• Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of Hertfordshire Featured Masters Courses
Cranfield University Featured Masters Courses
University of Reading Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
Newcastle University Featured Masters Courses
"advanced" AND "biomedica…×
0 miles

Masters Degrees (Advanced Biomedical Science)

We have 348 Masters Degrees (Advanced Biomedical Science)

  • "advanced" AND "biomedical" AND "science" ×
  • clear all
Showing 1 to 15 of 348
Order by 
This course builds on many years of biomedical science provision at DMU. The overall aims are to improve your laboratory speciality knowledge, research, and management skills in an atmosphere of ongoing scholarship and research. Read more
This course builds on many years of biomedical science provision at DMU. The overall aims are to improve your laboratory speciality knowledge, research, and management skills in an atmosphere of ongoing scholarship and research.

•Accredited by the Institute of Biomedical Sciences (IBMS)
•Gives depth of background to bioscience graduates
•Enhances opportunities for progression within the pathology services or bioscience/biotechnology industries both in the UK and overseas
•Provides biomedical science professionals with an enhanced portfolio of skills
•Choose specific areas of speciality study to direct your own learning
•Interaction with other healthcare professionals, learning from others in the field
•Variety of visiting lecturers from many disciplines

Modules:

First year core modules:
•Research Designs in Health
•Evidence-Based Practice

Plus a choice from two of the following:
• Advanced Molecular Biology and Genomics
• Cancer Biology
• Advanced Topics in Biomedical Science

The second year brings in general topics in Biomedical Science including:
•Strategic Leadership and Effective Management

Plus, one pathology speciality module from a choice of:
• Advanced Haematology and Transfusion Science
• Advanced Medical Microbiology
• Advanced Chemical Pathology
• Advanced Immunopathology
• Advanced Histopathology and Cytopathology
• The Research Project

You will study your chosen specialism at an advanced level, through selecting your optional modules. In the final year you will carry out a research project (dissertation) in one of our laboratories or in your NHS laboratory (if you are an existing practitioner). This will enable you to choose and research a particular topic in-depth. Following the submission of the dissertation there will be an oral presentation and questions.

These modules examine the underpinnings of a modern research-based health service and provide the foundation for the dissertation. Several other cohorts of students also take these modules from a health service background, and inter-professional discussion will be encouraged, so as to ensure that topics are examined from a range of perspectives.

Teaching and Assessment:

Teaching will normally be delivered though formal lectures, more informal seminars, tutorials, workshops, discussions and e-learning packages.

Assessment will be via essays, presentations, seen exams, poster presentations, plus a final dissertation.

Free English language tuition delivered by our British Council-accredited Centre for English Language Learning is available both before and during the course. To find out more, please visit dmu.ac.uk/international

Expertise:

The course is delivered by a group of dedicated and experienced professionals, many of whom have come from NHS hospital laboratory experience or dedicated
research institutions.

Graduate careers:

This course will enhance career prospects for graduates of Biomedical Science or other bioscience disciplines, and will enable Health Professions Council (HPC) registered biomedical scientists to increase their opportunities for progression within pathology services. It has been developed in conjunction with local health trusts who support this initiative and contribute to the teaching.
Input from practitioners means that you will benefit from learning the most current debates, concerns, issues and topics in the field of practice. It will assist managers and staff to meet their objectives in relation to agenda for change.

Ultimately the objectives are to produce biomedical scientists that are suitably qualified for entry to postgraduate research programmes leading to PhD or professional doctorates in Biomedical Science, and be able to apply for appropriate employment in hospitals pathology laboratories.

Funding:
Those working in the NHS may be eligible for funding from the Education Commissioning Unit of the East Midlands Strategic Health Authority.


“Some of the modules were shared with other health professionals and learning alongside others in the sector has taught me a lot and made me appreciate how we all have to work together to provide better patient care. The lecturers are fantastic and are ready to give you help anytime you need it.”

Edina Chiriseri, Advanced Biomedical Science MSc graduate

Read less
Accredited by the Institute of Biomedical Science, this programme is an ideal option if you wish to build a career as an NHS biomedical scientist or within bioscience research. Read more
Accredited by the Institute of Biomedical Science, this programme is an ideal option if you wish to build a career as an NHS biomedical scientist or within bioscience research.

