• University of Edinburgh Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
University of Manchester Featured Masters Courses
Vlerick Business School Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
FindA University Ltd Featured Masters Courses
"advanced" AND "computer"…×
0 miles

Masters Degrees (Advanced Computer Science)

We have 1,091 Masters Degrees (Advanced Computer Science)

  • "advanced" AND "computer" AND "science" ×
  • clear all
Showing 1 to 15 of 1,091
Order by 
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Advanced Computer Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Advanced Computer Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

On the MSc in Advanced Computer Science course you will be thoroughly prepared for a career in IT or related industries. The Advanced Computer Science course is for you if you are a Computer Science graduate or if you have gained experience of computing and programming in a different first degree. Willingness to work hard and an ability to problem solve are equally important for this MSc in Advanced Computer Science. The MSc in Advanced Computer Science course will develop the skills and knowledge you have gained from your first degree by broadening and deepening your knowledge of Computer Science through a variety of advanced modules and material. The MSc in Advanced Computer Science is accredited by the British Computer Society.

Key Features of Advanced Computer Science MSc

• We are top in the UK for career prospects*

• We are 3rd in the UK for teaching quality**

• 5th in the UK overall*

• 7th in the UK for student satisfaction with 98% [National Student Survey 2016]

• 7th in the UK overall and Top in Wales*

• High employability prospects - we are 8th in the UK for graduate prospects*

• 92% in graduate employment or further study six months after leaving University [HESA data 2014/15]

• UK TOP 20 for Research Excellence [Research Excellence Framework 2014]

• Our Project Fair allows students to present their work to local industry

• Strong links with industry

• £31m Computational Foundry for computer and mathematical sciences will provide the most up-to-date and high quality teaching facilities featuring world-leading experimental set-ups, devices and prototypes to accelerate innovation and ensure students will be ready for exciting and successful careers. (From September 2018)

*Guardian University Guide 2017

**Times & Sunday Times University Guide 2016

Modules of Advanced Computer Science MSc

Modules for the MSc in Advanced Computer Science include Computer Science Project Research Methods but please visit our course page for more information.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Careers

All Computer Science courses will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

94% of our Postgraduate Taught Graduates of Computer Science were in professional level work or study [DLHE 14/15]

Student Profile

Francesca Madeddu, originally from Italy, completed an outstanding Master’s thesis (which earned her a distinction) investigating interaction with augmented reality on mobile devices. More specifically, she investigated how to interact with virtual Egyptian artefacts placed in real scenes. The final game was deployed at Swansea's Egypt Centre last year and was evaluated by volunteers working at the museum. A Master’s thesis does not often lead to a publication. However, part of Francesca's research was written up as an extended abstract and presented at Computer Graphics and Visual Computing (CGVC), a Eurographics UK conference for visual computing last year. An exceptional achievement!



Read less
The aim of this course is to provide students with a state-of-the-art collection of knowledge, understanding, and skills in the area of Advanced Computer Science. Read more
The aim of this course is to provide students with a state-of-the-art collection of knowledge, understanding, and skills in the area of Advanced Computer Science. This collection aims to be of particular depth so as to provide the student with the relevant knowledge, understanding, and skills to prepare them for a career in Computer Science research. It is designed for students with a good first degree in Computer Science or related areas who wish to deepen their understanding, knowledge, and skills, and aim at a research career in either Industry or Academia.

A student following this course chooses two themes, each consisting of a conceptually coherent set of two course units of 15 credits each, and they take three course units out of these. In addition, they follow three Research Seminars COMP80122, COMP80131, COMP80142 of 5 credits each. This will provide students with the necessary knowledge and skills in Research methodology, ethics and professional issues, as well as communication and presentation skills. As part of COMP80122, students actively participate in the school's annual research symposium, held in reading week between Period 1 and 2.

Teaching and learning

We use a variety of teaching forms, from face-to-face lectures via supervised and unsupervised labs, to self-study elements and supervised projects. Where appropriate, we use blended learning and enquiry based learning.

All our taught course units use coursework as a part of fomative assessment, to deepen and assess both knowledge and understanding and to teach and assess relevant skills.

Facilities

-Newly refurbished computing labs furnished with modern desktop computers
-Access to world leading academic staff
-Collaborative working labs complete with specialist computing and audio visual equipment to support group working
-Over 300 Computers in the School dedicated exclusively for the use of our students
-An Advanced Interfaces Laboratory to explore real time collaborative working
-A Nanotechnology Centre for the fabrication of new generation electronic devices
-An e-Science Centre and Access Grid facility for world wide collaboration over the internet
-Access to a range of Integrated Development Environments (IDEs)
-Specialist electronic system design and computer engineering tools

Career opportunities

Our Advanced Computer Science courses have an excellent record of employment for its graduates. Opportunities exist in fields as diverse as finance, films and games, pharmaceuticals, healthcare, consumer products, and public services - virtually all areas of business and society. Manchester Advanced Computer Science courses are considered among the best in the country and our graduates are actively targeted for the very top jobs in industry and academia.

The MRes in Advanced Computer Science particularly focuses students to explore further study at research level, or to careers in industrial or academic research and development.

We maintain close relationships with potential employers and run various activities throughout the year, including career fairs, guest lectures, and projects run jointly with partners from industry.

Read less
Research in Computer Science at York is carried out at the frontiers of knowledge in the discipline. This course gives you the chance to study a range of advanced topics in Computer Science, taught by researchers active in that area. Read more
Research in Computer Science at York is carried out at the frontiers of knowledge in the discipline. This course gives you the chance to study a range of advanced topics in Computer Science, taught by researchers active in that area. This means you will be learning current research results, keeping you at the forefront of these areas. You will also learn a range of theories, principles and practical methods.

The MSc in Advanced Computer Science is a full time, one year taught course, intended for students who already have a good first degree in Computer Science, and would like to develop a level of understanding and technical skill at the leading edge of Computer Science.

You can choose modules on a range of topics, including Cryptography, Functional Programming, Interactive Technologies, Natural Language Processing, Quantum Computation and Model-Driven Engineering.

Course aims
You will gain an in-depth knowledge of topics on the frontiers of Computer Science in order to engage in research or development and application of leading-edge research findings.

By undertaking an individual project, you will become a specialist in your selected area. You will be encouraged to produce research results of your own. This will prepare you to undertake a PhD in Computer Science should you wish to continue studying within the subject.

