEng Mechanical Engineering course will equip you with all of the skills required to progress within the engineering industry and competition of your master’s degree will give you a competitive edge thanks to the additional skills and knowledge you will acquire.

Our accreditation with the IMechE ensures that this course’s content is in-line with the latest developments within this sector, making our course highly valued by employers.

By completing this course you will have completed the academic requirement to become a Chartered Engineer, a status that is associated with improved employability and higher salaries.

Employability is embedded throughout all aspects of your course and you will leave with enhanced key skills such as communication, computing and teamwork.

The Advanced Practice semester will help you develop a track record of achievement that will help you stand out from other job applicants.

A two-year master’s course, like this one, will carry particular weight with employers. They’ll understand that you’ll have a deeper understanding of topics as well as more hands-on practical experience.

Your Future

Mechanical Engineering overlaps with a number of engineering disciplines meaning there are many career paths available to you once you have completed this course.

Many graduates choose to pursue a career in the expansive engineering sector, in roles such as designers, analysts, project managers or consultants.

You may also wish to progress your knowledge to PhD level and this course will provide you with a solid foundation that you can easily build on and advance to an even higher level.

Engineering is a growth industry and currently there is a shortage of engineers. 90% of our graduates are in work or study within six months of graduating and, of those in work, 80% are employed in a professional or managerial job (Unistats 2015).

Read less
Develop a specialised knowledge of materials engineering in this course which is fully accredited by the Institute of Materials, Minerals and Mining. Read more
Develop a specialised knowledge of materials engineering in this course which is fully accredited by the Institute of Materials, Minerals and Mining.

One of very few such courses offered at masters level in the UK. It's information rich but also provides a significant degree of hands-on practical work that utilises a wide range of manufacturing, testing and characterisation equipment. The limited number of graduates in this area, combined with the knowledge, expertise and practical skills developed in this specialised field, gives you a major advantage over other engineering graduates as you seek employment within the materials-related industries.

We have been successfully teaching a masters programme in materials engineering for more than 20 years, leading the way in the study of this field. Staff are very experienced and undertake both academic research and commercial projects, both of which support students’ learning experience.

See the website http://www.napier.ac.uk/en/Courses/MSc-Advanced-Materials-Engineering-Postgraduate-FullTime

What you'll learn

Gain exposure to the latest trends in design, materials, manufacturing processes, testing and advanced applications by taking full advantage of our modern technology and computing facilities.

You'll benefit from our first class research and knowledge transfer partnerships with local, national and international companies. Accredited by the Institute of Materials, Minerals and Mining, we have excellent industry links and encourage you to interact with industry too.

All projects are practically focused, with an emphasis on using industry standard manufacturing and testing equipment. Many projects are live, meaning you'll be working for real clients.

Modules

• Metallic Materials
• Plastics Materials
• Ceramics and Composites
• Smart Materials and Surfaces
• Forensic Materials Engineering and Energy Materials
• MSc Project – a focused piece of industrially relevant research, normally carried out on placement

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

You'll have excellent job prospects with this pedigree of materials engineering skills, expertise and knowledge.

This will give you enhanced employment prospects in almost all engineering, science, design and manufacturing disciplines. In particular, you may find roles in:
• manufacturing
• design, energy engineering and renewables
• chemical engineering
• offshore engineering, materials testing
• advising and assuring companies
• regulatory authorities and automotive
• aerospace and defence industries

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less
This programme has been designed to meet the challenges of the rapidly changing global market by providing the skills and abilities to contribute to the availability of well-designed products, process and systems. Read more
This programme has been designed to meet the challenges of the rapidly changing global market by providing the skills and abilities to contribute to the availability of well-designed products, process and systems.

As a broad-based Mechanical Engineering degree this programme provides a wide variety of career options in the engineering sector.

Core study areas include experimental mechanics, simulation of advanced materials and processes structural analysis, computer aided engineering, engineering design methods, sustainable development: the engineering context, the innovation process and project management, thermofluids and a project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/mechanical-engineering/

Programme modules

- Experimental Mechanics
This module introduces the following elements: experimental techniques for analysis and characterisation of various engineering materials and full-field, non-contact optical methods for deformation and strain measurements. Students will learn to identify the most appropriate experimental techniques for evaluating material response in a specific setting and for different types of materials.