About the programme

UWS has an established reputation for delivering advanced biomedical sciences education – utilising our successful links with local NHS and industry laboratories, we provide discipline-specific experts to complement the skills of the University’s School of Science and Sport teaching staff.

The programme aims to give you a balance of theory, practical skills and application of a range of techniques relevant to the biomedical sciences such as medical genetics, immunobiology, and disease pathology. Two optional modules are offered, which allow you to specialise in either blood sciences, infection or pathology. The research-orientated nature of the programme will also offer an additional option for those wishing to retrain for a career in the pharmaceutical and healthcare industries.

Practical experience

Work-based learning modules are available to part-time students completing the IBMS specialist portfolio as an alternative to the discipline-specific modules.

Your learning

The exit award of MSc is dependent on successful completion of 180 credits. Full-time students study three 20 credit modules in both Trimester 1 and 2 and a 60 credit research project in Trimester 3.

Core modules include:
• Genetic Analysis and Cancer
• Clinical Immunology
• Research Advances in BMS
• Disease, Detection, Monitoring and Therapy
• Research Design

You will also study a module in your chosen specialist discipline from:
• Blood Sciences
• Cell & Tissue Pathology

A taught module in the chosen discipline offers advanced understanding of the major systems and diseases with particular emphasis on laboratory diagnosis and research advances.

MSc

Upon successful completion of the taught modules you will undertake the MSc research project.

Professional recognition

Accredited by the Institute of Biomedical Science.

Our Careers Adviser says

The MSc is a good qualification for careers in bioscience research, or for those wishing to progress to further study (PhD). However, it is primarily aimed at those wishing to work or already working as biomedical scientists in the NHS, where an accredited MSc is integral to career progression.

Note: To obtain the MSc, students will usually take 9 months to gain the Postgraduate Diploma and then normally an additional 3 months of study to gain the MSc, from the date of commencement of the project.

Please note a February intake is available for students studying on a part-time basis

First-class facilities

Get the hands on experience you need to succeed. We have excellent specialist facilities which support our research students and staff. These include an advanced chemical analysis lab: with state-of-theart chemical analysis for isotopic and elemental analysis at trace concentrations using ICPMS/OES and the identification of organic compounds using LCMS; and the Spatial and Pattern Analysis (SPAR) lab: providing high specification workstations, geographical information system (GIS) software, geochemical and image processing facilities to support data management in science research.

Read less
The School of Life Science has developed an extremely active and successful undergraduate, Biomedical Science programme. We have embraced specialists working in local NHS Trusts to develop outstanding, collaborative relationships covering key diagnostic and clinical specialties. Read more

Overview

The School of Life Science has developed an extremely active and successful undergraduate, Biomedical Science programme. We have embraced specialists working in local NHS Trusts to develop outstanding, collaborative relationships covering key diagnostic and clinical specialties. Not only do students benefit from the inclusion of such specialist practitioners onto our teaching programmes, but could also be offered highly competitive research opportunities working within the hospital itself.

This MSc programme builds on this wealth of experience and best practice to enable well-qualified students to develop their scientific training and employability skills within a Biomedical context. The need for innovation and a multidisciplinary approach to Biomedical Science has never been more important. The teaching strategies embedded within this programme embrace these principles in its pursuit of Clinical Biochemistry, Medical Immunology and Haematology.

IBMS Accreditation

This programme is accredited by the Institute of Biomedical Science (IBMS) as the professional body of Biomedical Scientists within the United Kingdom. The IBMS aims to promote and develop the role of Biomedical Science within healthcare to deliver he best possible service for patient care and safety.

Accreditation is a process of peer review and recognition by the profession of the achievement of quality standards for delivering Masters level programmes.

Individuals awarded a Masters degree accredited by the Institute are eligible for the title of Chartered Scientist and the designation CSci if they meet the other eligibility criteria of corporate membership and active engagement in Continued Professional Development. A Masters level qualification is also one of the entry criteria for the Institute’s Higher Specialist Examination and award of the Higher Specialist Diploma, a pre-requisite for the membership grade of Fellowship and designation FIBMS.

