• University of Cambridge Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Durham University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
De Montfort University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Bath Spa University Featured Masters Courses
"advanced" AND "computing…×
0 miles

Masters Degrees (Advanced Computing)

We have 970 Masters Degrees (Advanced Computing)

  • "advanced" AND "computing" ×
  • clear all
Showing 1 to 15 of 970
Order by 
This is a specialised programme of study of advanced computing technologies, data science and data analytics focusing on areas of expertise and research specialisation within the Department of Computer Science and Information Systems. Read more
This is a specialised programme of study of advanced computing technologies, data science and data analytics focusing on areas of expertise and research specialisation within the Department of Computer Science and Information Systems. Modules cover state-of-the-art techniques in areas including the management and analysis of 'big data', software development of information systems in cloud, mobile and web-based architectures, and computational methods for intelligent information management and analysis.

You will gain specialist knowledge of the above areas, which you can then employ in analysis of problems arising in the use of advanced computing technologies, evaluation and application of technologies, and research into, and development of, new technologies.

Why study this course at Birkbeck?

Designed for students wishing to advance their knowledge of advanced computing technologies, data science and data analytics.
You may be working in the IT sector already and wish to update your skills, or may intend to pursue a career in IT or a research degree.
Significant coverage of emerging technologies and research developments in areas of growing importance in the IT industry.
You may choose modules in specialised areas leading to the award of an MSc Data Analytics, MSc Information and Web Technologies or MSc Intelligent Technologies.
You will have 24-hour access to several laboratories of networked PCs with a range of language compilers, database and other application software. We are connected, via the SuperJANET network, to the computers of other academic institutions in London, elsewhere in the UK and abroad.

Read less
This programme is an advanced computer science course that also introduces core management theories and skills to an audience of scientists and engineers who already possess a good foundation in programming. Read more
This programme is an advanced computer science course that also introduces core management theories and skills to an audience of scientists and engineers who already possess a good foundation in programming. It will improve your ability to solve advanced computational problems by gaining knowledge of data structures, design quantitative analysis of algorithms and their applications and implementation.

Key benefits

• Unrivalled location in the heart of London giving access to major libraries and leading scientific societies, including the BCS Chartered Institute for IT, and the Institution of Engineering and Technology (IET).

• Equips graduates with practical techniques and implementation skills for solving advanced computational problems.

• Develops critical awareness and appreciation of the changing role of computing in society, motivating graduates to pursue continuing professinoal development and further research.

• Access to speakers of international repute through seminars and external lectures, enabling students to keep abreast of emerging knowledge in advanced computing and related fields.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/advanced-computing-with-management-msc.aspx

Course detail

- Description

This programme provides students with systematic knowledge and experience of the theoretical foundations and practice of computing at an advanced level. It is built around taught core modules such as Algorithm Design and Analysis, Data Structures and their Implementation in C++, Parallel and Distributed Algorithms, which are complemented by a wide range of optional modules for multimedia, optimisation, string processing and the web. The programme also prepares students to take on certain, more senior roles in industry that require specialist management knowledge and problem solving skills related to Advanced Computing. The final part of the programme is an individual project which is closely linked with the Department's research activities.

- Course purpose

For graduates in computer science, mathematics, science or engineering with good knowledge of computer programming, this MSc will enhance your ability to solve advanced computational problems and impart skills necessary for algorithm implementation within the context of software development and with core management theories. Research for your individual project will provide valuable preparation for a career in research or industry.

- Course format and assessment

Lectures; tutorials; seminars; laboratory sessions; optional career planning workshops. Assessed through: coursework; written examinations; final project report.

Career prospects

Via the Department’s Careers Programme, students are able to network with top employers and obtain advice on how to enhance career prospects. Our graduates have gone on to have very successful careers in general software consultancy companies, in specialised software development companies and in IT departments of large institutions (financial, telecommunications and public sector). Their jobs involve specialist programming and problem solving as well more conventional software development, maintenance and project management roles. Our graduates have also entered into academic and industrial research in software engineering, bioinformatics, algorithms and computer networks.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

Read less
This Advanced Computing Science Masters allows you to deepen your knowledge of the subject, drawing on the expertise of our world-leading academics to investigate topics at the cutting edge of Computing research. Read more
This Advanced Computing Science Masters allows you to deepen your knowledge of the subject, drawing on the expertise of our world-leading academics to investigate topics at the cutting edge of Computing research.

The MSc is designed for graduates with a Computing Science background who wish to study new topics, begin to specialise in a particular field, and gain further qualifications. It’s ideal as preparation for a research post or for graduates looking to differentiate themselves in the job market.

The degree is more flexible than some our more specialised courses and gives you the choice of a wide range of topics, reflecting the research specialisms of our School – including Artificial Intelligence, Graphics, Audio and Visual Processing, Data Mining and Systems Engineering. You’ll become aligned with one of our major research areas and undertake an in-depth project that may involve a placement with one of our industry links.