- Simulation of Advanced Materials and Processes
The objective of this module is to introduce students to the concepts in numerical simulation of advanced materials and processes. To enable students to gain theoretical and practical experience in simulating mechanical behaviour of advanced materials and modelling processes related to these materials using finite element modelling techniques.

- Structural Analysis
Students will gain an understanding of modern concepts of structural analysis. They will gain practical experience in analyses of structures using finite-element modelling and understand the need for structural analysis in design.

- Computer Aided Engineering
Students will learn how to evaluate, choose and implement CAE systems. Students will learn to select and apply appropriate computer based methods and systems for modelling engineering products; analysing engineering problems; and assisting in the product design process.

- Engineering Design Methods
The aims of this module are to provide students with a working understanding of some of the main methods which may be employed in the design of products and systems. Students will learn to identify appropriate methods and techniques for use at different times and situations within a project.

- Sustainable Development: The Engineering Context
The objective of this module are to provide students with an understanding of the principles and practices of sustainable development and to provide them with an understanding of how engineers can help manufacturing businesses develop into more sustainable enterprises.

- The Innovation Process and Project Management
This module allows students to gain a clear overview of the innovation process and an understanding of the essential elements within it. Students will learn strategies for planning and carrying out innovative projects in any field.

- Thermofluids
In this module students study the fundamentals of combustion processes and understand key aspects relating to performance and emissions. Students develop knowledge and skills required by engineers entering industries involved in the design and use of combustion equipment.

- Project
In addition to the taught modules, all students undertake an individual major project. Part-time students normally undertake a major project that is based on the needs of their employing company.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling and independent research.

The programme consists of eight, week-long, taught lecture modules plus project work. Each taught module is self-contained and covers a complete target. This programme is available in both full-time and part-time forms. Full-time students commence their studies on the first Monday in October for a period of 12 months. Part-time students may commence their registration at any time between October and the following March, and take 3 years (typical) to complete the programme.

On completion of this programme, students should be able to:
- Plan and monitor multi-disciplinary projects;
- appreciate the central role of design within engineering;
- demonstrate competence in using computer based engineering techniques;
- analyse and understand complex engineering problems; and
- use team working skills and communicate effectively at an advanced technical level.

Facilities

As a student within the School of Mechanical and Manufacturing Engineering you will have access to a range of state-of-the-art equipment. Our computer labs are open 24/7 and use some of the latest industry standard software including STAR-CCM and CAD.

We have high-tech laboratories devoted to:
- Dynamics and control
- Electronics
- Fluid mechanics
- Materials
- Mechatronics
- Metrology
- Optical engineering
- Structural integrity
- Thermodynamics

Careers and further study

The programme will allow students to acquire the technical and transferable skills required to succeed in a career in industry or academic research. Graduates may also study for an MPhil or PhD with the School.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a country outside the European Union. These scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why Choose Mechanical and Manufacturing Engineering at Loughborough?

The School of Mechanical and Manufacturing Engineering is a leader in technological research and innovation, with extensive national and international industrial links, and a long standing tradition of excellent teaching.

Our Industrial Advisory Committee, comprising of engineers at senior levels in the profession, ensures that our programmes contain the optimal balance of subjects and industrial relevance, with our programmes accredited by the Institution of Mechanical Engineers, Institution of Engineering and Technology and Institution of Engineering Designers.

- Facilities
The School has laboratories devoted to disciplines such as; dynamics and control, automation, fluid mechanics, healthcare engineering, internal combustion engines, materials, mechatronics, metrology, optical engineering, additive manufacturing, sports engineering, structural integrity and thermodynamics.

- Research
The School has a busy, multi-national community of well over 150 postgraduate research students who form an important part of our internationally recognised research activities.
We have seven key research centres (Electronics Manufacture, Intelligent Automation, Regenerative Medicine Embedded Intelligence, High Efficiency SCR for Low Emission Vehicles and High Value Manufacturing Catapult Centre) and we are a lead governing partner in the newly formed UK Manufacturing Technology Centre.

- Career prospects
90% of our graduates were in employment or further study within six months of graduating. Our graduates go on to work with companies such as Airbus, BAE Systems, Caterpillar, EDF Energy, Ford, IBM, Jaguar Land Rover, Millbrook Proving Ground, Rolls Royce and Tata Steel.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/mechanical-engineering/

Read less
You can access six study streams on this Masters programme. Bridge Engineering. Construction Management. Geotechnical Engineering. Read more

You can access six study streams on this Masters programme:

  • Bridge Engineering
  • Construction Management
  • Geotechnical Engineering
  • Structural Engineering
  • Water Engineering and Environmental Engineering
  • Infrastructure Engineering and Management

As well as supporting the career development of Civil Engineering graduates, this programme provides the necessary further learning for engineers working in the construction industry who hold related first degrees such as engineering geology or construction management.

