• Leeds Beckett University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of York Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Imperial College London Featured Masters Courses
De Montfort University Featured Masters Courses
University of Birmingham Featured Masters Courses
Cass Business School Featured Masters Courses
University of St Andrews Featured Masters Courses
University of Birmingham Featured Masters Courses
"advanced" AND "data" AND…×
0 miles

Masters Degrees (Advanced Data Science)

  • "advanced" AND "data" AND "science" ×
  • clear all
Showing 1 to 15 of 1,070
Order by 
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Data Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Data Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

MSc in Data Science aims to equip students with a solid grounding in data science concepts and technologies for extracting information and constructing knowledge from data. Students of the MSc Data Science will study the computational principles, methods, and systems for a variety of real world applications that require mathematical foundations, programming skills, critical thinking, and ingenuity. Development of research skills will be an essential element of the Data Science programme so that students can bring a critical perspective to current data science discipline and apply this to future developments in a rapidly changing technological environment.

Key Features of the MSc Data Science

The MSc Data Science programme focuses on three core technical themes: data mining, machine learning, and visualisation. Data mining is fundamental to data science and the students will learn how to mine both structured data and unstructured data. Students will gain practical data mining experience and will gain a systematic understanding of the fundamental concepts of analysing complex and heterogeneous data. They will be able to manipulate large heterogeneous datasets, from storage to processing, be able to extract information from large datasets, gain experience of data mining algorithms and techniques, and be able to apply them in real world applications. Machine learning has proven to be an effective and exciting technology for data and it is of high value when it comes to employment. Students of the Data Science programme will learn the fundamentals of both conventional and state-of-the-art machine learning techniques, be able to apply the methods and techniques to synthesise solutions using machine learning, and will have the necessary practical skills to apply their understanding to big data problems. We will train students to explore a variety visualisation concepts and techniques for data analysis. Students will be able to apply important concepts in data visualisation, information visualisation, and visual analytics to support data process and knowledge discovery. The students of the Data Science programme also learn important mathematical concepts and methods required by a data scientist. A specifically designed module that is accessible to students with different background will cover the basics of algebra, optimisation techniques, statistics, and so on. More advanced mathematical concepts are integrated in individual modules where necessary.

The MSc Data Science programme delivers the practical components using a number of programming languages and software packages, such as Hadoop, Python, Matlab, C++, OpenGL, OpenCV, and Spark. Students will also be exposed to a range of closely related subject areas, including pattern recognition, high performance computing, GPU processing, computer vision, human computer interaction, and software validation and verification. The delivery of both core and optional modules leverage on the research strength and capacity in the department. The modules are delivered by lecturers who are actively engaged in world leading researches in this field. Students of the Data Science programme will benefit from state-of-the-art materials and contents, and will work on individual degree projects that can be research-led or application driven.

Modules

Modules for the MSc Data Science programme include:

- Visual Analytics
- Data Science Research Methods and Seminars
- Big Data and Data Mining
- Big Data and Machine Learning
- Mathematical Skills for Data Scientists
- Data Visualization
- Human Computer Interaction
- High Performance Computing in C/C++
- Graphics Processor Programming
- Computer Vision and Pattern Recognition
- Modelling and Verification Techniques
- Operating Systems and Architectures

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Career Destinations

- Data Analyst
- Data mining Developer
- Machine Learning Developer
- Visual Analytics Developer
- Visualisation Developer
- Visual Computing Software Developer
- Database Developer
- Data Science Researcher
- Computer Vision Developer
- Medical Computing Developer
- Informatics Developer
- Software Engineer

Read less
Data science is an emerging new area of science. With City’s MSc in Data Science you can develop the skills and knowledge to analyse data in many forms and communicate insights. Read more
Data science is an emerging new area of science. With City’s MSc in Data Science you can develop the skills and knowledge to analyse data in many forms and communicate insights.

Who is it for?

This programme is for students who have a numerate first degree or can demonstrate numerate skills. Students are often at the early stages of their careers in diverse professions including economics, statistics and computer science.

Students will have a curiosity about data, and will want to learn new techniques to boost their career and be part of exciting current industry developments. The MSc in Data Science includes some complex programming tasks because of the applied nature of the course, so many students have a mathematics or statistics background and enjoy working with algorithms.

Objectives

The demand for data scientists in the UK has grown more than ten-fold in the past five years *. The amount of data in the world is growing exponentially. From analysing tyre performance to detecting problem gamblers, wherever data exists, there are opportunities to apply it.

City’s MSc Data Science programme covers the intersection of computer science and statistics, machine learning and practical applications. We explore areas such as visualisation because we believe that data science is about generating insight into data as well as its communication in practice.

The programme focuses on machine learning as the most exciting technology for data and we have learned from our own graduates that this is of high value when it comes to employment within the field. At City, we have excellent expertise in machine learning and the facilities students need to learn the technical aspects of data analysis. We also have a world-leading centre for data visualisation, where students get exposed to the latest developments on presenting and communicating their results – a highly sought after skill.

Placements

There is the opportunity to do an internship as part of the programme. The final project, which is normally three months for a full-time student, can be extended to six months if you want to study within a specific organisation. When it comes to the big data and data science area, we have established relationships with organisations including the BBC, Microsoft and The British Library so you can be confident that with City, your access to professional experience is unparalleled. One recent student undertook an internship with Google and has since secured a job within the company.

Academic facilities

The School's computer science laboratories are equipped with the latest up-to-date hardware and software. From Oracle’s leading commercial object-relational database server to PCs with state-of-the-art NVidia GPUs for computer graphics, you will have access to an array of tools to support your learning.

The MSc Data Science programme offers two (three by mid 2016) dedicated computer servers for the Big Data module, which you can also use for your final project to analyse large data sets. We give you the opportunity to undertake training in MATLAB, the most popular numerical and technical programming environment, while you study.

Scholarships

A scholarship for the full fees of the MSc will be offered to an outstanding applicant. The scholarship is available to UK/EU and overseas students, studying full-time. To be considered for the scholarship, please include with your full application a one-page essay with your answer to the question:

'What are the challenges that Data Science faces and how would you address those challenges?'