Learning outcomes
-A knowledge of several difference topics in Computer Science at an advanced level.
-An understanding of a body of research literature in Computer Science in your chosen topic, and the underlying principles and techniques of research in this area.
-An ability to engage in independent study at an advanced level, and develop skills in self-motivation and organisation.

Research Project

You will undertake your individual research project over the Summer term and Summer vacation. This will be a culmination of the taught modules you have taken during the course, which will allow you to focus on a specialist area of interest.

You will be allocated a personal supervisor, who will be an expert in your chosen area of research. You will be hosted by the research group of your supervisor, and you will benefit from the knowledge and resources of the whole group. Being attached to a research group also allows you to take part in their informal research seminars, and receive feedback and help from other members of the group.

You can choose from projects suggested by members of our academic staff. You also have the option of formulating your own project proposal, with the assistance from your personal supervisor.

All project proposals are rigorously vetted and must meet a number of requirements before these are made available to the students. The department uses an automated project allocation system for assigning projects to students that takes into account supervisor and student preferences.

The project aims to give you an introduction to independent research, as well as giving you the context of a research group working on topics that will be allied to your own. You will develop the skills and understanding in the methods and techniques of research in Computer Science.

As part of the assessment of the project, as well as your dissertation, you will give a talk about your work and submit a concise paper which we will encourage you to publish.

Information for Students

The MSc in Advanced Computer Science exposes you to several topics in Computer Science that are under active research at York. The material taught is preparatory to helping to continue that research, and perhaps continuing to a PhD. What we require from you are enthusiasm, hard work and enough background knowledge to take your chosen modules.

The modules on the MSc in Advanced Computer Science are mostly shared with our Stage 4 (Masters level) undergraduates. Your technical background will be different, and we acknowledge this.

During August we will send entrants a document describing the background knowledge needed for each module and, in many cases, references to where this knowledge is available (for example, widely available text books and web pages).

More generally, many of the modules expect a high level of mathematical sophistication. While the kind of mathematics used varies from module to module, you will find it useful to revise discrete mathematics (predicate and propositional calculi, set theory, relational and functional calculi, and some knowledge of formal logic), statistics and formal language theory. You should also be able to follow and produce proofs.

Careers

Here at York, we're really proud of the fact that more than 97% of our postgraduate students go on to employment or further study within six months of graduating from York. We think the reason for this is that our courses prepare our students for life in the workplace through our collaboration with industry to ensure that what we are teaching is useful for employers.

Read less
Our MSc in Advanced Computer Science and IT Management is taught in collaboration with Manchester Business School. As such, the programme benefits from the offerings of both schools. Read more
Our MSc in Advanced Computer Science and IT Management is taught in collaboration with Manchester Business School. As such, the programme benefits from the offerings of both schools. Manchester Business School is the largest campus-based business and management school in the UK offering world-leading business education informed by leading edge theory and practice. Similarly, the School of Computer Science is renowned as a world-class centre of excellence in computing teaching and research.

This course is ideal for students who have the desire to drive technology into effective use in business. Information systems are pervasive in every aspect of industry, business and society and therefore there is growing demand for people who have a high level of technical knowledge and are prepared for a leadership role, utilising entrepreneurial and management skills in the solution of business problems. This course is centred around a Management theme, which encompasses relevant MBS course units, and combines it with a choice of complementary Computer Science themes such as Data Management, Software Engineering, and Advanced Web Technologies. The students take modules from 4 theme pools, two in IT Management and two in Computer Science. The course also provides a specialisation in Information Management.

Coursework and assessment

Teaching and assessment take place through small group lectures, supervised laboratory work, mini-projects and independent learning. Course units are assessed by a mixture of written examinations, computer based practical work, and a range of coursework assessments including assessed mini-projects, group projects, reports and essays. The MSc requires a project dissertation to be submitted.

Course unit details

The collaborative nature of the course ensures that students benefit from the offerings of both the School of Computer Science and the Manchester Business Scool. Taught course units can be chosen from the broad range of Advanced Computer Science course units. In addition, there are course units especailly developed by the Manchester Business School covering topics on computing and IT support for strategic analysis and management, strategic change and effective decision making in corporate organisations.

Career opportunities

The MSc in Advanced Computer Science with IT Management has an excellent record of employment for its graduates. They are clearly in demand by the IT industry and related sectors. The following indicates the areas in which our graduates have found work: Associate Consultant Business/IT consultant, Computer Programmer, Business Analyst, Graduate Trainee, IT Consultant, IT Contractor, Internet Developer, Consultant-Programmer analyst, Senior Software Engineer, Software Developer, Support Engineer, Teacher, Technical Consultant.

We maintain close relationships with potential employers and run various activities throughout the year, including career fairs, guest lectures, and projects run jointly with partners from industry.

Accrediting organisations

Dual accredited for CEng registration, for standard route IEng registration and Sydney Accord recognition.

Read less
The MSc Advanced Computer Science will offer you exposure to key topics that are driving key technological developments and trends. Read more
The MSc Advanced Computer Science will offer you exposure to key topics that are driving key technological developments and trends.

Computer Science is one of the fastest-moving academic disciplines and the outcomes of research and innovation in this field could have a massive social impact.

The subject spans all aspects of modern life, and this programme offers you the opportunity to apply new skills and advanced techniques to the area of your choice, whilst allowing you to demonstrate that you are at the forefront of your discipline.

Core to this programme is the opportunity to further develop the scope of your problem-solving skills by studying advanced programming languages and new programming paradigms.

You will choose to study optional, research-led modules that allow the freedom to build a distinctive personal portfolio of skills and knowledge. These are structured around advanced topics in the School's three core research areas:

• Complex Systems
• Visual Computing
• Data and Knowledge Engineering

Distinctive features:

• This is an advanced computer science degree designed for computing graduates who wish to differentiate themselves further through an advanced mastery of the discipline.

• In addition to covering core advanced computer science topics, you may select from up to two of three research topics in which to specialise (Complex Systems, Visual Computing, Data and Knowledge Engineering).

• During the summer months you will undertake an individual research project and complete a dissertation under the supervision of a member of academic research staff. The topic for this will be driven by your own interests.

Structure

You will study taught modules to a total of 120 credits during the Diploma stage of your degree. All taught modules are worth 20 credits.

The Master’s stage of your degree will be an individual project (worth 60 credits) which you will write up as a dissertation, after the Diploma stage.

During the Diploma stage, students must take all core modules and then select further optional modules to make up their 120 credit total.