It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil-engineering works.

Programme structure

This programme is studied full-time over one academic year and part-time / distance learning for between two to five academic years. It consists of eight taught modules and a dissertation.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules

Bridge Engineering Group Modules

Geotechnical Engineering Group Modules

Construction Management Group Modules

Infrastructure Engineering Group Modules

Water and Environmental Engineering Group Modules

Dissertation

Educational aims of the programme

  • The Civil Engineering programme aims to provide graduate engineers with:
  • Advanced capabilities and in-depth knowledge in a range of specialised aspects of civil engineering
  • It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil engineering works and to contribute to a personal professional development programme
  • A working knowledge of some of the UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
  • The necessary further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer in both a technical or non-technical capacity dependent upon module selection

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • The mathematical principles necessary to underpin their education in civil engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of multi-disciplinary open ended engineering problems
  • The properties, behaviour and use of relevant materials
  • The management techniques which may be used to achieve civil engineering objectives within that context
  • Some of the roles of management techniques and codes of practice in design
  • The principles and implementation of some advanced design and management techniques specific to civil engineering
  • Mathematical and computer models relevant to civil engineering, and an appreciation of their limitations
  • The role of the professional engineer in society, including health, safety, environmental, sustainability, ethical issues and risk assessment within civil engineering
  • The wider multidisciplinary engineering context and its underlying principles
  • Developing technologies related to civil engineering and the ability to develop an ability to synthesize and critically appraise some of them
  • The framework of relevant requirements governing engineering activities, including personnel, health, safety, and risk issues (an awareness of)
  • The advanced design processes and methodologies and the ability to adapt them in open ended situations.

Intellectual / cognitive skills

  • Analyse and solve problems
  • Think strategically
  • Synthesis of complex sets of information
  • Understand the changing nature of knowledge and practice in the management of culturally diverse construction environments
  • Select and transfer knowledge and methods from other sectors to construction-based organisation
  • Produce sound designs to meet specified requirements such as Eurocodes, deploying commercial software packages as appropriate
  • Dynthesis and critical appraisal of the thoughts of others

Professional practical skills

  • Awareness of professional and ethical conduct
  • Extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools where appropriate
  • Evaluate and integrate information and processes in project work
  • Present information orally to others
  • Show a capability to act decisively in a coordinated way using theory, better practice and harness this to experience
  • Use concepts and theories to make engineering judgments in the absence of complete data
  • Observe, record and interpret data using appropriate statistical methods and to present results in appropriate forms for the civil engineering industry

Key / transferable skills

  • Communicate engineering design, concepts, analysis and data in a clear and effective manner 
  • Collect and analyse research data 
  • Time and resource management planning

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This course is aimed at those who wish to study advanced topics in mechanical engineering with a focus on materials. It's been developed to provide you with an in-depth technical understanding of advanced mechanical engineering topics. Read more

Why this course?

This course is aimed at those who wish to study advanced topics in mechanical engineering with a focus on materials.

It's been developed to provide you with an in-depth technical understanding of advanced mechanical engineering topics. You’ll also develop generic skills that allow you to contribute effectively in developing company capabilities.

The course is designed to make you more employable and also satisfies the Further Learning requirements necessary to obtain Chartered Engineer status.

This course is particularly suitable for graduate engineers in these sectors:
- chemical, petrochemical & process engineering
- design engineering
- power generation
- manufacturing
- oil & gas
- renewable energy

See the website https://www.strath.ac.uk/courses/postgraduatetaught/advancedmechanicalengineeringwithmaterials/

You’ll study

You’ll have the opportunity to select technical and specialist classes.