The aim of IBMS accreditation is to ensure that, through a spirit of partnership between the Institute and the University, a good quality degree is achieved that prepares the student for employment in circumstances requiring sound judgement, critical thinking, personal responsibility and initiative in complex and unpredictable professional environments.

The Institute lists 10 advantages of IBMS accreditation:
1. Advances professional practice to benefit healthcare services and professions related to biomedical science.

2. Develops specific knowledge and competence that underpins biomedical science.

3. Provides expertise to support development of appropriate education and training.

4. Ensures curriculum content is both current and anticipatory of future change.

5. Facilitates peer recognition of education and best practice and the dissemination of information through education and employer networks.

6. Ensures qualification is fit for purpose.

7. Recognises the achievement of a benchmark standard of education.

8. The degree award provides access to professional body membership as a Chartered Scientist and for entry to the Higher Specialist Diploma examination.

9. Strengthens links between the professional body, education providers employers and students.

10. Provides eligibility for the Higher Education Institution (HEI) to become a member of HUCBMS (Heads of University Centres of Biomedical Science)

See the website https://www.keele.ac.uk/pgtcourses/biomedicalbloodscience/

Course Aims

The main aim of the programme is to provide multidisciplinary, Masters Level postgraduate training in Biomedical Blood Science. This will involve building on existing, undergraduate knowledge in basic science and applying it to clinical, diagnostic and research applications relevant to Clinical Biochemistry, Medical Immunology and Haematology.

Intended learning outcomes of the programme reflect what successful students should know, understand or to be able to do by the end of the programme. Programme specific learning outcomes are provided in the Programme Specification available by request, but to summarise the overarching course, aims are as follows:

- To develop students’ knowledge and understanding of different theoretical perspectives, methodological approaches, research interests and practical applications within Blood Science

- To explore and explicitly critique the clinical, diagnostic and research implications within the fields of Clinical Biochemistry,

- Medical Immunology and Haematology, and to place this in the context of a clinical laboratory, fully considering the potential implications for patients, health workers and research alike

- To develop a critical awareness of Biomedical ethics and to fully integrate these issues into project management including grant application and business planning

- To support student autonomy and innovation by providing opportunities for students to demonstrate originality in developing or applying their own ideas

- To direct students to integrate a complex knowledge base in the scrutiny and accomplishment of professional problem-solving scenarios and project development

- To enable student acquirement of advanced laboratory practical competencies and high level analytical skills

- To promote and sustain communities of practice that allow students to share best practice, encourage a multidisciplinary approach to problem-solving and to develop extensive communication skills, particularly their ability to convey complex, underpinning knowledge alongside their personal conclusions and rationale to specialist and nonspecialist listeners

- To provide students with a wide range of learning activities and a diverse assessment strategy in order to fully develop their employability and academic skills, ensuring both professional and academic attainment

Course Content

This one year programme is structured so that all taught sessions are delivered in just two days of the working week. Full-time students are expected to engage in independent study for the remaining 3 days per week. Consolidating taught sessions in this way allows greater flexibility for part-time students who will be expected to attend one day a week for two academic years, reducing potential impact in terms of workforce planning for employers and direct contact for students with needs outside of their academic responsibilities.

Semester 1 will focus on two main areas, the first being Biomedical ethics, grant application and laboratory competencies. The second area focuses on the clinical and diagnostic implications of Blood Science for patients and health workers, with the major emphasis being on Clinical Biochemistry.

Semester 2 will also focus on two main themes; firstly, business planning methodological approaches, analytical reasoning and research. Secondly, the clinical and diagnostic implications of Blood Science for patients and health workers, with the major emphasis being on Haematology and Immunology.

Compulsory Modules (each 15 credits) consist of:
- Biomedical Ethics & Grant Proposal
- Project Management & Business Planning
- Advanced Laboratory Techniques*
- Research Methodologies *
- Case Studies in Blood Science I
- Case Studies in Blood Science II
- Clinical Pathology I
- Clinical Pathology II

*Students who have attained the IBMS Specialist Diploma and are successfully enrolling with accredited prior certified learning are exempt from these two modules.