Read less
This taught postgraduate course offers you the opportunity to study a wide variety of topics in depth with dedicated experts. It is aimed at students who have a substantial background in computing and who want to study advanced computing concepts and technologies in more depth. Read more
This taught postgraduate course offers you the opportunity to study a wide variety of topics in depth with dedicated experts.

It is aimed at students who have a substantial background in computing and who want to study advanced computing concepts and technologies in more depth.

This course is suitable for students who are primarily interested in a career orientated towards development and applications in industry, while the MRes is aimed at students interested in a research career either in the industrial or academic sector.

Read less
This taught postgraduate course offers you the opportunity to study a wide variety of topics in depth with dedicated experts. It is aimed at students who have a substantial background in computing and who want to study advanced computing concepts and technologies in more depth. Read more
This taught postgraduate course offers you the opportunity to study a wide variety of topics in depth with dedicated experts.

It is aimed at students who have a substantial background in computing and who want to study advanced computing concepts and technologies in more depth.

A particular feature of this course is the MRes Research Project, in which you research a theoretical or practical problem over two terms under the close supervision of one or two academics.

Read less
The programme is for students with computer science, mathematics, science or engineering backgrounds and good knowledge of computer programming. Read more
The programme is for students with computer science, mathematics, science or engineering backgrounds and good knowledge of computer programming. To improve ability to solve advanced computational problems by providing a thorough knowledge of data structures, design, quantitative analysis of algorithms and algorithmic applications and impart skills necessary for algorithm implementation within the overall context of software development.

Key benefits

- Unrivalled location in the heart of London giving access to major libraries and leading scientific societies, including the BCS Chartered Institute for IT, and the Institution of Engineering and Technology (IET).

- Equips graduates with practical techniques and implementation skills for solving advanced computational problems.

- Develops critical awareness and appreciation of the changing role of computing in society, motivating graduates to pursue continuing professinoal development and further research.

- Access to speakers of international repute through seminars and external lectures, enabling students to keep abreast of emerging knowledge in advanced computing and related fields.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/advanced-computing-msc.aspx

Course detail

- Description

This programme provides students with systematic knowledge and experience of the theoretical foundations and practice of computing at an advanced level. It is built around taught core modules such as Algorithm Design and Analysis, Data Structures and their Implementation in C++, Parallel and Distributed Algorithms, which are complemented by a wide range of optional modules for multimedia, optimisation, string processing and the web. The final part of the programme is an individual project which is closely linked with the Department's research activities.

- Course purpose

For graduates in computer science, mathematics, science or engineering with good knowledge of computer programming, this MSc will enhance your ability to solve advanced computational problems and impart skills necessary for algorithm implementation. Research for your individual project will provide valuable preparation for a career in research or industry.

- Course format and assessment

Lectures; tutorials; seminars; laboratory sessions; optional career planning workshops. Assessed through: coursework; written examinations; final project report.

- Compulsory modules:

- Algorithm Design & Analysis
- Data Structures & their Implementation in C++
- Parallel & Distributed Algorithms.

Career prospects

Via the Department’s Careers Programme, students are able to network with top employers and obtain advice on how to enhance career prospects. Our graduates have gone on to have very successful careers in general software consultancy companies, in specialised software development companies and in IT departments of large institutions (financial, telecommunications and public sector). Their jobs involve specialist programming and problem solving as well more conventional software development, maintenance and project management roles. Our graduates have also entered into academic and industrial research in software engineering, bioinformatics, algorithms and computer networks.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

Read less
Games consoles and mobile devices are now ubiquitous, and computer graphics production has developed so rapidly that the best visual effects are those that you don't realise are there. Read more
Games consoles and mobile devices are now ubiquitous, and computer graphics production has developed so rapidly that the best visual effects are those that you don't realise are there.

The Creative Technology programme is designed to introduce you to the rapidly emerging areas of computer science where technology impacts the creative design process. With a focus on the production of industry-relevant content, the programme introduces the theory behind animation and special effects production, interaction design and robotics. You will explore a wide range of topics, experience the entire creative design process and develop key skills in independent research.

Programme structure

You will study taught units between September and mid-June. After completing the taught units, you will work on a project between mid-June and late September.

Core units
-Animation production
-Character and set design
-Computer graphics
-Image processing and computer vision
-Research skills
-Server software
-Web technologies

You will also be able to choose from a variety of optional units.

Project
You must complete a project that consists of researching, planning and implementing a major piece of work. The project must contain a significant scientific or technical component and will usually involve software development. It is usually submitted in September.