- Compulsory classes
You’ll study three compulsory classes:
- Engineering Composites
- Polymer & Polymer Composites
- Industrial Metallurgy

- Other specialist instructional modules
These focus on different technical aspects allowing you to tailor learning to your individual needs. When choosing technical modules, you’ll discuss the options with the course co-ordinator. These include:
- Pressurised Systems
- Aerodynamic Performance
- Aerodynamic Propulsion Systems
- Systems Engineering 1 & 2
- Machine Dynamics
- Machinery Diagnosis & Condition Monitoring
- Mathematical Modelling in Engineering Science
- Spaceflight Mechanics
- Advanced Topics in Fluid Systems Engineering
- Spaceflight Systems
- Advanced Boiler Technologies 1 & 2
- Materials for Power Plant
- Gas & Steam Turbines

- Faculty-wide generic instructional modules
You’ll choose three faculty-wide generic modules which satisfy the broader learning requirements for Chartered Engineer status. You'll choose from:
- Design Management
- Project Management
- Sustainability
- Information Management
- Finance
- Risk Management
-Environmental Impact Assessment
- Knowledge Engineering & Management for Engineers

- Individual project
MSc students take on an individual project which allows study of a selected topic in-depth. This may be an industry-themed project or one aligned to engineering research at Strathclyde.

Facilities

Our facilities include many laboratories and research centres including:
- Advanced Space Concepts Laboratory
- Energy Systems Research Unit
- Future Air-Space Transportation Technology
- James Weir Fluids Laboratory
- Mechanics & Materials Research Centre

We have local access to a 3500-node region supercomputer.

Accreditation

As this is a new course starting in 2014/15, accreditation by IMechE is expected (as has been obtained for the Advanced Mechanical Engineering course), after it has been operational for one year.

English language requirements for international students

IELTS - minimum overall band score of 6.5 (no individual test score below 5.5) or TOEFL iBT minimum total score of 95 (minimum scores of Listening-17, Writing-19, Reading and Speaking-20). Both tests are valid for two years.

Learning & teaching

Teaching methods include lectures and practical exercises. Site visits are also arranged.

Careers

Engineering graduates, particularly Mechanical Engineers, are in demand from recruiting companies. This course is designed to meet industrial demand for qualified staff in the area of Mechanical Engineering. This course is particularly suitable for Graduate Engineers in the following sectors:
- Chemical, Petrochemical & Process Engineering
- Design Engineering
- Power Generation
- Manufacturing
- Oil & Gas
- Renewable Energy

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/

Read less
Offered as part of the. Continuing Professional Development. (CPD) programme. Full-time and part-time students study a number of one-week short-course modules comprising lectures, laboratory sessions and tutorials. Read more

Offered as part of the Continuing Professional Development (CPD) programme.

Full-time and part-time students study a number of one-week short-course modules comprising lectures, laboratory sessions and tutorials.

The modules cover metals, polymers, ceramics, composites, nanomaterials, bonding, surfaces, corrosion, fracture, fatigue, analytical techniques and general research methods. Each module is followed by an open book assessment of approximately 120 hours.

There is also a materials-based research project, which is made up of the Research Project Planning and the Project modules.

The MSc in Advanced Materials is accredited by the Institute of Materials, Minerals and Mining (IOM3) and by the Institution of Mechanical Engineers (IMechE) when a Project is undertaken.

Programme structure

This programme is studied full-time over one academic year and part-time over five academic years. It consists of eight taught modules and a compulsory Project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

  • To provide students with a broad knowledge of the manufacture, characterisation and properties of advanced materials
  • To address issues of sustainability such as degradation and recycling
  • To equip graduate scientists and engineers with specific expertise in the selection and use of materials for industry
  • To enable students to prepare, plan, execute and report an original piece of research
  • To develop a deeper understanding of a materials topic which is of particular interest (full-time students) or relevance to their work in industry (part-time students) by a project based or independent study based thesis

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • The different major classes of advanced materials
  • Routes for manufacturing and processing of advanced materials
  • Characterisation techniques for analysing bonding and microstructure
  • Mechanical, chemical and physical properties of advanced materials
  • Processing -microstructure - property relationships of advanced materials
  • Material selection and use
  • Appropriate mathematical methods

Intellectual / cognitive skills

  • Reason systematically about the behaviour of materials
  • Select materials for an application
  • Predict material properties
  • Understand mathematical relationships relating to material properties
  • Plan experiments, interpret experimental data and discuss experimental results in the context of present understanding in the field

Professional practical skills

  • Research information to develop ideas and understanding
  • Develop an understanding of, and competence, in using laboratory equipment and instrumentation
  • Apply mathematical methods, as appropriate

Key / transferable skills

  • Use the scientific process to reason through to a sound conclusion
  • Write clear reports
  • Communicate ideas clearly and in an appropriate format
  • Design and carry out experimental work

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less

Show 10 15 30 per page



Cookie Policy    X