During the summer months you will undertake an individual research project and complete a dissertation (worth 60 credits) under the supervision of a member of academic research staff.

This specialist Master’s degree will provide graduates of computing with the opportunity to enhance knowledge, skills and understanding of the subject through modules taught by research experts in their specialist area.

As well as being taught a compulsory module on new programming paradigms, you will choose from a range of carefully selected modules focusing on contemporary and relevant topics currently emerging within the discipline.

Core modules:

Programming Paradigms
Dissertation

Optional modules:

Information, Network & Cyber Security
Security Techniques
High Performance Computing
Visual Computing
Pattern Recognition and Data Mining
Computer Science Topic 1: Web and Social Computing
Distributed and Cloud Computing
Human Centric Computing
Informatics
Digital Forensics
E-Commerce and Innovation
Secure Applications, Identity and Trust

Teaching

The School of Computer Science and Informatics has a strong and active research culture which informs and directs our teaching. We are committed to providing teaching of the highest standard and received an excellent report in the most recent Quality Assurance Agency (QAA) review.

Modules are delivered through a series of either full or half-day contact sessions, which include lectures, seminars, workshops, tutorials and laboratory classes.

Most of your taught modules will have further information for you to study and you will be expected to work through this in your own time according to the guidance provided by the lecturer for that module.

Support

As a School, we pride ourselves on providing a supportive environment in which we are able to help and encourage our students.

We believe that providing suitable feedback mechanisms is crucial to ensure that the best programmes of study are available to our students.

We have a student/staff panel consisting of elected student representatives and members of teaching staff who meet to discuss academic issues.

In conjunction with the work of the panel, all students are provided with an opportunity to complete feedback questionnaires at the end of the Autumn and Spring semesters.

These mechanisms allow the School to regularly review courses and ensure our students receive the best provision, delivered in a consistent manner, across all of our degrees.

At the start of your course you will be allocated a Personal Tutor who is an academic member of staff in the School and serves as a point of contact to advise on both academic and personal matters in an informal and confidential manner.

Your Personal Tutor will monitor your academic progress and supply references in support of any job applications that you make.

Your Personal Tutor will monitor your progress throughout your time at university and will support you in your Personal

Development Planning. You will see your Personal Tutor at least once each semester.

Outside of scheduled tutor sessions, our Senior Personal Tutor runs an open door policy, being on hand to advise and respond to any personal matters as they arise.

Feedback:

Feedback on coursework may be provided via written comments on work submitted, by provision of ‘model’ answers and/or through discussion in contact sessions.

Assessment

Modules will be assessed either by coursework, examination, or a combination of both.

Career prospects

Successful graduates will be able to demonstrate to employers both a deep understanding and broad knowledge concerning contemporary computer science from a research and development perspective.

Graduates will be ideally placed to pursue a number of careers such as systems architects, programmers and software developers, and will be in a strong position to pursue a research career via doctoral studies.

The selection of modules on offer aim to enhance your transferable skills and boost employment prospects.

Read less
The MSc Advanced Computer Science with Placement offers students exposure to key topics that are driving emerging technological developments and trends. Read more
The MSc Advanced Computer Science with Placement offers students exposure to key topics that are driving emerging technological developments and trends.

Computer Science is one of the fastest moving academic disciplines and the outcomes of research and innovation in this field could have a massive social impact.

The subject spans all aspects of modern life, and this programme offers you the opportunity to apply new skills and advanced techniques to the area of your choice, whilst allowing you to demonstrate that you are at the forefront of your discipline.

Core to this programme is the opportunity to further develop the scope of your problem solving skills by studying advanced programming languages and new programming paradigms.

You will choose to study optional, research-led modules that allow the freedom to build a distinctive personal portfolio of skills and knowledge. These are structured around advanced topics in the School's three core research areas:

• Complex Systems
• Visual Computing
• Data and Knowledge Engineering

You may choose to apply for a paid 7-12 month professional work placement to be undertaken on completion of Spring semester and before completing the MSc course with a 60-credit dissertation. This provides valuable work experience to develop your IT Professional skills.

Distinctive features

• An advanced computer science degree.

• Designed for computing graduates who wish to differentiate themselves further through an advanced mastery of the discipline.

• In addition to coverage of core advanced computer science topics, students may further differentiate themselves by selecting from up to two of three research topics in which to specialise (Complex Systems, Visual Computing, Data and Knowledge Engineering).

• 7-12 month experience as an IT Professional for students who successfully find a suitable placement.

Structure

Students will undertake a placement following the taught stage of the course and prior to undertaking their individual project and dissertation. Most students start their placement in the summer of Year 1. The breakdown is as follows:

Year 1: 20 credits core modules, 100 credit optional modules.
Year 2: 120 credits placement, 60 credits dissertation.
This is a full-time course undertaken over two calendar years. It is also available as a full-time course over one year or a part-time course over three years, both without placement.

You will undertake an individual research project and complete a dissertation (worth 60 credits) under the supervision of a member of academic research staff.

Year one

This specialist Master’s degree will provide graduates of computing with the opportunity to enhance your knowledge, skills and understanding of the subject through modules taught by research experts in their specialist area.

As well as being taught a compulsory module on new programming paradigms, you will choose from a range of carefully selected modules focusing on contemporary and relevant topics currently emerging within the discipline.

Core modules:

Programming Paradigms

Optional modules:

Information, Network & Cyber Security
Security Techniques
High Performance Computing
Visual Computing
Pattern Recognition and Data Mining
Computer Science Topic 1: Web and Social Computing
Distributed and Cloud Computing
Human Centric Computing
Informatics
Digital Forensics
E-Commerce and Innovation
Secure Applications, Identity and Trust

Year two

Your work placement will normally last between 7 and 12 months, usually taking place at the end of the spring semester in July between the taught elements of the course and your final dissertation, allowing you to practice the new skills you have learned and apply the knowledge you have acquired, in the workplace.

You will return to university following successful completion of your work placement at the start of the summer semester the following year to undertake your individual project and write your dissertation, with the aim of completing the course within 24 months of entry.

Core modules:

Placement
Dissertation

Teaching

The School of Computer Science and Informatics has a strong and active research culture which informs and directs our teaching. We are committed to providing teaching of the highest standard and received an excellent report in the most recent Quality Assurance Agency (QAA) review.

Modules are delivered through a series of either full or half-day contact sessions, which include lectures, seminars, workshops, tutorials and laboratory classes.