Careers

This programme is designed to give you a significant advantage in the fast-paced world of emerging creative technologies industries. The programme will also give you the knowledge and experience to continue studying for a PhD, or to enter a career in research. With strong links to industry through the faculty’s academic staff and the University of Bristol Careers Service, we are well placed to support you in your career aspirations in industry or furthering your academic career.

Read less
Machine learning, data mining and high-performance computing are concerned with the automated analysis of large-scale data by computer, in order to extract the useful knowledge hidden in it. Read more
Machine learning, data mining and high-performance computing are concerned with the automated analysis of large-scale data by computer, in order to extract the useful knowledge hidden in it. Using state-of-the-art artificial intelligence methods, this technology builds computer systems capable of learning from past experience, allowing them to adapt to new tasks, predict future developments, and provide intelligent decision support. Bristol's recent investment in the BlueCrystal supercomputer - and our Exabyte University research theme - show our commitment to research at the cutting edge in this area.

This programme is aimed at giving you a solid grounding in machine learning, data mining and high-performance computing technology, and will equip you with the skills necessary to construct and apply these tools and techniques to the solution of complex scientific and business problems.

Programme structure

Your course will cover the following core subjects:
-Introduction to Machine Learning
-Research Skills
-Statistical Pattern Recognition
-Uncertainty Modelling for Intelligent Systems

Depending on previous experience or preference, you are then able to take optional units which typically include:
-Artificial Intelligence with Logic Programming
-Bio-inspired Artificial Intelligence
-Cloud Computing
-Computational Bioinformatics
-Computational Genomics and Bioinformatics Algorithms
-Computational Neuroscience
-High Performance Computing
-Image Processing and Computer Vision
-Robotics Systems
-Server Software
-Web Technologies

You must then complete a project that involves researching, planning and implementing a major piece of work. The project must contain a significant scientific or technical component and will usually involve a software development component. It is usually submitted in September.

This programme is updated on an ongoing basis to keep it at the forefront of the discipline. Please refer to the University's programme catalogue for the latest information on the most up-to-date programme structure.

Careers

Skilled professionals and researchers who are able to apply these technologies to current problems are in high demand in today's job market.

Read less
This MSc is for students who already have a first degree in computer science or a related subject. It allows you to gain expertise with more advanced material in a range of specialist areas and covers both theory and practical application. Read more
This MSc is for students who already have a first degree in computer science or a related subject. It allows you to gain expertise with more advanced material in a range of specialist areas and covers both theory and practical application. It is suitable preparation for either a career in industry or a PhD.

The Department of Computer Science is very active in research and, for example, has the largest cryptography group in the world and one of the largest intelligent systems groups in the UK. Staff have good links with leading researchers and industrial partners internationally.

Skilled professionals and researchers who are able to apply these technologies to current problems, and thereby push the limits of what computers can effectively do, are in high demand in today's job market.

Programme structure

This MSc offers taught units, studied between September and mid-June. These are based around specialised themes such as:
-Intelligent Systems
-Robotics
-High-Performance Computing
-Creative Technologies
This flexible structure allows you to shape the programme to suit your interests and career aspirations. You will decide which units to take in consultation with the programme director, informed by your previous experience. Please note that unit combinations will be subject to timetabling constraints.

After completing the taught units, you will work on a project between mid-June and late September. The project consists of researching, planning and implementing a major piece of work. The project must contain a significant scientific or technical component and will usually involve software development.

Careers

This flexible programme allows you to cover both theory and practical applications of areas suited to your interests. It also allows you to design the MSc to suit your future plans either for a role in industry or to pursue a PhD.

Read less
Engineers are the key to the development of society and solving the problems the world currently faces. They have the power to make the world fundamentally different. Read more
Engineers are the key to the development of society and solving the problems the world currently faces. They have the power to make the world fundamentally different.

The Master of Advanced Engineering is the key transitional stage in your career, transforming you into a global leader. Gain a depth of knowledge, mastering the crucial skills to become a leading contributor in your field.

Customise your degree - the Master of Advanced Engineering offers flexibility to complete your Master degree in just one year, or you can choose a two year option.

This course is designed to extend your knowledge in your chosen specialisation area and advance your leadership and complex problem-solving skills in a cross cultural environment.

Understand, reflect critically upon and apply methods in at least one specialist engineering area to design solutions to complex, multifaceted engineering problems.

Common core units will develop crucial skills in areas such as data analysis and entrepreneurship, translating theory into engineering practice. In discipline core units you will identify, interpret and critically appraise current developments and technologies within your specialisation.

Enhancement units are designed to provide breadth and are taken from either another engineering specialisation or in complementary areas such as information technology and business.

In addition, the two year version of the program offers a range of technical electives that will deepen your understanding of a specific topic, and two, year- long engineering project units. You will work closely with an academic on a topic of your choice and immerse yourself in a multidisciplinary design project.