The submission deadline for anyone wishing to be considered for the scholarship is: 1 MAY 2017

Teaching and learning

The teaching and learning methods we use mean that students’ specialist knowledge and autonomy increase as they progress through each module. Active researchers guide your progress in the areas of machine learning, data visualization, and high-performance computing, which culminates with an individual project. This is an original piece of research conducted with academic supervision, but largely independently and, where appropriate, in collaboration with industrial partners.

Taught modules are delivered through a series of 20 hours of lectures and 10 hours of tutorials/laboratory sessions. Lectures are normally used to:
-Present and exemplify the concepts underpinning a particular subject.
-Highlight the most significant aspects of the syllabus.
-Indicate additional topics and resources for private study.

Tutorials help you develop the skills to apply the concepts we have covered in the lectures. We normally achieve this through practical problem solving contexts.

Laboratory sessions give you the opportunity to apply concepts and techniques using state-of-the-art software, environments and development tools.

In addition to lectures, laboratory sessions and tutorial support, you also have access to a personal tutor. This is an academic member of staff from whom you can gain learning support throughout your degree. In addition, City’s online learning environment Moodle contains resources for each of the modules from lecture notes and lab materials, to coursework feedback, model answers, and an interactive discussion forum.

We expect you to study independently and complete coursework for each module. This should amount to approximately 120 hours per module if you are studying full time. Each module is assessed through a combination of written examination and coursework, where you will need to answer theoretical and practical questions to demonstrate that you can analyse and apply data science methods and techniques.

The individual project is a substantial task. It is your opportunity to develop a research-related topic under the supervision of an academic member of staff. This is the moment when you can apply what you have learnt to solve a real-world problem using large datasets from industry, academia or government and use your knowledge of collecting and processing real data, designing and implementing big data methods and applying and evaluating data analysis, visualisation and prediction techniques. At the end of the project you submit a substantial MSc project report, which becomes the mode of assessment for this part of the programme.

Course content

Data science is the area of study concerned with the extraction of insight from large collections of data.

The course covers the study, integration and application of advanced methods and techniques from:
-Data analysis and machine learning
-Data visualisation and visual analytics
-High-performance, parallel and distributed computing
-Knowledge representation and reasoning
-Neural computation
-Signal processing
-Data management and information retrieval.

It gives you the opportunity to specialise so, once you graduate, you can apply data science to any sector from health to retail. By engaging with researchers and industrial partners during the programme, you can develop your knowledge and skills within a real-world context in each of the above areas.

Core modules
-Principles of data science (15 credits)
-Machine learning (15 credits)
-Big Data (15 credits)
-Neural computing (15 credits)
-Visual analytics (15 credits)
-Research methods and professional issues (15 credits)

Elective modules
-Advanced programming: concurrency (15 credits)
-Readings in computer science (15 credits)
-Advanced databases (15 credits)
-Information retrieval (15 credits)
-Data visualisation (15 credits)
-Digital signal processing and audio programming (15 credits)
-Cloud computing (15 credits)
-Computer vision (15 credits)
-Software agents (15 credits)

Individual project - (60 credits)

Career prospects

From health to retail, and from the IT industry to government, the Data Science MSc will prepare you for a successful career as a data scientist. You will graduate with specialist skills in data acquisition, information extraction, aggregation and representation, data analysis, knowledge extraction and explanation, which are in high demand.

City's unique internships, our emphasis on machine learning and visual analytics, together with our links with the industry and Tech City, should help you gain employment as a specialist in data analysis and visualization. Graduates starting a new business can benefit from City's London City Incubator and City's links with Tech City, providing support for start-up businesses.

Read less
There has been a recent upsurge in commercial interest in the new role of "data scientist". A data scientist is a person who excels at manipulating and analysing data, particularly large data sets that don't fit easily into tabular structures (so-called "Big Data"). Read more
There has been a recent upsurge in commercial interest in the new role of "data scientist". A data scientist is a person who excels at manipulating and analysing data, particularly large data sets that don't fit easily into tabular structures (so-called "Big Data").

Why study Data Science at Dundee?

The School of Computing has been working on 'big data' and data analysis for at least five years; not only working with data but also developing new algorithms and techniques for data scientists. The School already runs the most successful Business Intelligence Masters course in the UK.

This course will be led by Professor Mark Whitehorn and Andy Cobley. Mark is an emeritus professor at the University of Dundee and also runs a successful consultancy company that specialises in BI, Data Sciences and analytics. Andy is the course organiser for both the existing BI course and the new Data Science course.

This course will enhance your employability by providing you with knowledge, skills and understanding of data science research and implementation. You will also acquire skills in the professional procedures necessary to ensure that data science research and implementation is both valid and actionable and engage with contemporary debate about the role, ethics and utility of data science in commercial and other settings.

What is the difference between Data Science and Business Intelligence?

There is clearly a huge overlap with Business Intelligence. A BI specialist will need to understand data and data analytics. However there is a bias towards understanding how data is stored in the current operational systems within an enterprise the design and the implementation of an analytical system such as a data warehouse. A data scientist will be less concerned with the construction of a data warehouse and more interested in the message the specific sets of data can deliver.

However, without some understanding of data warehouses the data scientist will find it difficult to interrogate the data for its secrets. For this reason there is overlap between the two courses.

If you already have a strong grounding in Business Intelligence and would like to upgrade your knowledge to include topics from the Data Science MSc, we offer the relevant Data Science modules either on a stand alone basis or as a PGCert.

What's so good about Data Science at Dundee?

Our facilities will give you 24-hour access to our award winning and purpose-built Queen Mother Building. It has an unusual mixture of lab space and breakout areas, with a range of conventional and special equipment for you to use. It's also easy to work on your own laptop as there is wireless access throughout the building. Our close ties to industry allows us access to facilities such as Windows Azure and Teradata, and university and industry standard software such as Tableau for you to evaluate and use.

A booming Postgraduate culture where the School of Computing maintains a friendly, intimate and supportive atmosphere, and we take pride in the fact that we know all of our students - you're far more than just a matriculation number to us. We have a thriving postgraduate department with regular seminars and guest speakers.