Most of your taught modules will have further information for you to study and you will be expected to work through this in your own time according to the guidance provided by the lecturer for that module.

Support

All students are allocated a personal tutor who will monitor your progress throughout your time at university and will support you in your personal development planning. You will see your Personal Tutor at least once each semester.

Our Senior Personal Tutor can also advise and respond to any personal matters as they arise. The School also has a formal student-staff panel to discuss topics or issues of mutual interest.

Students are responsible for obtaining their placement. The School actively assists students on “with Placement” courses in finding a suitable placement.

Feedback:

Feedback on coursework may be provided via written comments on work submitted, by provision of ‘model’ answers and/or through discussion in contact sessions.

Assessment

The taught modules are assessed through examinations and a wide range of in-course assessments, such as written reports, extended essays, practical assignments and oral presentations.

The placement is assessed through a reflective report that demonstrates that the student has developed skills as an IT Professional.

The individual project and dissertation will enable students to demonstrate their ability to build upon and exploit knowledge and skills gained to exhibit critical and original thinking based on a period of independent study and learning.

Career prospects

Graduates from this course will be ideally placed to pursue a number of careers, such as systems architects, programmers and software developers, and could also pursue a research career via doctoral studies.

The selection of modules on offer aim to enhance your transferable skills and boost employment prospects.

Read less
This is a high quality course aimed at imparting advanced knowledge across a broad range of Computer Science and offering training in advanced skills. Read more
This is a high quality course aimed at imparting advanced knowledge across a broad range of Computer Science and offering training in advanced skills. It is suitable for those who wish to enhance their computing skills in order to improve their contribution to IT-related industry or to pursue R&D in academia or industry.

A student following the Advanced Computer Science course chooses two from about a dozen themes, each of which combines two related course units that build on top of each other. Certain combinations are integrated into specialised 'pathways' . A student who opts to follow the pathways will have the pathway specialism included in their degree certificate.

Teaching and learning

Computational thinking is becoming increasingly pervasive and is informing our understanding of phenomena across a range of areas; from engineering and physical sciences, to business and society. This is reflected in the way the Manchester course is taught, with students able to choose from an extremely broad range of units that not only cover core computer science topics, but that draw on our interdisciplinary research strengths in areas such as Medical and Health Sciences, Life Sciences and Humanities.

Coursework and assessment

Lectures and seminars are supported by practical exercises that impart skills as well as knowledge. These skills are augmented through an MSc project that enables students to put into practice the techniques they have been taught throughout the course.

Facilities

-Newly refurbished computing labs furnished with modern desktop computers
-Access to world leading academic staff
-Collaborative working labs complete with specialist computing and audio visual equipment to support group working
-Over 300 Computers in the School dedicated exclusively for the use of our students
-An Advanced Interfaces Laboratory to explore real time collaborative working
-A Nanotechnology Centre for the fabrication of new generation electronic devices
-An e-Science Centre and Access Grid facility for worldwide collaboration over the internet
-Access to a range of Integrated Development Environments (IDEs)
-Specialist electronic system design and computer engineering tools

Career opportunities

The MSc in Advanced Computer Science has an excellent record of employment for its graduates. Opportunities exist in fields as diverse as finance, films and games, pharmaceuticals, healthcare, consumer products, and public services - virtually all areas of business and society. Our courses are considered among the best in the country and our graduates are actively targeted for the very top jobs in industry and academia. The MSc is also a route to further study at research level, or to careers in industrial or academic research.

We maintain close relationships with potential employers and run various activities throughout the year, including career fairs, guest lectures, and projects run jointly with partners from industry.

Accrediting organisations

This programme is CEng accredited and fulfils the educational requirements for registration as a Chartered Engineer when presented with CEng accredited Bachelors programme.

Read less
This course allows you to study two or more areas of computing that relate to your interests along with key core areas of computer science. Read more
This course allows you to study two or more areas of computing that relate to your interests along with key core areas of computer science. Depending on the modules chosen, it can lead to a career in areas such as software development, systems design, user interface design, or database design and administration.

About the course

The MSc Advanced Computer Science course consists of two major parts: taught modules and an MSc project. Each taught module has an assigned number of credits (either 15 or 30). Some modules are compulsory and some are optional. The project is compulsory and has a modular value of 60. In order to obtain an MSc degree you must study and pass 120 credits of taught modules plus the project i.e. 180 credits in total.

Why choose this course?

-This MSc is available with an optional one year industry placement. The 'with placement' programmes give you additional industrial experience by applying the skills you have learned throughout your studies
-This MSc is one of a range of advanced courses within our postgraduate masters programme in Computer Science
-You will develop knowledge and skills in the models, methodologies, measures and tools that can be employed in your future career
-You will be taught by a highly-regarded and long-established computer science department with strong links to business
-Half the research outputs in Computer Science at the University of Hertfordshire have been rated at world-leading or internationally excellent in the Research Excellence Framework (REF 2014)

Careers

Our masters programme is designed to give Computer Science graduates the specialist, up-to-date skills and knowledge sought after by employers, whether in business, industry, government or research. This particular course will prepare you for a career such as a software engineer, developer or project manager.

Teaching methods

Classes consist of lectures, small group seminars, and practical work in our well-equipped laboratories. We use modern, industry-standard software wherever possible. There are specialist facilities for networking and multimedia and a project laboratory especially for masters students. In addition to scheduled classes, you will be expected a significant amount of time in self-study, taking advantage of the extensive and up-to-date facilities. These include the Learning Resource Centres, open 24x7, with 1,500 computer workstations and wifi access, Studynet our versatile online study environment usable on and off campus, and open access to our labs.

Work Placement

This MSc is available with an optional one year industry placement. The 'with placement' programmes give you additional industrial experience by applying the skills you have learned throughout your studies.

This offers you the opportunity to work for one year in a highly professional and stimulating environment. You will be a full time employee in a company earning a salary and will learn new skills that can't be taught at University. During the placement, you will be able to gain further insight into industrial practice that you can take forward into your individual project.

We will provide excellent academic and personal support during both your academic and placement periods together with comprehensive careers guidance from our very experienced dedicated Careers and Placements Service.

Although the responsibility for finding a placement is with you, our Careers and Placements Service maintains a wide variety of employers who offer placement opportunities and organise special training sessions to help you secure a placement, from job application to the interview. Optional one-to-one consultations are also available.

In order to qualify for the placement period you must maintain an overall average pass mark of not less than 60% across all modules studied in semester ‘A’.