The Master of Advanced Engineering could also be your stepping stone to a research degree. All of this in highly interactive, expert led classes.

Visit the website http://www.study.monash/courses/find-a-course/2016/advanced-engineering-e6001?domestic=true

Overview

Please select a specialisation for more details:

Chemical engineering

Your qualification will be a Master of Advanced Chemical Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Chemical Engineering allows you to engage in the areas of study including advanced reaction engineering, process design and optimization, conversion of bioresources into fuel, materials and specialty chemicals, and nanostructured membranes for sustainable separations and energy production with an emphasis on the latest developments in the field. In this course, you will develop specialised knowledge and skills that are important to Chemical Engineers in industry and research. This course provides graduates with enhanced opportunities for advancement in their careers.

Civil engineering (Infrastructure systems)

Your qualification will be a Master of Advanced Civil Engineering (Infrastructure Systems)

The Master of Advanced Civil Engineering (Infrastructure Systems) will equip graduates to work with in the area of infrastructure engineering and management. It will provide the fundamental knowledge associated with interfacing both structural and geotechnical designs for infrastructure systems. The program is designed to equip you with advanced skills necessary for managing the challenges posed by ageing and leading designs of new complex infrastructure systems. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills, as well as to develop theoretical and applied knowledge in the area of infrastructure engineering and management.

Civil engineering (Transport)

Your qualification will be a Master of Advanced Civil Engineering (Transport)

Please note that this specialisation is available only in Clayton.

The Master of Advanced Civil Engineering (Transport) program deals with the fundamental knowledge associated with transport engineering and management, traffic engineering, intelligent transport systems and transport planning. The program in is a response to the growing need for engineers with broad awareness of the characteristics and significance of transport, including its technological, economic and social impact. At the same time, the program outlines the state-of-the-art of transport engineering, as it may be applied to the solution of real problems in the planning, design, management and operation of transport facilities. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills as well as to develop theoretical and applied knowledge in the area of transport engineering and management.

Civil engineering (Water)

Your qualification will be a Master of Advanced Civil Engineering (Water)

Please note that this specialisation is available only in Clayton.

The Master of Advanced Civil Engineering (Water) allows you to major in water resources engineering and management. This program deals with the fundamental knowledge associated with surface and ground water flow, stormwater management, water quality, flood forecasting and mitigation. The program is designed to equip you with advanced skills necessary for managing the challenges posed by changing climatic condition on water resource management. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills as well as to develop theoretical and applied knowledge in the area of water resources engineering and management.

Electrical engineering

Your qualification will be a Master of Advanced Electrical Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Electrical Engineering will give you a broad introduction to advanced techniques in signal processing, communications, digital systems and electronics. The units have been chosen around the common theme of embedded systems: special purpose computing systems designed for specific applications. They are found just about everywhere including in consumer electronics, transportation systems, medical equipment and sensor networks. The course will mix theory and practice and will contain a significant amount of hands-on learning in laboratories and team-based design projects.

Energy and sustainability engineering

Your qualification will be a Master of Advanced Engineering (Energy and Sustainability)

Please note that this specialisation is available only in Malaysia.

The Master of Advanced Engineering (Energy and Sustainability) is designed for qualified engineers keen to deepen their knowledge in the energy and sustainability area. The course provides foundations in general engineering through engineering analysis and entrepreneurship units. Students can major in this program by examining energy and sustainability area from a multi-disciplinary perspective. Students can also choose elective units such as environment and air pollution control and smart grids to further enhance their knowledge in this area or undertake a minor research work to pursue a topic of interest related to this area.

Materials engineering

Your qualification will be a Master of Advanced Materials Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Materials Engineering encompasses practical aspects of the key classes of materials such as metals, polymers, biomaterials, nanomaterials and energy-related materials. This program particularly focuses on the most up-to-date aspects of the field, along with the utilisation of materials and their electronic, chemical and mechanical properties as underpinned by the microstructures that are revealed by modern characterisation techniques. This program is designed to prepare students to appreciate and exploit the central role of materials in addressing the present technical, economic and environmental problems involved in the design and construction of engineering structures, processes and devices. This course is ideally suited for new graduates as well as professional engineers who are eager to advance their applied knowledge in the area of Materials Engineering.

Mechanical engineering

Your qualification will be a Master of Advanced Mechanical Engineering

Please note that this specialisation is available only in Clayton.

Most modern engineering projects are multidisciplinary in nature and require a broad range of skills, proficiencies and perspectives to accomplish the task. The Master of Advanced Mechanical Engineering takes a systems approach to the design, monitoring and performance of complex mechanical engineering systems in the fields of renewable energy, aerospace, buildings, transportation, and biomedical devices. The systems approach also permeates the design of the course: four discipline-based core units are vertically integrated so that common problems are examined from different perspectives, culminating in a sustainable systems unit.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/engineering

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/advanced-engineering-e6001?domestic=true#making-the-application

Read less
Developments in cloud computing technology are transforming the way we live and work. This programme will equip you with specialist knowledge in this fast-growing field and allow you to explore a range of advanced topics in computer science. Read more

Developments in cloud computing technology are transforming the way we live and work. This programme will equip you with specialist knowledge in this fast-growing field and allow you to explore a range of advanced topics in computer science.