Duncan Ross (Director of Data Sciences at Teradata) has said that: "The first and most important trait is curiosity. Insane curiosity. In many walks of life evolution selects against the kind of person who decides to find out what happens 'if I push that button'. Data Science selects for it."

How you will be taught

The programme will be delivered by Prof. Mark Whitehorn with input from Andy Cobley, Yasmeen Ahmad, Chris Hillman and other specialists from within the School of Computing in an innovative blend of live co-presented master-classes, video seminars and recorded materials. A series of guest speakers from industry will provide case studies across both semesters.

The programme will be provided predominantly on-campus, with two intensive study weeks in each of the semesters. Other classes may be taken off-campus using the university’s VLE, remote desktop, Adobe Connect and video conferencing systems along with telephone conferencing.

What you will study

Semester 1
Big Data - 20 Credits
Business Intelligent Systems - 20 Credits
Data Analysis and Visualisation - 20 Credits

Semester 2
Analytical Database Models and Design - 20 Credits
Advanced statistics and data mining - 20 credits
MDX - 20 Credits

Semester 3
Data Science Mini Project - 20 credits (for Certificate)
Data Science Research Project - 60 credits

PGCert:
The PGCert is intended for students who have a strong grounding in Business Intelligence and would like to upgrade their knowledge to include topics from the Data Science MSc. The modules are available stand alone for those who want to take their time studying the material and perhaps build up to a PGCert.

The three modules that make up the PGCert are:
Big Data
Advanced Anlaysis
Mini Project

For more information about the content of the course, please visit the course webpage on the School of Computing website.

How you will be assessed

Assessment will be by examination, practical coursework and research project.

Careers

Various job sites now report an increase in jobs carrying the title of data scientist. Other career opportunities are in intelligence analysis, data management/database maintenance, data processing manager, database development and research, business intelligence consultant and more.

Read less
The MSc in Data Science will provide you with the technical and practical skills to analyse the big data that is the key to success in future business, digital media and science- http://www.gold.ac.uk/pg/msc-data-science/. Read more
The MSc in Data Science will provide you with the technical and practical skills to analyse the big data that is the key to success in future business, digital media and science- http://www.gold.ac.uk/pg/msc-data-science/

The rate at which we are able to create data is rapidly accelerating. According to IBM, globally, we currently produce over 2.5 quintillion bytes of data a day. This ranges from biomedical data to social media activity and climate monitoring to retail transactions. These enormous quantities of data hold the keys to success across many domains from business and marketing to treating cancer or mitigating climate change.

The pace at which we produce data is rapidly outstripping our ability to analyse and use it. Science and industry are crying out for a new generation of data scientists who combine the statistical skills of data analysis and the computational skills needed to carry out this analysis on a vast scale.

The MSc in Data Science provides you with these skills.

Studying this Masters, you will learn the mathematical foundations of statistics, data mining and machine learning, and apply these to practical, real world data.

As well as these statistical skills, you will learn the computational techniques needed to efficiently analyse very large data sets. You will apply these skills to a range of real world data, under the guidance of experts in that domain. You will analyse trends in social media, make financial predictions and extract musical information from audio files.

The degree will culminate in a final project in which you will you can apply your skills and follow your specialist interests. You will do a novel analysis of a real world data of your choice.

The programme includes:

-A firm grounding in the theory of data mining, statistics and machine learning
-Hands-on practical real world applications such as social media, biomedical data and financial data with Hadoop (used by Yahoo!, Facebook, Google, Twitter, LinkedIn, IBM, Amazon, and many others), R and other specialised software
-The opportunity to work with real-world software such as Apache

Contact the department

If you have specific questions about the degree, contact the Programme Director, Dr Daniel Stamate.

Modules & Structure

You will study the following:
Data Programming- 15 credits
Data Science Research- 15 credits

Skills & Careers

Data Science is one of the fastest growing sectors of employment internationally. Big Data is an important part of modern finance, retail, marketing, science, social science, medicine and government.

The study of a combination of long established fields such as statistics, data mining, machine learning and databases with very modern and strongly related fields as big data management and analytics, sentiment analysis and social web mining, offers graduates an excellent opportunity for getting valuable skills in advanced data processing.

This could lead to a variety of potential jobs including:

Data Scientist
Data Mining Analyst
Big Data Analyst
Hadoop Developer
NoSQL Database Developer
R Programmer
Python Programmer
Researcher in Data Science and Data Mining

Funding

The Department of Computing offers a number of scholarships for students with remarkably good applications. The scholarships will be a one-off payment of £2,000. You don't need to submit a separate application to be considered for one of these awards. You can find out more from the department.

Funding

Please visit http://www.gold.ac.uk/pg/fees-funding/ for details.

Read less
Learning how to turn real-world data sets into tools and useful insights, with the help of software and algorithms. Data plays a role in almost every scientific discipline, business industry or social organisation. Read more
Learning how to turn real-world data sets into tools and useful insights, with the help of software and algorithms.

Data plays a role in almost every scientific discipline, business industry or social organisation. Medical scientists sequence human genomes, astronomers generate terabytes of data per hour with huge telescopes and the police employ seismology-like data models that predict where crimes will occur. And of course, businesses like Google and Amazon are shifting user preference data to fulfil desires we don’t even know we have. There is therefore an urgent need for data scientists in whole array of fields. In the Master’s specialisation in Data Science you’ll learn how to turn data into knowledge with the help of computers and how to translate that knowledge into solutions.

Although this Master’s is an excellent stepping-stone for students with ambitions in research, most of our graduates work as data consultants and data analysts for commercial companies and governmental organisations.

Why study Data Science at Radboud University?

- This specialisation builds on the strong international reputation of the Institute for Computing and Information Sciences (iCIS) in areas such as machine learning, probabilistic modelling, and information retrieval.
- We’re leading in research on legal and privacy aspects of data science and on the impact of data science on society and policy.
- Our approach is pragmatic as well as theoretical. As an academic, we don’t just expect you to understand and make use of the appropriate tools, but also to program and develop your own.
- Because of its relevance to all kinds of different disciplines, we offer our students the chance to take related courses at other departments like at language studies (information retrieval and natural language processing), artificial intelligence (machine learning for cognitive neuroscience), chemistry (pattern recognition and chemometrics) and biophysics (machine learning and optimal control).
- The job opportunities are excellent: some of our students get offered jobs before they’ve even graduated and almost all of our graduates have positions within six months after graduating.
- Exceptional students who choose this specialisation have the opportunity to study for a double degree in Computing Science together with the specialisation in Web and Language Interaction (Artificial Intelligence). This will take three instead of two years.