Dissertation – Biomedical Blood Science Research Project (60 credits)

This research project and final dissertation of 20,000 words is an excellent opportunity for students to undertake laboratory based research in their chosen topic and should provide an opportunity for them to demonstrate their understanding of the field via applications in Biomedical Science. Biomedical Science practitioners are expected to complete the laboratory and data collection aspects of this module in conjunction with their employers.

Requirements for an Award:
In order to obtain the Masters degree, students are required to satisfactorily accrue 180 M Level credits. Students who exit having accrued 60 or 120 M Level credits excluding the ‘Dissertation – Biomedical Blood Science Research Project’ are eligible to be awarded the Postgraduate Certificate (PgC) and Postgraduate Diploma (PgD) respectively

Teaching and Learning Methods

This programme places just as much emphasis on developing the way in which students approach, integrate and apply new knowledge and problem-solving as it is with the acquisition of higher level information. As such, particular emphasis is placed on developing critical thinking, innovation, reflective writing, autonomous learning and communication skills to prepare candidates for a lifetime of continued professional development.

The teaching and learning methods employed throughout this programme reflect these principles. For example, there is greater emphasis on looking at the subject from a patient-orientated, case study driven perspective through problem-based learning (PBL) that encourages students to think laterally, joining up different pieces of information and developing a more holistic level of understanding.

Assessment

The rich and varied assessment strategy adopted by this programme ensure student development of employability
and academic skills, providing an opportunity to demonstrate both professional and academic attainment. Assessment design is
largely driven by a number of key principles which include: promotion of independent learning, student autonomy, responsibility for personal learning and development of innovation and originality within one’s chosen area of interest. Note that not all modules culminate in a final examination.

Additional Costs

Apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for this post graduate programme.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
WHAT YOU WILL GAIN. - Practical guidance from biomedical engineering experts in the field. - 'Hands on' knowledge from the extensive experience of the lecturers, rather than from only the theoretical information gained from books and college reading. Read more
WHAT YOU WILL GAIN

- Practical guidance from biomedical engineering experts in the field
- 'Hands on' knowledge from the extensive experience of the lecturers, rather than from only the theoretical information gained from books and college reading
- Credibility as a biomedical engineering expert in your firm
- Skills and know-how in the latest technologies in biomedical engineering
- Networking contacts in the industry
- Improved career prospects and income
- An EIT Advanced Diploma of Biomedical Engineering

Next intake is scheduled for June 06, 2017. Applications are now open; places are limited.

INTRODUCTION

Biomedical engineering is the synergy of many facets of applied science and engineering. The advanced diploma in biomedical engineering provides the knowledge and skills in electrical, electronic engineering required to service and maintain healthcare equipment. You will develop a wide range of skills that may be applied to develop software, instrumentation, image processing and mathematical models for simulation. Biomedical engineers are employed in hospitals, clinical laboratories, medical equipment manufacturing companies, medical equipment service and maintenance companies, pharmaceutical manufacturing companies, assistive technology and rehabilitation engineering manufacturing companies, research centres. Medical technology industry is one of the fast-growing sectors in engineering field. Join the next generation of biomedical engineers and technicians and embrace a well paid, intensive yet enjoyable career by embarking on this comprehensive and practical program. It provides a solid overview of the current state of biomedical engineering and is presented in a practical and useful manner - all theory covered is tied to a practical outcomes. Leading biomedical/electronic engineers with several years of experience in biomedical engineering present the program over the web using the latest distance learning techniques.

There is a great shortage of biomedical engineers and technicians in every part of the world due to retirement, restructuring and rapid growth in new industries and technologies. Many companies employ electrical, electronic engineers to fill the vacancy and provide on the job training to learn about biomedical engineering. The aim of this 18-month eLearning program is to provide you with core biomedical engineering skills to enhance your career prospects and to benefit your company/institution. Often universities and colleges do a brilliant job of teaching the theoretical topics, but fail to actively engage in the 'real world' application of the theory with biomedical engineering. This advanced diploma is presented by lecturers who are highly experienced engineers, having worked in the biomedical engineering industry. When doing any program today, a mix of both extensive experience and teaching prowess is essential. All our lecturers have been carefully selected and are seasoned professionals.