You’ll gain a foundation in topics like systems programming and algorithms, as well as specialist modules in advanced distributed systems – especially cloud techniques, technologies and applications.

Building on your existing knowledge of computer science, you’ll also choose from optional modules in topics across computer science. You could look at emerging approaches to human interaction with computational systems, data mining and functional programming among others.

The programme will give you the theoretical and practical skills required to design and implement larger, more complex systems using state-of-the-art technologies. You’ll even have the chance to work as an integral member of one of our research groups when you develop your main project.

Specialist facilities

You’ll benefit from world-class facilities to support your learning. State-of-the-art visualisation labs including a powerwall, a benchtop display with tracking system, WorldViz PPT optical tracking system and Intersense InertiaCube orientation tracker are all among the specialist facilities we have within the School of Computing.

We also have Ascension Flock of Birds tracking systems, three DOF and 6DOF Phantom force feedback devices, Twin Immersion Corp CyberGloves, a cloud computing testbed, rendering cluster and labs containing both Microsoft and Linux platforms among others. It’s an exciting environment in which to gain a range of skills and experience cutting-edge technology.

Course content

Core modules in Semester 1 will lay the foundations of the programme by giving you an understanding of the key topics of algorithms and systems programming. Throughout the year you’ll also take modules developing your understanding of cloud computing itself, from designing the high-level framework of a distributed system to big data and the “internet of things”.

From there you’ll have the chance to tailor your studies to suit your own preferences. You’ll choose from a wide range of optional modules on diverse topics such as image analysis, machine learning, semantic technologies and developing mobile apps.

Over the summer months you’ll also work on your research project. This gives you the chance to work as an integral part of one of our active research groups, focusing on a specialist topic in computer science and selecting the appropriate research methods.

Want to find out more about your modules?

Take a look at the Advanced Computer Science (Cloud Computing) module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • MSc Project 60 credits
  • Cloud Computing 15 credits

Optional modules

  • Web Services and Web Data 10 credits
  • Distributed Systems 10 credits
  • Mobile Application Development 10 credits
  • Machine Learning 10 credits
  • Information Visualization 10 credits
  • Data Mining and Text Analytics 10 credits
  • Combinatorial Optimisation 10 credits
  • Secure Computing 10 credits
  • Graph Algorithms and Complexity Theory 10 credits
  • Big Data Systems 15 credits
  • Data Science 15 credits
  • Bio-Inspired Computing 15 credits
  • Knowledge Representation and Reasoning 15 credits
  • Algorithms 15 credits
  • Parallel and Concurrent Programming 15 credits
  • Data Mining and Text Analytics 15 credits
  • Semantic Technologies and Applications 15 credits
  • Image Analysis 15 credits
  • Scheduling 15 credits
  • Scientific Computation 15 credits
  • Graph Theory: Structure and Algorithms 15 credits

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The professional project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects for MSc Advanced Computer Science (Cloud Computing) students have included:

  • Intelligent services to support sensemaking
  • Google cloud data analysis
  • Hadoop for large image management
  • Evaluating web service agreement in a cloud environment

A proportion of projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

Computing is an essential component of nearly every daily activity, from the collection, transformation, analysis and dissemination of information in business, through to smart systems embedded in commodity devices, the image processing used in medical diagnosis and the middleware that underpins distributed technologies like cloud computing and the semantic web.

This programme will give you the practical skills to gain entry into many areas of applied computing, working as application developers, system designers and evaluators; but further, links between the taught modules and our research provide our students with added strengths in artificial intelligence, intelligent systems, distributed systems, and the analysis of complex data. As a result, you’ll be well prepared for a range of careers, as well as further research at PhD level.

Graduates have found success in a wide range of careers working as business analysts, software engineers, wed designers and developers, systems engineers, information analysts and app developers. Others have pursued roles in consultancy, finance, marketing and education, or set up their own businesses.



Read less
This is an advanced postgraduate course specialising in structural engineering covering advanced structural analysis and design, structural computing simulation and also offering units linked with steel, concrete, timber and other structural designs. Read more
This is an advanced postgraduate course specialising in structural engineering covering advanced structural analysis and design, structural computing simulation and also offering units linked with steel, concrete, timber and other structural designs. It will also provide you with knowledge to design structures under dynamic and earthquake conditions.

The modules taught focus on learning advanced methods and techniques while developing analytic skills across a range of structural engineering topics.