See the website http://www.ru.nl/masters/datascience

Admission requirements for international students

- A proficiency in English
In order to take part in the programme, you need to have fluency in English, both written and spoken. Non-native speakers of English without a Dutch Bachelor's degree or VWO diploma need one of the following:
- TOEFL score of >550 (paper based) or >213 (computer based) or >80 (internet based)
- IELTS score of >6.0
- Cambridge Certificate of Advanced English (CAE) or Certificate of Proficiency in English (CPE), with a mark of C or higher

Career prospects

A professional data scientist has fine problem-solving, analytical, programming, and communication skills. He or she applies those skills to analyse a problem in the light of the available real-world data:
- To come up with a creative and useful solution.
- To find or program the right tool to turn the data into knowledge.
- To communicate the obtained findings to others.

By combining data, computing power and human intellect, data scientists can make a real difference to help and improve our society.

The job perspective for our graduates is excellent. Industry desperately needs data science specialists at an academic level, and thus our graduates have no difficulty in find an interesting and challenging job. A few of our graduates decide to go for a PhD and stay at the university, but most of our students go for a career in industry. They then typically either find a job at a larger company as consultant or data analysis, or start up their own company in data analytics.

Examples of companies where our graduates end up include SMEs like Orikami, Media11 and FlexOne, and multinationals like ING Bank, Philips, ASML, Capgemini, Booking.com and perhaps even Google.

Our approach to this field

Data nowadays plays a role in almost every scientific discipline as well as industry and is rapidly becoming a key driver of scientific discoveries, business innovation, and solutions for societal challenges such as better healthcare. Medical scientists are sequencing and analysing human genomes to uncover clues to infections, cancer, and other diseases. With huge telescopes, astronomers generate terabytes of data per hour to study the formation of galaxies and the evolution of quasars. Businesses like Google and Amazon are sifting social networking and user preference data to fulfill desires we don't even know we have. Police employing seismology-like data models can predict where crimes will occur and prevent them from happening.

It is then with good reason that data science has been called the sexiest job of the 21st century. Many companies complain about the difficulty to find skilled data scientists and predict this to be even harder in the future. A professional data scientist has fine problem-solving, analytical, programming, and communication skills. He or she applies those skills to analyse a problem in the light of the available real-world data, to come up with a creative and useful solution, to find or program the right tool to turn the data into knowledge, and to communicate the obtained findings to others. By combining data, computing power and human intellect, data scientists can make a real difference to help and improve our society.

See the website http://www.ru.nl/masters/datascience

Read less
1. Big Challenges being addressed by this programme – motivation. Globally, there is a reported shortage of data analytics talent, particularly of individuals with the required deep technical and analytical skills. Read more

About the Course

1. Big Challenges being addressed by this programme – motivation

• Globally, there is a reported shortage of data analytics talent, particularly of individuals with the required deep technical and analytical skills.
• Accenture, Gartner and McKinsey have all identified Data Analytics as one of the fastest growing employment areas in computing and one most likely to make an impact in the future.
• The Irish Government’s policy is for Ireland to become a leading country in Europe for big data and analytics, which would result in 21,000 potential new employment opportunities in Ireland alone.
• CNN has listed jobs in this area in their Top 10 best new jobs in America.

2. Programme objectives & purpose

This is an advanced programme that provides Computing graduates with advanced knowledge and skills in the emerging growth area of Data Analytics. It includes advanced topics such as Large-Scale Data Analytics, Information Retrieval, Advanced Topics in Machine Learning and Data Mining, Natural Language Processing, Data Visualisation and Web-Mining. It also includes foundational modules in topics such as Statistics, Regression Analysis and Programming for Data Analytics. Students on the programme further deepen their knowledge of Data Analytics by working on a project either in conjunction with a research group or with an industry partner.

Graduates will be excellently qualified to pursue careers in national and multinational industries in a wide range of areas. Our graduates currently work for companies as diverse as IBM, SAP, Cisco, Avaya, Google, Fujitsu and Merck Pharmaceuticals as well as many specialised companies and startups. Opportunities will be found in:
• Multinational companies, in Ireland and elsewhere, that provide services and solutions for analytics and big data or whose business depend on analytics and big data technologies;
• Innovative small to medium-sized companies and leading-edge start-ups who provide analytics solutions, services and products or use data analytics to develop competitive advantage
• Companies looking to extend their research and development units with highly trained data analytic specialists
• PhD-level research in NUI Galway, elsewhere in Ireland, or abroad

3. What’s special about CoEI/NUIG in this area:

• The MSc in Computer Science (Data Analytics) is being delivered by the Discipline of Information Technology in collaboration with the Insight Centre for Data Analytics (http://insight-centre.org) and with input from the School of Mathematics, Statistics and Applied Mathematics in NUI Galway
• The Discipline of Information Technology at NUI Galway has 25-year track record of education, academic research, and industry collaboration in the field of Computer Science
• The Insight centre at NUI Galway is Europe’s largest research centre for Data Analytics

4. Programme Structure – ECTS weights and split over semester; core/elective, etc.:

• 90ECTS programme
• one full year in duration, beginning September and finishing August
• comprises:
- Foundational taught modules (20 ECTS)
- Advanced taught modules (40 ECTS)
- Research/Industry Project (30 ECTS).

5. Programme Content – module names

Sample Foundational Modules:

• Tools and Techniques for Large Scale Data Analytics
• Programming for Data Analytics
• Machine Learning and Data Mining
• Modern Information Management
• Probability and Statistics
• Discrete Mathematics
• Applied Regression Models
• Digital Signal Processing

Sample Advanced Modules:

• Advanced Topics in Machine Learning and Information Retrieval
• Web Mining and Analytics
• Systems Modelling and Simulation
• Natural Language Processing
• Data Visualisation
• Linked Data Analytics
• Case Studies in Data Analytics
• Embedded Signal Analysis and Processing

6. Testimonials

Ms. Gofran Shukair, MSc, Research Engineer at ZenDesk, Ireland

After graduating with an MSc at NUI Galway, Gofran worked with Fujitsu’s Irish Research Lab as a research engineer before moving to a software engineering position at Zendesk, Ireland.