Structure

Year 1
Core Modules
-Programming Paradigms
-Preparation for Placement
-Professional Work Placement for MSc Computer Science

Optional
-Professional Issues
-Investigative Methods for Computer Science
-Data Mining
-Mobile Standards, Interfaces and Applications
-Human Computer Interaction: Principles and Practice
-Advanced Databases
-Measures and Models for Software Engineering
-Programming for Software Engineers
-Software Engineering Practice and Experience
-Distributed Systems Security
-Secure Systems Programming
-Network System Administration
-Multicast and Multimedia Networking
-Wireless, Mobile and Ad-hoc Networking
-Artificial Life with Robotics
-Neural Networks and Machine Learning
-Theory and Practice of Artificial Intelligence
-Information Security, Management and Compliance
-Digital Forensics
-Penetration Testing

Year 2
Core Modules
-Advanced Computer Science Masters Project

Read less
Explore advanced topics in computer science with this wide-ranging programme, which will equip you with the understanding and practical skills to succeed in a variety of careers. Read more

Explore advanced topics in computer science with this wide-ranging programme, which will equip you with the understanding and practical skills to succeed in a variety of careers.

Rooted in the established research strengths of the School of Computing, the programme will introduce topics like systems programming and algorithms before allowing you to specialise through your choice of modules.

You could look at emerging approaches to human interaction with computational systems, novel architectures such as clouds, or the rigorous engineering needed to develop cutting-edge applications such as large-scale data mining and social networks.

Building on your existing knowledge of computer science, you’ll develop the theoretical and practical skills required to design and implement larger, more complex systems using state-of-the-art technologies. You’ll even have the chance to work as an integral member of one of our research groups when you develop your main project.

Specialist facilities

You’ll benefit from world-class facilities to support your learning. State-of-the-art visualisation labs including a powerwall, a benchtop display with tracking system, WorldViz PPT optical tracking system and Intersense InertiaCube orientation tracker are all among the specialist facilities we have within the School of Computing.

We also have Ascension Flock of Birds tracking systems, three DOF and 6DOF Phantom force feedback devices, Twin Immersion Corp CyberGloves, a cloud computing testbed, rendering cluster and labs containing both Microsoft and Linux platforms among others. It’s an exciting environment in which to gain a range of skills and experience cutting-edge technology. 

Course content

Core modules in Semester 1 will lay the foundations of the programme by giving you an understanding of the key topics of algorithms and systems programming.

From there you’ll have the chance to tailor your studies to suit your own preferences. You’ll choose from a wide range of optional modules on diverse topics such as cloud computing, image analysis, machine learning, semantic technologies and developing mobile apps.

Over the summer months you’ll also work on your research project. This gives you the chance to work as an integral part of one of our active research groups, focusing on a specialist topic in computer science and selecting the appropriate research methods.

Want to find out more about your modules?

Take a look at the Advanced Computer Science module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • MSc Project 60 credits

Optional modules

  • Web Services and Web Data 10 credits
  • Distributed Systems 10 credits
  • Mobile Application Development 10 credits
  • Machine Learning 10 credits
  • Information Visualization 10 credits
  • User Adaptive Intelligent Systems 10 credits
  • Data Mining and Text Analytics 10 credits
  • Combinatorial Optimisation 10 credits
  • Secure Computing 10 credits
  • Graph Algorithms and Complexity Theory 10 credits
  • Big Data Systems 15 credits
  • Data Science 15 credits
  • Bio-Inspired Computing 15 credits
  • Knowledge Representation and Reasoning 15 credits
  • Algorithms 15 credits
  • Parallel and Concurrent Programming 15 credits
  • Foundations of Modelling and Rendering 15 credits
  • Games Engines and Workflow 15 credits
  • Geometric Processing 15 credits
  • High-Performance Graphics 15 credits
  • Animation and Simulation 15 credits
  • Data Mining and Text Analytics 15 credits
  • Cloud Computing 15 credits
  • Semantic Technologies and Applications 15 credits
  • Image Analysis 15 credits
  • Scheduling 15 credits
  • Scientific Computation 15 credits
  • Graph Theory: Structure and Algorithms 15 credits

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The professional project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects for MSc Advanced Computer Science students have included:

  • iPad interaction for wall-sized displays
  • Modelling the effects of feature-based attention in the visual cortex
  • Relevance and trust in social computing for decision making
  • Energy-efficient cloud computing
  • Smart personal assistant - Ontology-enriched access to digital repositories

A proportion of projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

Computing is an essential component of nearly every daily activity, from the collection, transformation, analysis and dissemination of information in business, through to smart systems embedded in commodity devices, the image processing used in medical diagnosis and the middleware that underpins distributed technologies like cloud computing and the semantic web.

This programme will give you the practical skills to gain entry into many areas of applied computing, working as application developers, system designers and evaluators; but further, links between the taught modules and our research provide our students with added strengths in artificial intelligence, intelligent systems, distributed systems, and the analysis of complex data. As a result, you’ll be well prepared for a range of careers, as well as further research at PhD level.

Graduates have found success in a wide range of careers working as business analysts, software engineers, wed designers and developers, systems engineers, information analysts and app developers. Others have pursued roles in consultancy, finance, marketing and education, or set up their own businesses.



Read less
Developments in cloud computing technology are transforming the way we live and work. This programme will equip you with specialist knowledge in this fast-growing field and allow you to explore a range of advanced topics in computer science. Read more

Developments in cloud computing technology are transforming the way we live and work. This programme will equip you with specialist knowledge in this fast-growing field and allow you to explore a range of advanced topics in computer science.

You’ll gain a foundation in topics like systems programming and algorithms, as well as specialist modules in advanced distributed systems – especially cloud techniques, technologies and applications.

Building on your existing knowledge of computer science, you’ll also choose from optional modules in topics across computer science. You could look at emerging approaches to human interaction with computational systems, data mining and functional programming among others.

The programme will give you the theoretical and practical skills required to design and implement larger, more complex systems using state-of-the-art technologies. You’ll even have the chance to work as an integral member of one of our research groups when you develop your main project.

Specialist facilities

You’ll benefit from world-class facilities to support your learning. State-of-the-art visualisation labs including a powerwall, a benchtop display with tracking system, WorldViz PPT optical tracking system and Intersense InertiaCube orientation tracker are all among the specialist facilities we have within the School of Computing.