Two modules, Finite Elements and Stress Analysis and Advanced Computing Structural Simulation, focus on learning advanced computing methods and commercial computing software for structures modelling and simulation.

Advanced Structural Analysis and Design and the Masonry and Timber Engineering modules will cover advanced structural theory and designing traditional structures, such as, steel, concrete, masonry and timbers. Earthquake Engineering will cover design of structures in seismic areas and analysis of structures under dynamic loading.

Soil-Structure Engineering will cover interaction of geotechnics and structures as well as foundation structures. Finally, you'll either conduct a structural related research project or a design project.

Accreditation

This degree is accredited by the Institution of Civil Engineers, the Institution of Structural Engineers, the Chartered Institution of Highways and Transportation and the Institute of Highway Engineers on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Modules

Teaching techniques include: lectures, workshops, tutorials, laboratories, field trips and IT based blended learning. Visiting lecturers from industry contribute in some modules.

Module descriptions
Advanced structural design
Soil-structure engineering
Finite elements and stress analysis
Masonry and timber engineering
Structural dynamics and earthquake engineering
Advanced computing and structural simulation
Project / dissertation

Please visit the website to see how these modules are assessed

http://www.lsbu.ac.uk/courses/course-finder/structural-engineering-msc#course_tab_modules

Employability

Employment prospects for graduates of Structural Engineering are strong. Successful students will enter into a variety of positions with employers which might include: structural engineer, consultant, project manager, government advisor and researcher.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

• Direct engagement from employers who come in to interview and talk to students
• Job Shop and on-campus recruitment agencies to help your job search
• Mentoring and work shadowing schemes.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study High Performance and Scientific Computing at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study High Performance and Scientific Computing at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc in High Performance and Scientific Computing is for you if you are a graduate in a scientific or engineering discipline and want to specialise in applications of High Performance computing in your chosen scientific area. During your studies in High Performance and Scientific Computing you will develop your computational and scientific knowledge and skills in tandem helping emphasise their inter-dependence.

On the course in High Performance and Scientific Computing you will develop a solid knowledge base of high performance computing tools and concepts with a flexibility in terms of techniques and applications. As s student of the MSc High Performance and Scientific Computing you will take core computational modules in addition to specialising in high performance computing applications in a scientific discipline that defines the route you have chosen (Biosciences, Computer Science, Geography or Physics). You will also be encouraged to take at least one module in a related discipline.

Modules of High Performance and Scientific Computing MSc

The modules you study on the High Performance and Scientific Computing MSc depend on the route you choose and routes are as follows:

Biosciences route (High Performance and Scientific Computing MSc):

Graphics Processor Programming

High Performance Computing in C/C++

Operating Systems and Architectures

Software Testing

Programming in C/C++

Conservation of Aquatic Resources or Environmental Impact Assessment

Ecosystems

Research Project in Environmental Biology

+ 10 credits from optional modules

Computer Science route (High Performance and Scientific Computing MSc):

Graphics Processor Programming

High Performance Computing in C/C++

Operating Systems and Architectures

Software Testing

Programming in C/C++

Partial Differential Equations

Numerics of ODEs and PDEs

Software Engineering

Data Visualization

MSc Project

+ 30 credits from optional modules

Geography route (High Performance and Scientific Computing MSc):

Graphics Processor Programming

High Performance Computing in C/C++

Operating Systems and Architectures

Software Testing

Programming in C/C++

Partial Differential Equations

Numerics of ODEs and PDEs

Modelling Earth Systems or Satellite Remote Sensing or Climate Change – Past, Present and Future or Geographical Information Systems

Research Project

+ 10 credits from optional modules

Physics route (High Performance and Scientific Computing MSc):

Graphics Processor Programming

High Performance Computing in C/C++

Operating Systems and Architectures

Software Testing

Programming in C/C++

Partial Differential Equations

Numerics of ODEs and PDEs

Monte Carlo Methods

Quantum Information Processing

Phase Transitions and Critical Phenomena

Physics Project

+ 20 credits from optional modules

Optional Modules (High Performance and Scientific Computing MSc):

Software Engineering

Data Visualization

Monte Carlo Methods

Quantum Information Processing

Phase Transitions and Critical Phenomena

Modelling Earth Systems

Satellite Remote Sensing

Climate Change – Past, Present and Future

Geographical Information Systems

Conservation of Aquatic Resources

Environmental Impact Assessment

Ecosystems

Facilities

Students of the High Performance and Scientific Computing programme will benefit from the Department that is well-resourced to support research. Swansea physics graduates are more fortunate than most, gaining unique insights into exciting cutting-edge areas of physics due to the specialized research interests of all the teaching staff. This combined with a great staff-student ratio enables individual supervision in advanced final year research projects. Projects range from superconductivity and nano-technology to superstring theory and anti-matter. The success of this programme is apparent in the large proportion of our M.Phys. students who seek to continue with postgraduate programmes in research.