“The mix of technical and soft skills I gained through my Masters studies at NUI Galway is invaluable. I had the chance to work with great people and to apply my work on real world problems. With the data management and analysis skills I gained, I am currently pursuing my research in an international research project with one of the leading IT companies. I will be always thankful for studying at NUI Galway, a great historic place based in a culturally-rich vibrant city with an international mix of young and ambitious students that made me eager to learn and contribute back the moment I graduated.”

For further details

visit http://www.nuigalway.ie/courses/taught-postgraduate-courses/msc-in-computer-science-data-analytics.html

How to Apply:

Applications are made online via the Postgraduate Applications Centre (PAC) https://www.pac.ie
Please use the following PAC application code for your programme:

M.Sc. Computer Science – Data Analytics - PAC code GYE06

Scholarships :

Please visit our website for more information on scholarships: http://www.nuigalway.ie/engineering-informatics/internationalpostgraduatestudents/feesandscholarships/

Visit the M.Sc. Computer Science – Data Analytics page on the National University of Ireland, Galway web site for more details!

Read less
Technologies based on the intelligent use of data are leading to great changes in our everyday life. Data Science and Engineering refers to the know-how and competence required to effectively manage and analyse the massive amount of data available in a wide range of domains. Read more
Technologies based on the intelligent use of data are leading to great changes in our everyday life. Data Science and Engineering refers to the know-how and competence required to effectively manage and analyse the massive amount of data available in a wide range of domains.

We offer a two-year Master of Science in Computer Science centered on this emerging field. The backbone of the program is constituted by three core units on advanced data management, machine learning, and high performance computing. Leveraging on the expertise of our faculty, the rest of the program is organised in four tracks, Business Intelligence, Health & Life Sciences, Pervasive Computing, and Visual Computing, each providing a solid grounding in data science and engineering as well as a firm grasp of the domain of interest.

By blending standard classes with recitations and lab sessions our program ensures that each student masters the theoretical foundations and acquires hands-on experience in each subject. In most units credit is obtained by working on a final project. Additional credit is also gained through short-term internship in the industry or in a research lab. The master thesis is worth 25% of the total credit.

TRACKS

• Business Intelligence. This track builds on first hand knowledge of business management and fundamentals of data warehousing, and focuses on data mining, graph analytics, information visualisation, and issues related to data protection and privacy.
• Health & Life Sciences. Starting from core knowledge of signal and image processing, bioinformatics and computational biology, this track covers methods for biomedical image reconstruction, computational neuroengineering, well-being technologies and data protection and privacy.
• Pervasive Computing. Security and ubiquitous computing set the scene for this track which deals with data semantics, large scale software engineering, graph analytics and data protection and privacy.
• Visual Computing. This track lays the basics of signal & image processing and of computer graphics & augmented reality, and covers human computer interaction, computational vision, data visualisation, and computer games.

PROSPECTIVE CAREER

Senior expert in Data Science and Engineering. You will be at the forefront of the high-tech job market since all big companies are investing on data driven approaches for decision making and planning. The Business Intelligence area is highly regarded by consulting companies and large enterprises, while the Health and Life Sciences track is mainly oriented toward biomedical industry and research institutes. Both the Pervasive and the Visual Computing tracks are close to the interests of software companies. For all tracks a job in a start-up company or a career on your own are always in order.

Senior computer scientist.. By personalizing your plan of study you can keep open all the highly qualified job options in software companies.

Further graduate studies.. In all cases, you will be fully qualified to pursue your graduate studies toward a PhD in Computer Science.

Read less
The Masters in Data Science provides you with a thorough grounding in the analysis and use of large data sets, together with experience of conducting a development project, preparing you for responsible positions in the Big Data and IT industries. Read more
The Masters in Data Science provides you with a thorough grounding in the analysis and use of large data sets, together with experience of conducting a development project, preparing you for responsible positions in the Big Data and IT industries. As well as studying a range of taught courses reflecting the state-of-the-art and the expertise of our internationally respected academic staff, you will undertake a significant programming team project, and develop your own skills in conducting a data science project.

Why this programme

◾The School of Computing Science is consistently highly ranked achieving 2nd in Scotland and 10th in the UK (Complete University Guide 2017)
◾The School is a member of the Scottish Informatics and Computer Science Alliance: SICSA. This collaboration of Scottish universities aims to develop Scotland's place as a world leader in Informatics and Computer Science research and education.
◾We currently have 15 funded places to offer to home and EU students.
◾You will have opportunities to meet employers who come to make recruitment presentations, and often seek to recruit our graduates during the programme.
◾You will benefit from having 24-hour access to a computer laboratory equipped with state-of-the-art hardware and software.

Programme structure

Modes of delivery of the MSc in Data Science include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

Core courses

◾Big data
◾Data fundementals
◾Information retrieval
◾Machine learning
◾Research methods and techniques
◾Text as data
◾Web science
◾Masters team project.

Optional courses

◾Advanced networking and communications
◾Advanced operating systems
◾Algorithmics
◾Artificial intelligence
◾Big data: systems, programming and management
◾Computer architecture
◾Computer vision methods and applications
◾Cryptography and secure development
◾Cyber security forensics
◾Cyber security fundamentals
◾Distributed algorithms and systems
◾Enterprise cyber security
◾Functional programming
◾Human computer interaction
◾Human computer interaction: design and evaluation
◾Human-centred security
◾Information retrieval
◾Internet technology
◾IT architecture
◾Machine learning
◾Mobile human computer interaction
◾Modelling reactive systems
◾Safety critical systems.
◾Software project management
◾Theory of Computation

Depending on staff availability, the optional courses listed here may change.

If you wish to engage in part-time study, please be aware that dependent upon your optional taught courses, you may still be expected to be on campus on most week days.