We also have Ascension Flock of Birds tracking systems, three DOF and 6DOF Phantom force feedback devices, Twin Immersion Corp CyberGloves, a cloud computing testbed, rendering cluster and labs containing both Microsoft and Linux platforms among others. It’s an exciting environment in which to gain a range of skills and experience cutting-edge technology.

Course content

Core modules in Semester 1 will lay the foundations of the programme by giving you an understanding of the key topics of algorithms and systems programming. Throughout the year you’ll also take modules developing your understanding of cloud computing itself, from designing the high-level framework of a distributed system to big data and the “internet of things”.

From there you’ll have the chance to tailor your studies to suit your own preferences. You’ll choose from a wide range of optional modules on diverse topics such as image analysis, machine learning, semantic technologies and developing mobile apps.

Over the summer months you’ll also work on your research project. This gives you the chance to work as an integral part of one of our active research groups, focusing on a specialist topic in computer science and selecting the appropriate research methods.

Want to find out more about your modules?

Take a look at the Advanced Computer Science (Cloud Computing) module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • MSc Project 60 credits
  • Cloud Computing 15 credits

Optional modules

  • Web Services and Web Data 10 credits
  • Distributed Systems 10 credits
  • Mobile Application Development 10 credits
  • Machine Learning 10 credits
  • Information Visualization 10 credits
  • Data Mining and Text Analytics 10 credits
  • Combinatorial Optimisation 10 credits
  • Secure Computing 10 credits
  • Graph Algorithms and Complexity Theory 10 credits
  • Big Data Systems 15 credits
  • Data Science 15 credits
  • Bio-Inspired Computing 15 credits
  • Knowledge Representation and Reasoning 15 credits
  • Algorithms 15 credits
  • Parallel and Concurrent Programming 15 credits
  • Data Mining and Text Analytics 15 credits
  • Semantic Technologies and Applications 15 credits
  • Image Analysis 15 credits
  • Scheduling 15 credits
  • Scientific Computation 15 credits
  • Graph Theory: Structure and Algorithms 15 credits

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The professional project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects for MSc Advanced Computer Science (Cloud Computing) students have included:

  • Intelligent services to support sensemaking
  • Google cloud data analysis
  • Hadoop for large image management
  • Evaluating web service agreement in a cloud environment

A proportion of projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

Computing is an essential component of nearly every daily activity, from the collection, transformation, analysis and dissemination of information in business, through to smart systems embedded in commodity devices, the image processing used in medical diagnosis and the middleware that underpins distributed technologies like cloud computing and the semantic web.

This programme will give you the practical skills to gain entry into many areas of applied computing, working as application developers, system designers and evaluators; but further, links between the taught modules and our research provide our students with added strengths in artificial intelligence, intelligent systems, distributed systems, and the analysis of complex data. As a result, you’ll be well prepared for a range of careers, as well as further research at PhD level.

Graduates have found success in a wide range of careers working as business analysts, software engineers, wed designers and developers, systems engineers, information analysts and app developers. Others have pursued roles in consultancy, finance, marketing and education, or set up their own businesses.



Read less
Big data is becoming more and more important in fields from science to marketing, engineering medicine and government. This programme will equip you with specialist knowledge in this exciting field and allow you to explore a range of advanced topics in computer science. Read more

Big data is becoming more and more important in fields from science to marketing, engineering medicine and government. This programme will equip you with specialist knowledge in this exciting field and allow you to explore a range of advanced topics in computer science.

You’ll gain a foundation in topics like systems programming and algorithms, as well as the basics of machine learning and knowledge representation. You’ll also choose from optional modules focusing on topics like image analysis or text analytics, or broaden your approach with topics like cloud computing.

As one of the few schools with expertise covering text, symbolic and scientific/numerical data analysis, we can provide a breadth of expertise to equip you with a variety of skills – and you’ll work as an integral member of one of our research groups when you develop your main project. We also have close links with the Leeds Institute for Data Analytics which is at the forefront of big data research.

Specialist facilities

You’ll benefit from world-class facilities to support your learning. State-of-the-art visualisation labs including a powerwall, a benchtop display with tracking system, WorldViz PPT optical tracking system and Intersense InertiaCube orientation tracker are all among the specialist facilities we have within the School of Computing.

We also have Ascension Flock of Birds tracking systems, three DOF and 6DOF Phantom force feedback devices, Twin Immersion Corp CyberGloves, a cloud computing testbed, rendering cluster and labs containing both Microsoft and Linux platforms among others. It’s an exciting environment in which to gain a range of skills and experience cutting-edge technology.

Course content

Core modules in Semester 1 will lay the foundations of the programme by giving you an understanding of the key topics of algorithms and systems programming, as well as the basic principles of automated reasoning, machine learning and how computers can be made to represent knowledge.

From there you’ll have the chance to tailor your studies to suit your own preferences. You’ll choose from a wide range of optional modules on diverse topics such as image analysis, cloud computing, semantic technologies and developing mobile apps.

Over the summer months you’ll also work on your research project. This gives you the chance to work as an integral part of one of our active research groups, focusing on a specialist topic in computer science and selecting the appropriate research methods.

Want to find out more about your modules?

Take a look at the Advanced Computer Science (Data Analytics) module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Machine Learning 10 credits
  • Big Data Systems 15 credits
  • Data Science 15 credits
  • MSc Project 60 credits

Optional modules

  • Web Services and Web Data 10 credits
  • Distributed Systems 10 credits
  • Mobile Application Development 10 credits
  • Information Visualization 10 credits
  • User Adaptive Intelligent Systems 10 credits
  • Data Mining and Text Analytics 10 credits
  • Combinatorial Optimisation 10 credits
  • Secure Computing 10 credits
  • Graph Algorithms and Complexity Theory 10 credits
  • Bio-Inspired Computing 15 credits
  • Knowledge Representation and Reasoning 15 credits
  • Algorithms 15 credits
  • Parallel and Concurrent Programming 15 credits
  • Data Mining and Text Analytics 15 credits
  • Cloud Computing 15 credits
  • Semantic Technologies and Applications 15 credits
  • Image Analysis 15 credits
  • Scheduling 15 credits
  • Scientific Computation 15 credits
  • Graph Theory: Structure and Algorithms 15 credits

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The professional project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects for MSc Advanced Computer Science students have included:

  • Text mining of e-health patient records
  • Java-based visualization on ultra-high resolution displays
  • Data mining of sports performance data
  • Contour topology
  • Efficient computation for simulating tumour growths

A proportion of projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

Computing is an essential component of nearly every daily activity, from the collection, transformation, analysis and dissemination of information in business, through to smart systems embedded in commodity devices, the image processing used in medical diagnosis and the middleware that underpins distributed technologies like cloud computing and the semantic web.