Specialist equipment includes:

a low-energy positron beam with a highfield superconducting magnet for the study of positronium

a number of CW and pulsed laser systems

scanning tunnelling electron and nearfield optical microscopes

a Raman microscope

a 72 CPU parallel cluster

access to the IBM-built ‘Blue C’ Supercomputer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

The Physics laboratories and teaching rooms were refurbished during 2012 and were officially opened by Professor Lyn Evans, Project Leader of the Large Hadron Collider at CERN. This major refurbishment was made possible through the University’s capital programme, the College of Science, and a generous bequest made to the Physics Department by Dr Gething Morgan Lewis FRSE, an eminent physicist who grew up in Ystalyfera in the Swansea Valley and was educated at Brecon College.



Read less
Are you excited by the impact of technology on our everyday lives and are keen to forge a successful career in the field? From day one, you will be immersed in an exciting, innovative environment where you will develop broad knowledge and skills in the main areas of computing and information technology which will be directly relatable to your future career. Read more
Are you excited by the impact of technology on our everyday lives and are keen to forge a successful career in the field? From day one, you will be immersed in an exciting, innovative environment where you will develop broad knowledge and skills in the main areas of computing and information technology which will be directly relatable to your future career.

You will take core modules covering areas of computing in programming, databases, systems analysis and design, and computer networks and web development. Designed in consultation with partners from industry, you will develop the most up-to-date computing knowledge, desired by employers across the industry.

In the second year, for one semester, you’ll undertake an internship, study in another country or join a research group. This valuable experience will enhance your employability and further develop your theoretical and practical skills.

Internship

This option offers the opportunity to spend three months working full-time in one of the many companies/industries with which we have close links. You may be able to extend this over more than one semester in cases where it is adjacent to a vacation period. We will endeavour to help those who prefer this option to find and secure a suitable position but ultimately we are in the hands of the employers who are free to decide who they take into their organisation.

Research

If you take this option, you will be assigned to our Computer Science and Informatics Research Group. There is every possibility that you may contribute to published research and therefore you may be named as part of the research team, which would be a great start to a research career.

Study Abroad

We have exchange agreements with universities all over the world, including partners in Europe, Asia, the Americas and Oceania. If you take the Study Abroad option you will spend a semester at one of these partners, continuing your studies in English but in a new cultural and learning environment. Please note that this option may require you to obtain a visa for study in the other country.

This course fully meets the educational requirements for BCS Chartered IT Professional registration.

Learn From The Best

You will be taught by a range of academic staff who bring a wealth of professional experience. They are experts in specialist areas such as Strategic Management, Computer Science and Web Based Information Retrieval.

In a dynamic learning environment with an expert team of staff, you will be taught theoretical and practical research skills such as information literacy, as well as problem solving skills, self-directed learning and communication skills.

Teaching And Assessment

On this course, you will have the opportunity to independently research topics to deepen your learning and understanding, while learning the skills to communicate your research and investigations.

Assessment methods will include reports, presentations, individual, group and project work, alongside regular feedback on your summative assessment.

The Advanced Practice semester will be assessed via a report and presentation about your internship, study abroad or research group activities.

Learning Environment

Throughout the duration of your course you will have access to our state-of-the-art facilities including our dedicated computing suite, Pandon Basement.

Pandon Basement houses specialist facilities and studios with industry-standard software.

You will also have access to dedicated computing areas, which can be used during free periods and into the evenings and weekends.

When you want to get hands-on with technology our range of specialist facilities will support you.

You will also have access to the University’s award winning library (online and on campus). The library achieved the second highest score in the UK in the Times Higher Student Satisfaction Survey 2015.

Research-Rich Learning

You will be immersed in a research-rich environment supported by our rapidly expanding Computer Science and Information Science Research Groups.

Northumbria’s BCS-accredited MSc has been designed to ensure you learn the most up-to-date computing knowledge required by employers across the industry. We offer research-informed teaching, industry-standard software and a strong community of like-minded students.”

You will be taught by staff with a strong academic background in areas such as Web Programming who promote innovative and excellent learning and teaching practice.

You will develop an understanding of important research methods and approaches which could be directly applicable to the demands of your future career.

Give Your Career An Edge

Industry practice has strongly influenced the design of the programme to give you the computing knowledge to work within a variety of roles in the sector.

Learning independently, working collaboratively on projects, evaluating and reflecting upon practitioner experience, are all essential skills of the computing profession. Your modules will enable you to do all of this and more as you develop the qualities needed for a career in computing.

The Advanced Practice semester will help you develop a track record of achievement that will help you stand out from other job applicants.