Industry links and employability

◾The advent of Big Data tools in recent years has facilitated the large-scale mining of voluminous data, to allow actionable knowledge and understanding, known as Data Science. For instance, search engines can gain insights into how ambiguous a query is according to the querying and clicking patterns of different users. Data Science combines a thorough background in Big Data processing techniques, combined with techniques from information retrieval and machine learning, to permit coherent and principled solutions allowing real insights and predictions to be obtained from data.
◾The programme includes a thorough grounding in professional software development, together with experience of conducting a development project. The programme will prepare you for a responsible position in the IT industry.
◾The School of Computing Science has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributors include representatives from IBM, J.P. Morgan, Amazon, Adobe, Red Hat and Bing.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the IT industry.

The Data Lab

We work closely with The Data Lab, an internationally leading research and innovation centre in data science. Established with an £11.3 million grant from the Scottish Funding Council, The Data Lab will enable industry, public sector and world-class university researchers to innovate and develop new data science capabilities in a collaborative environment. Its core mission is to generate significant economic, social and scientific value from data. Our students will benefit from a wide range of learning and networking events that connect leading organisations seeking business analytics skills with students looking for exciting opportunities in this field.

Read less
We offer a suite of Masters programmes at Stirling. This is a one year, full time taught MSc. designed to lead to a job in data science or analytics. Read more

Introduction

We offer a suite of Masters programmes at Stirling.
This is a one year, full time taught MSc. designed to lead to a job in data science or analytics.
Big Data skills are in high demand and they attract high salaries. The MSc Big Data at the University of Stirling is a taught advanced Master's degree covering the technology of Big Data and the science of data analytics.
The course is taught in the beautiful Stirling campus in the heart of Scotland with support from companies who recruit data scientists.
The course covers Big Data technology, advanced analytics and industrial and scientific applications. The syllabus includes:
- Mathematics for Big Data
- Python scripting
- Big Data theory and computing foundations
- Big databases and NoSQL
- Analytics, machine learning and data visualisation
- Optimisation and heuristics for big problems
- Hadoop and MapReduce
- Scientific and commercial applications
- Student projects

Key information

- Degree type: MSc
- Duration: One year
- Start date: September
- Course Director: Kevin Swingler

Course objectives

- An understanding of the issues of scalability of databases, data analysis, search and optimisation
- The ability to choose the right solution for a commercial task involving big data, including databases, architectures and cloud services
- An understanding of the analysis of big data including methods to visualise and automatically learn from vast quantities of data
- An appreciation of the size of search spaces in large problems and the ability to choose an appropriate heuristic to find a near optimal solution
- The programming skills to build simple solutions using big data technologies such as MapReduce and scripting for NoSQL, and the ability to write parallel algorithms for multi processor execution.

English language requirements

If English is not your first language you must have one of the following qualifications as evidence of your English language skills:
- IELTS: 6.0 with 5.5 minimum in each skill
- Cambridge Certificate of Proficiency in English (CPE): Grade C
- Cambridge Certificate of Advanced English (CAE): Grade C
- Pearson Test of English (Academic): 54 with 51 in each component
- IBT TOEFL: 80 with no subtest less than 17

For more information go to English language requirements https://www.stir.ac.uk/study-in-the-uk/entry-requirements/english/

If you don’t meet the required score you may be able to register for one of our pre-sessional English courses. To register you must hold a conditional offer for your course and have an IELTS score 0.5 or 1.0 below the required standard. View the range of pre-sessional courses http://www.intohigher.com/uk/en-gb/our-centres/into-university-of-stirling/studying/our-courses/course-list/pre-sessional-english.aspx .

Structure and content

Our Big Data MSc is a mix of practical technology such as Hadoop, NoSQL, and Map-Reduce, important maths and computing theory, and advanced computational techniques. The course will teach you what you need to know to collect, manage and analyse big, fast moving data for science or commerce

REF2014

In REF2014 Stirling was placed 6th in Scotland and 45th in the UK with almost three quarters of research activity rated either world-leading or internationally excellent.

Strengths

Stirling is a member of The Data Lab, which is an Innovation Centre with the aim of developing the data science talent and skills required by industry in Scotland. The data lab with facilitate industry involvement and collaboration and provide funding and resources for students.
The Stirling MSc in Big Data has been developed in partnership with global and local companies who employ data scientists. HSBC have a development centre in Stirling and have provided some very interesting Big Data projects to our students. Amazon’s development centre in Scotland is close by in Edinburgh. The course features a long summer project, generally in partnership with a company or technology provider, that provides students with a showcase of their skills to take to employers or launch online.
We also have a programme of invited speakers from industry who give the students a chance to ask questions of people who are doing data science every day. Recent companies have included MongoDB, SkyScanner and HSBC.

Career opportunities

Demand for people with big data skills is projected to grow rapidly in the coming years. Average salaries are higher in Big Data jobs than the IT average and the skills shortage will make that gap bigger.
The Stirling Big Data MSc is run in partnership with industry and is designed to produce graduates with the skills that companies need.
e-Skills UK estimate that:
- The number of Big Data jobs in the UK rose by 41% from 2012 - 2013
- By 2020 there will be 56,000 Big Data jobs in the UK alone
- Big Data professionals earn on average 31% more than other IT professionals
- 77% of companies say it is difficult to recruit people with the Big Data skill they need

Read less
Data science is the study of the computational principles, methods, and systems for extracting and structuring knowledge from data; and the application and use of those principles. Read more

Programme description

Data science is the study of the computational principles, methods, and systems for extracting and structuring knowledge from data; and the application and use of those principles. Large data sets are now generated by almost every activity in science, society, and commerce - ranging from molecular biology to social media, from sustainable energy to health care.

Data science asks: how can we efficiently find patterns in these vast streams of data? Many research areas have tackled parts of this problem: machine learning focuses on finding patterns and making predictions from data; ideas from algorithms and databases are required to build systems that scale to big data streams; and separate research areas have grown around different types of unstructured data such as text, images, sensor data, video, and speech. Recently, these distinct disciplines have begun to converge into a single field called data science.

Programme structure

You follow two taught semesters of lectures, tutorials, project work and written assignments, after which you will learn research methods before individual supervision for your project and dissertation.