This programme will give you the practical skills to gain entry into many areas of applied computing, working as application developers, system designers and evaluators; but further, links between the taught modules and our research provide our students with added strengths in artificial intelligence, intelligent systems, distributed systems, and the analysis of complex data. As a result, you’ll be well prepared for a range of careers, as well as further research at PhD level.

Graduates have found success in a wide range of careers working as business analysts, software engineers, wed designers and developers, systems engineers, information analysts and app developers. Others have pursued roles in consultancy, finance, marketing and education, or set up their own businesses.



Read less
From software agents used in networking systems to embedded systems in unmanned vehicles, intelligent systems are being adopted more and more often. Read more

From software agents used in networking systems to embedded systems in unmanned vehicles, intelligent systems are being adopted more and more often. This programme will equip you with specialist knowledge in this exciting field and allow you to explore a range of topics in computer science.

Core modules will give you a foundation in topics like systems programming and algorithms, as well as the basics of machine learning and knowledge representation. You’ll also choose from optional modules focusing on topics like bio-inspired computing or text analytics, or broaden your approach with topics like mobile app development.

You’ll gain a broad perspective on intelligent systems, covering evolutionary models, statistical and symbolic machine learning algorithms, qualitative reasoning, image processing, language understanding and bio-computation as well as essential principles and practices in the design, implementation and usability of intelligent systems.

Specialist facilities

You’ll benefit from world-class facilities to support your learning. State-of-the-art visualisation labs including a powerwall, a benchtop display with tracking system, WorldViz PPT optical tracking system and Intersense InertiaCube orientation tracker are all among the specialist facilities we have within the School of Computing.

We also have Ascension Flock of Birds tracking systems, three DOF and 6DOF Phantom force feedback devices, Twin Immersion Corp CyberGloves, a cloud computing testbed, rendering cluster and labs containing both Microsoft and Linux platforms among others. It’s an exciting environment in which to gain a range of skills and experience cutting-edge technology.

Course content

Core modules in Semester 1 will lay the foundations of the programme by giving you an understanding of the key topics of algorithms and systems programming, as well as the basic principles of automated reasoning, machine learning and how computers can be made to represent knowledge.

From there you’ll have the chance to tailor your studies to suit your own preferences. You’ll choose from a wide range of optional modules on diverse topics such as image analysis, cloud computing, graph theory and developing mobile apps.

Over the summer months you’ll also work on your research project. This gives you the chance to work as an integral part of one of our active research groups, focusing on a specialist topic in computer science and selecting the appropriate research methods.

Want to find out more about your modules?

Take a look at the Advanced Computer Science (Intelligent Systems) module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • MSc Project 60 credits
  • Bio-Inspired Computing 15 credits
  • Knowledge Representation and Reasoning 15 credits
  • Image Analysis 15 credits

Optional modules

  • Distributed Systems 10 credits
  • Mobile Application Development 10 credits
  • Machine Learning 10 credits
  • Intelligent Systems and Robotics 20 credits
  • User Adaptive Intelligent Systems 10 credits
  • Data Mining and Text Analytics 10 credits
  • Combinatorial Optimisation 10 credits
  • Graph Algorithms and Complexity Theory 10 credits
  • Big Data Systems 15 credits
  • Data Science 15 credits
  • Algorithms 15 credits
  • Parallel and Concurrent Programming 15 credits
  • Cloud Computing 15 credits
  • Semantic Technologies and Applications 15 credits
  • Scheduling 15 credits
  • Scientific Computation 15 credits
  • Graph Theory: Structure and Algorithms 15 credits

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The professional project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects for MSc Advanced Computer Science (Intelligent Systems) students have included:

  • Object-based attention in a biologically inspired network for artificial vision
  • Advanced GIS functionality for animal habitat analysis
  • Codebook construction for feature selection
  • Learning to imitate human actions

A proportion of projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

Computing is an essential component of nearly every daily activity, from the collection, transformation, analysis and dissemination of information in business, through to smart systems embedded in commodity devices, the image processing used in medical diagnosis and the middleware that underpins distributed technologies like cloud computing and the semantic web.

This programme will give you the practical skills to gain entry into many areas of applied computing, working as application developers, system designers and evaluators; but further, links between the taught modules and our research provide our students with added strengths in artificial intelligence, intelligent systems, distributed systems, and the analysis of complex data. As a result, you’ll be well prepared for a range of careers, as well as further research at PhD level.

Graduates have found success in a wide range of careers working as business analysts, software engineers, wed designers and developers, systems engineers, information analysts and app developers. Others have pursued roles in consultancy, finance, marketing and education, or set up their own businesses.



Read less
The MSc Advanced Computer Science course prepares students to work in roles that require the use of data management, analysis and presentation tools, the development of software to deliver services or to control complex processes and equipment, or to provide system analysis and development consultancy to a varied range of clients. Read more

Overview

The MSc Advanced Computer Science course prepares students to work in roles that require the use of data management, analysis and presentation tools, the development of software to deliver services or to control complex processes and equipment, or to provide system analysis and development consultancy to a varied range of clients. The course does not require background in programming or data analysis and for those with no such background appropriate training is offered to catch up with others who already have such training or experience. The course aims to match the needs of business that compete globally in a world driven by advances in information technology. The programme aims to develop both technical and people skills making our graduates ready for jobs that offer high satisfaction and regular challenge at the same time. The first semester of the course is organised into modules delivered intensively over three week periods. The second semester is organised using usual semester-long modules with the difference that all these modules are assessed by coursework only. The summer semester is dedicated to a Master’s level research or development project

See the website https://www.keele.ac.uk/pgtcourses/advancedcomputersciencemsc/

Course Aims

The aims of the programme are to equip students with knowledge of a range cutting-edge areas of computer science research and applications and to prepare students to be successful in a variety of computer science related jobs. The course covers advanced computer science topics, including user interaction design, big data, cloud computing, security, intelligent systems and mobile-oriented web applications. The course also provides a good grounding in collaborative team work and general skills for technology consultants.

Core Modules:

User Interaction Design (15 credits – Semester 1): The module provides the knowledge and skills required for a student to be able to work on User Interaction Design based on an evaluated assessment of the factors associated with a given application or user interaction scenario.