A two-year master’s course, like this one, will carry particular weight with employers. They’ll understand that you’ll have a deeper understanding of topics as well as more hands-on practical experience.

This programme will prepare you to meet the educational requirements for BCS, the Chartered Institute for IT, Chartered IT Professional (CITP) registration.

Your Future

Upon graduating from this course, you will have an in-depth knowledge and critical understanding of the main areas of Computing and Information Technology, including the key areas of systems analysis, systems development, operating systems, networking, databases and the internet .

We place a real emphasis on developing the transferable skills that will open doors to a range of careers. These include communication, analytical and problem solving skills, technical skills and the ability to work independently and as part of a team.

Graduates are expected to work in a number of career opportunities across a wide range of computer areas including software engineering, systems analysis and design, computer networks, database development and management, software testing and project management.

Read less
Developers of computing systems and practitioners in all computing disciplines need an understanding of the critical importance of building security and survivability into the hardware and software of computing systems they design, rather than trying to add it on once these systems have been designed, developed, and installed. Read more

Program overview

Developers of computing systems and practitioners in all computing disciplines need an understanding of the critical importance of building security and survivability into the hardware and software of computing systems they design, rather than trying to add it on once these systems have been designed, developed, and installed.

The MS in computing security gives students an understanding of the technological and ethical roles of computing security in today's society and its importance across the breadth of computing disciplines. Students can develop a specialization in one of several security-related areas by selecting technical electives under the guidance of a faculty adviser. The program enables students to develop a strong theoretical and practical foundation in secure computing, preparing them for leadership positions in both the private and public sectors of the computing security industry, for academic or research careers in computing security, or to pursue a more advanced degree in a computing discipline.

Plan of study

The program is designed for students who have an undergraduate computing degree in an area such as computing security, computer science, information technology, networking, or software engineering, as well as those who have a strong background in a field in which computers are applied, such as computer or electrical engineering. The curriculum consists of three required core courses, up to 6 technical electives (depending on the capstone option chosen), and a capstone thesis, project, or capstone course for a total of 30 semester credit hours.

Electives

Students are required to choose up to six technical electives, from:
-Advanced Computer Forensics
-Web Server and Application Security Audits
-Mobile Device Forensics
-Information Security Risk Management
-Sensor and SCADA Security
-Computer System Security
-Computer Viruses and Malicious Software
-Network Security
-Covert Communications
-Information Security Policy and Law
-Information Assurance Fundamentals
-Secure Data Management
-Secure Coding
-Foundations of Cryptography
-Foundations of Security Measurement and Evaluation
-Foundations of Intelligent Security Systems
-Advanced Cryptography
-Hardware and Software Design for Cryptographic Applications

Curriculum

Thesis/project/capstone course options differ in course sequence, see the website for a particular course's module information.

Other admission requirements

-Have a minimum grade point average equivalent to a 3.0/4.0.
-Submit official transcripts (in English) of all previously completed undergraduate and graduate course work.
-Submit a minimum of two recommendations from individuals who are well-qualified to assess the applicant's potential for success, and complete a graduate application.
-International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language. Minimum scores of 570 (paper-based) or 88 (Internet-based) are required. Applicants who have completed undergraduate study at foreign universities must submit Graduate Record Examination (GRE) scores. GRE scores are also recommended for applicants whose undergraduate GPA is below 3.0.
-Applicants must satisfy prerequisite requirements in mathematics (integral calculus, discrete mathematics), statistics, natural sciences (physics, chemistry, etc.), and computing (programming, computer networking theory and practice, and systems administration theory and practice).

Bridge program

Students whose undergraduate preparation or employment experience does not satisfy the prerequisites required for the program may make up deficiencies through additional study. Bridge course work, designed to close gaps in a student's preparation, can be completed either before or after enrolling in the program as advised by the graduate program director. Generally, formal acceptance into the program is deferred until the applicant has made significant progress through this additional preparation.

If completed through academic study, bridge courses must be completed with a grade of B (3.0) or better. Courses with lower grades must be repeated. Bridge courses are not counted toward the 30 credit hours required for the master's degree. However, grades earned from bridge courses taken at RIT are included in a student's graduate grade point average. A bridge program can be designed in different ways. Courses may be substituted based upon availability, and courses at other colleges may be applied. All bridge course work must be approved in advance by the graduate program director.

Additional information

Study options:
Students may pursue the degree on a full-time basis, on-campus only.

Faculty:
The program faculty are actively engaged in consulting and research in various areas of secure computing and information assurance, such as cryptography, databases, networking, secure software development, and critical infrastructure security. There are opportunities for students to participate in research activities towards capstone completion or as independent study work.

Maximum time limit:
University policy requires that graduate programs be completed within seven years of the student's initial registration for courses in the program. Bridge courses are excluded.

Read less

Show 10 15 30 per page



Cookie Policy    X