Compulsory courses

Informatics Research Review
Informatics Research Proposal
Dissertation

You are also required to take a breadth of courses in data science, with at least one in each of the following areas:

Machine Learning, Statistics and Optimization
Databases and Data Management
Applications

You can take up to two courses from other schools.

Learning outcomes

The School of Informatics' MSc in Data Science is designed to attract students who want to establish a career as a data scientist in industry or the public sector, as well as students who want to explore the area prior to further training such as in our CDT in Data Science.

The learning objectives of the degree are to foster:

A breadth of knowledge across the data science areas
An advanced technical background in at least one of the data science areas
An appreciation for real-world problems involving the use of data in industry, science, and the public sector
Research experience in one of the data science areas.

Career opportunities

Through this programme you will develop specialist, advanced skills in the development, construction and management of advanced computer systems.

You will gain practical experience and a thorough theoretical understanding of the field making you attractive to a wide range of employers or preparing you for further academic study.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Health Data Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Health Data Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Healthcare, with an already established strong relationship with Information & Communication Technologies (ICT), is continuously expanding the knowledge forefront as new methods of acquiring data concerning the health of human beings are developed.

Processing this data to extract valuable information about a population (epidemiological applications) or the individual (personalised healthcare applications) is the work of health data scientists. Their work has the potential to improve quality of life on a large scale.

Swansea University is the first institution in the UK to offer this taught masters programme designed to develop the essential skills and knowledge required of the Health Data Scientist.

The Health Data Science course provides an integrated programme of studies tailored to the essential skill set required for Data Scientists operating within healthcare organisations covering key topics in computation, data modeling, visualisation, machine learning and key methodologies in the analysis of linked health data. The Health Data Science course also provides hands on experiential learning from the professionals behind the Secure Anonymised Information Linkage (SAIL) Databank, a UK-exemplar project for the large scale mining of healthcare data within a secure environment.

The Health Data Science course is based within the award winning Centres for Excellence for Administrative Data and eHealth Research of Swansea University, awarded by the Economic and Social Research Council (ESRC) and Medical Research Council (MRC), enhancing the quality of the course.

Modules on the Health Data Science programme typically include:

Health Data Science & Scientific Computing in Healthcare
Health Data Manipulation
Analysis of Linked Health Data
Machine Learning Applications in Health Data
Health Data Visualisation
Advanced Analysis of Linked Health Data
Health Data Analysis Dissertation

Who should study MSc Health Data Science?

This course is suitable for those working in healthcare with roles involving the analysis of health data and also computer scientists with experience in working with data from the healthcare domain, as well as biomedical engineers and other similar professions.

Read less
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Advanced Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Advanced Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

On the MSc in Advanced Computer Science course you will be thoroughly prepared for a career in IT or related industries. The Advanced Computer Science course is for you if you are a Computer Science graduate or if you have gained experience of computing and programming in a different first degree. Willingness to work hard and an ability to problem solve are equally important for this MSc in Advanced Computer Science. The MSc in Advanced Computer Science course will develop the skills and knowledge you have gained from your first degree by broadening and deepening your knowledge of Computer Science through a variety of advanced modules and material. The MSc in Advanced Computer Science is accredited by the British Computer Society.

Key Features of Advanced Computer Science MSc

• We are top in the UK for career prospects*
• We are 3rd in the UK for teaching quality**
• 5th in the UK overall*
• 7th in the UK for student satisfaction with 98% [National Student Survey 2016]
• 7th in the UK overall and Top in Wales*
• High employability prospects - we are 8th in the UK for graduate prospects*
• 92% in graduate employment or further study six months after leaving University [HESA data 2014/15]
• UK TOP 20 for Research Excellence [Research Excellence Framework 2014]
• Our Project Fair allows students to present their work to local industry
• Strong links with industry
• £31m Computational Foundry for computer and mathematical sciences will provide the most up-to-date and high quality teaching facilities featuring world-leading experimental set-ups, devices and prototypes to accelerate innovation and ensure students will be ready for exciting and successful careers. (From September 2018)

*Guardian University Guide 2017
**Times & Sunday Times University Guide 2016

Modules of Advanced Computer Science MSc

Modules for the MSc in Advanced Computer Science include Computer Science Project Research Methods but please visit our course page for more information.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Careers

All Computer Science courses will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

94% of our Postgraduate Taught Graduates of Computer Science were in professional level work or study [DLHE 14/15]

Student Profile

Francesca Madeddu, originally from Italy, completed an outstanding Master’s thesis (which earned her a distinction) investigating interaction with augmented reality on mobile devices. More specifically, she investigated how to interact with virtual Egyptian artefacts placed in real scenes. The final game was deployed at Swansea's Egypt Centre last year and was evaluated by volunteers working at the museum. A Master’s thesis does not often lead to a publication. However, part of Francesca's research was written up as an extended abstract and presented at Computer Graphics and Visual Computing (CGVC), a Eurographics UK conference for visual computing last year. An exceptional achievement!

Read less
This professional degree is for people who are passionate about drawing meaningful knowledge from data to drive business decision-making or research output. Read more
This professional degree is for people who are passionate about drawing meaningful knowledge from data to drive business decision-making or research output.
Data is a vital asset to an organisation. It can provide valuable insights into areas such as customer behaviour, market intelligence and operational performance. Data scientists build intelligent systems to manage, interpret, understand and derive key knowledge from this data.
For those with strong mathematical or quantitative backgrounds, this degree will develop your analytical and technical skills to use data science to guide strategic decisions in your area of expertise. It offers the flexibility to tailor your learning to your professional and personal interests.
Leveraging the University’s research strengths, you will explore the latest in data mining, machine learning and data visualisation, while developing the skills to effectively communicate data insights to key stakeholders.
For those with qualifications in other areas such as health and education, a Graduate Certificate in Data Science can provide you with data science capability to complement your existing skills and provide a pathway to the master’s program.
Course structureThe course comprises core units, elective units and a capstone project where you will apply your skills to a real-world data science problem. You can tailor your degree by selecting elective units and a project that complement your particular interests, background and qualifications.
Core units for the Master of Data Science include Principles of Data Science, Computational Statistical Models, Visual Analytics, and Knowledge Discovery and Data Mining.
For the Graduate Certificate in Data Science, core units include Principles of Data Science, Algorithms, Database Management Systems and Introduction to Statistics.
You can select elective units from the following data science subjects, or from other disciplines relevant to your background and qualifications.
Data science electives include:
Advanced Data Models
Cloud Computing
Multimedia Retrieval
Data Analytics and Business Intelligence
Information Security Management
Statistical Learning and Data Mining
Statistical Natural Language Processing
Predictive Analytics.We also offer a pathway for eligible candidates planning to pursue a research degree.