Distributed Intelligent Systems (15 credits – Semester 1): This module provides the knowledge and skills required for a student to be able to develop applications to control intelligent systems in a distributed and collaborative context, including the programming of robots or intelligent home appliances (e.g. TV, fridge, etc. equipped with embedded computers).

Statistical Techniques for Data Analytics (15 credits – Semester 1): This module provides the knowledge and skills required for a student to be able to develop applications to store, process, distribute, visualise and analyse large volumes of big data using distributed databases, statistical techniques and machine intelligence methods.

Cloud Computing (15 credits – Semester 2): The module provides the knowledge and skills required for a student to be able to understand the principles of operations of cloud computing and to develop applications for cloud computing environments, e.g. data storage and distribution, software-as-service, interactive content services.

Web Technologies and Security (15 credits – Semester 2): To module provided an understanding of contemporary web technologies used for both server and client side development of web applications, with particular focus on mobile applications, and an understanding of security aspects of such applications and of the defence methods and techniques employed to provide security.

Collaborative Application Development (15 credits – Semester 2): The module places students in a real world scenario requiring co-operation and communication as well as analysis and design skills. This will involve work for a real world client working as a development team.

Problem Solving Skills for Consultants (15 credits – Semester 1 & 2): This module explores skills such as project management, communication and team working and building. It also provides knowledge of ethical, legal and social issues related to the development and deployment of Information Technology.

Optional Modules:

System Design & Programming (15 credits – Semester 1): This module provides the knowledge and skills required for a student to be able to design software systems and write object oriented programs in an appropriate programming language (e.g. Java, C#).

Research Horizons (15 credits – Semester 1): To module provides the knowledge for a student about a selected computer science research area and the skills required for the development of a mini-project in this area

Project or Industrial Placement

MSc Project or Industrial Placement (60 credits – Semester 3): Provides an integration of concepts taught on the course in either an academic or business environment

Teaching & Assessment

All first semester 15 – credit taught modules, with the exception of one module delivered over two semesters, will be delivered in block mode, i.e. each of these modules will be delivered over a period of six consecutive weeks. In any week at most two block mode modules will be scheduled to be delivered during the first semester. All taught modules in the second semester are delivered along the whole semester.

The taught modules are mainly assessed by coursework, with examinations in some of the modules. Project assessment is based largely on a substantial final report.

Additional Costs

Additional costs may be incurred for text books, inter-library loans and potential overdue library fines. Some travel costs may be incurred if an external project or placement is undertaken; any such costs will be discussed with the student before the project is confirmed. It will be possible for the student to select an internal project and that would not incur any additional travel costs.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
Develop expertise in contemporary design and practice within computer science. You graduate with the ability to explore further how technology influences people’s lives. Read more
Develop expertise in contemporary design and practice within computer science. You graduate with the ability to explore further how technology influences people’s lives.

Our MSc Advanced Computer Science provides you with the flexibility to master the areas of computing that interest and excite you most. You choose from a range of topics including:
-Intelligent systems and robotics
-Machine learning and data mining
-Human language understanding and text processing
-Computer game development
-Cloud and web technologies
-Computer security
-Evolutionary computation

Our School is a community of scholars leading the way in technological research and development. Today’s computer scientists are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top scientists, and our work is driven by creativity and imagination as well as technical excellence.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

This course is also available on a part-time basis.

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

Our research covers a range of topics, from brain-computer interfaces, human language understanding and technology, intelligent and adaptive systems, information and data analysis, robotics and embedded systems, to future networks, optoelectronics and radio frequency and signal processing foundations, with many of our research groups based around laboratories offering world-class facilities.

Our impressive external research funding stands at over £4 million and we participate in a number of EU initiatives and undertake projects under contract to many outside bodies, including government and industrial organisations.

In recent years we have attracted many highly active research staff and we are conducting world-leading research in areas such as evolutionary computation, brain-computer interfacing, intelligent inhabited environments and financial forecasting.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, C++, Perl, MySQL, Matlab, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

Our graduates have achieved success in a variety of professions. Many have pursued careers in computing and information technology, while others have gone on to work in research organisations or become university academics.

Our recent graduates have progressed to a variety of senior positions in industry and academia. Some of the companies and organisations where our former graduates are now employed include:
-Electronic Data Systems
-Pfizer Pharmaceuticals
-Bank of Mexico
-Visa International
-Hyperknowledge (Cambridge)
-Hellenic Air Force
-ICSS (Beijing)
-United Microelectronic Corporation (Taiwan)

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

Postgraduate study is the chance to take your education to the next level. The combination of compulsory and optional modules means our courses help you develop extensive knowledge in your chosen discipline, whilst providing plenty of freedom to pursue your own interests. Our research-led teaching is continually evolving to address the latest challenges and breakthroughs in the field, therefore to ensure your course is as relevant and up-to-date as possible your core module structure may be subject to change.

MSc Advanced Computer Science
-MSc Project and Dissertation
-Professional Practice and Research Methodology
-Group Project
-Computer Security
-Intelligent Systems and Robotics (optional)
-Text Analytics (optional)
-Advanced Web Technologies (optional)
-Mobile & Social Application Programming
-Information Retrieval (optional)

Read less
This degree equips you with advanced knowledge and skills for a range of careers from data analyst to computer scientist or IT consultant. Read more
This degree equips you with advanced knowledge and skills for a range of careers from data analyst to computer scientist or IT consultant.

Cloud Computing and Big Data remain hot topics in the media and there is strong demand for graduates with technical skills in this area. Kent’s Advanced Computer Science (Cloud Computing & Big Data) MSc equips you with the advanced knowledge and skills for a wide range of careers from data analysts to computer scientists and IT consultants.

The programme combines a wide choice of advanced topics in computer science with specialist modules relating to cloud computing and big data. These include Google App Engine, Apache Spark, Software-as-a-Service, Data Centers Galaxy, Mobile Cloud, Hadoop, Bitcoin and MapReduce.

This programme is available with an optional industrial placement which provides an opportunity to work in real-world, technical and business roles, enhancing your study experience and having a dramatic impact on your choices after graduation. We have strong links with industry including Cisco, IBM, Microsoft and Oracle and are among the top ten in the UK for graduate employment prospects.

The Advanced Computer Science (Cloud Computing & Big Data) MSc is aimed at graduates considering a career in research and development. It would also provide an excellent foundation for PhD study.

Read less

Show 10 15 30 per page



Cookie Policy    X