Read less
Have you ever wanted to ‘Mung’ data? Apply Machine Learning techniques? Search for hidden patterns? Be part of Big Data?. This course is your opportunity to specialize as a Data Scientist, one of the most in demand roles across all sectors including health, retail, and energy. Read more
Have you ever wanted to ‘Mung’ data? Apply Machine Learning techniques? Search for hidden patterns? Be part of Big Data?

This course is your opportunity to specialize as a Data Scientist, one of the most in demand roles across all sectors including health, retail, and energy. Companies such as Google and Microsoft, and also public organisations such as the NHS are struggling to fill their vacancies in this field due to a lack of suitably qualified people. This course is unique in the UK in that it has been developed as a MSc conversion course – if you have a good honours degree in any discipline with a demonstrable mathematical aptitude, an enquiring mind, a practical and analytical approach to problem solving, and an ambition for a career in data science; then this course is for you.

Key benefits

• We welcome applications from students who may not have formal/traditional entry criteria but who have relevant experience or the ability to pursue the course successfully.

• The Accreditation of Prior Learning (APL) process could help you to make your work and life experience count. The APL process can be used for entry onto courses or to give you exemptions from parts of your course.

• Two forms of APL may be used for entry: the Accreditation of Prior Certificated Learning (APCL) or the Accreditation of Prior Experiential Learning (APEL).

Visit the website: http://www.salford.ac.uk/pgt-courses/msc-data-science

Course detail

During your time with us, you will develop an awareness of the latest developments in the fields of Data Science and Big Data including advanced databases, data mining and big data tools such as Hadoop. You will also gain substantial knowledge and skills with the SAS business intelligence software suite due to the partnership of the University with the SAS Student Academy.

This course covers a very comprehensive range of topics split in to four large modules worth 30 credits each plus the MSc Project. External speakers from blue-chip and local companies will give seminars to complement your learning, that will be real-world case studies related to the subjects you are studying in your modules. These are designed to improve the breadth of your learning and could lead to ideas that you can develop for your MSc Project.

Suitable For

Students who want to become trained professionals in:

• Data Science and Analysis Consultancy
• Implementing and designing Big Data platforms ie Data Warehouses, Hadoop, NoSQL databases
• Modelling and Visualisation of data

Format

The course is focused around the underpinning knowledge and practical skills needed for employment within the data sciences industry. There will be 22 hours of lectures; 11 hours of tutorials and 22 hours workshops; 2 hours of examination-based assessment; and 245 hours of independent study, assessed coursework and preparation for examination. This makes a total of 300 hours total learning experience.

• Lectures will be used to introduce ideas, and to stimulate group discussions.
• Tutorials will be used to develop problem solving strategies and to provide practice and feedback with scenarios to help with exam preparation.
• Workshops will be used to develop expertise in SAS tools, by analysing example datasets of increasing complexity.

Modules

• Principles of Data Science
• Advanced Databases
• Applied Statistics and Data Mining
• Big Data Tools and Techniques

Assessment

• 50% of the assessment will comprise a practical project where students will be given some data, will devise and carry out an analysis strategy and will present their interpretations and explain their strategy.
• 50% will comprise an examination, which will assess more theoretical aspects of the course and will explore students’ immediate response to unseen scenarios or data.

Career Prospects

A recent report by e-Skills and SAS (Big Data Analytics: An assessment of the demand for labour and skills, 2012-1017) indicates the demand forecast for staff with big data skills is predicted to ”rise by 92% between 2012 and 2017, and by 2017 there will be at least 28,000 job openings for big data staff in the UK each year…”

With this qualification, you’ll be equipped with the skill set and technical knowledge relevant for the data science and big data job market.

How to apply: http://www.salford.ac.uk/study/postgraduate/applying

Read less
Leiden University offers five different specialisations in the MSc programme in Computer Science. - Bioinformatics. - Computer Science and Advanced Data Analytics. Read more
Leiden University offers five different specialisations in the MSc programme in Computer Science:

- Bioinformatics
- Computer Science and Advanced Data Analytics
- Computer Science and Science Communication and Society
- Computer Science and Science-Based Business
- Data Science: Computer Science

Visit the website: http://en.mastersinleiden.nl/programmes/computer-science/en/introduction

Course detail

Leiden University offers five different specialisations in the MSc programme in Computer Science.

Three specialisations are dedicated to the research areas of the Leiden Institute of Advanced Computer Science:

- Computer Science and Advanced Data Analytics
- Bioinformatics
- Data Science for Computer Science

The other two specialisations are more broadly oriented, and combine at least one year of the computer science curriculum with training in which specific career opportunities in science-related professions can be explored:

- Computer Science and Science-Based Business.
- Computer Science and Science Communication and Society

Reasons to Choose Computer Science in Leiden:

- The programme offers stimulating, significant and innovative research in the field of Computer Science, including recent advances in Data Analytics and Natural Computing.

- Research at the Leiden Institute of Advanced Computer Science (LIACS) has an excellent international reputation.

- The strength of the programmes is the individual approach: an individually tailored programme will be designed for each student.

- The researchers and assistants are easily accessible. Students and staff work closely together in a research-oriented environment.

- Students with an MSc in Computer Science are admissible to a PhD programme.

- It provides students with a thorough computer science background that will allow them to pursue careers in research or industrial environments.

Careers

Masters of Science in Computer Science are not only professionally trained, they also have an analytical mind and problem-solving attitude. These qualities ensure a wide variety of career opportunities.

Master of Science students in Leiden work in a multinational environment and are being prepared to operate in international settings.

How to apply: http://en.mastersinleiden.nl/arrange/admission

Funding

For information regarding funding, please visit the website: http://prospectivestudents.leiden.edu/scholarships

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X