This practical program avoids weighty theory. This is rarely needed in the real world of industry where time is short and immediate results, based on hard-hitting and useful know-how, is a minimum requirement. The topics that will be covered are derived from the acclaimed IDC Technologies' programs attended by over 500,000 engineers and technicians throughout the world during the past 20 years. And, due to the global nature of biomedical engineering today, you will be exposed to international standards.

This program is not intended as a substitute for a 4 or 5 year engineering degree, nor is it aimed at an accomplished and experienced professional biomedical engineer who is working at the leading edge of technology in these varied fields. It is, however, intended to be the distillation of the key skills and know how in practical, state-of-the-art biomedical engineering. It should also be noted that learning is not only about attending programs, but also involves practical hands-on work with your peers, mentors, suppliers and clients.

WHO WOULD BENEFIT

- Electrical and Electronic Engineers
- Electrical and Electronic Technicians
- Biomedical Equipment/Engineering Technician
- Field Technicians
- Healthcare equipment service technicians
- Project Engineers and Managers
- Design Engineers
- Instrumentation Engineers
- Control Engineers
- Maintenance Engineers and Supervisors
- Consulting Engineers
- Production Managers
- Mechanical Engineers
- Medical Sales Engineers

In fact, anyone who wants to gain solid knowledge of the key elements of biomedical engineering in order to improve work skills and to create further job prospects. Even individuals who are working in the healthcare industry may find it useful to attend to gain key, up to date perspectives.

COURSE STRUCTURE

The program is composed of 18 modules. These cover the basics of electrical, electronic and software knowledge and skills to provide you with maximum practical coverage in the biomedical engineering field.

The 18 modules will be completed in the following order:

- Basic Electrical Engineering
- Technical and Specification Writing
- Fundamentals of Professional Engineering
- Engineering Drawings
- Printed Circuit Board Design
- Anatomy and Physiology for Engineering
- Power Electronics and Power Supplies
- Shielding, EMC/EMI, Noise Reduction and Grounding/Earthing
- Troubleshooting Electronic Components and Circuits
- Biomedical Instrumentation
- Biomedical Signal Processing
- C++ Programming
- Embedded Microcontrollers
- Biomedical Modelling and Simulation
- Biomedical Equipment and Engineering Practices
- Biomedical Image Processing
- Biomechanics and Assistive Technology
- Medical Informatics and Telemedicine

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customised to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your enquiry regarding courses fees and payment options, please enquire via the below button and we will respond within 2 business days.

Read less
Deepen your knowledge of your specialist field in biomedical science. Choose from the outstanding range of biomedical subject areas and courses offered by the School of Biological Sciences, and tailor your programme to your career or research goals. Read more

Deepen your knowledge of your specialist field in biomedical science. Choose from the outstanding range of biomedical subject areas and courses offered by the School of Biological Sciences, and tailor your programme to your career or research goals.

Take your research skills to a professional level. Depending on your programme, your research will range from carrying out and documenting novel experiments to a full research thesis where you contribute to knowledge in your field of biomedical science.

Join a community of dedicated and innovative researchers and learn from staff who have international reputations in their fields.

Master of Biomedical Science by coursework and thesis—240 points

Gain advanced skills in biomedical research. If you have a Bachelor of Biomedical Science or similar degree, you can apply to complete the 240-point Master of Biomedical Science. You'll need a B+ average in your 300-level courses in your undergraduate degree for entry into this two-year programme, which includes both coursework and a full Master's project and thesis.

In your first year, or Part 1 of the programme, you'll complete around four courses of your choice worth a total of 90 points, and also do the Research Preparation course (BMSC 580).

This will prepare you for your second year, Part 2, which is when you'll do a full-time research project, leading to a thesis. You'll need to arrange a thesis topic with a supervisor before you enrol in Part 1 of the Master's programme.

Master of Biomedical Science by thesis—120 points

Complete a full research project and thesis and become an expert in your specialist subject area. If you have done well in your Bachelor of Biomedical Science with Honours degree, you may enrol in the 120 point Master's. This programme is the same as Part 2 of the 240-point Master's above.

You'll need to arrange a thesis topic with a supervisor before you enrol.

Postgraduate Diploma in Biomedical Science

Improve your career options with this one-year programmme designed for students who have completed a Bachelor of Biomedical Science or equivalent Bachelor's degree.

You'll complete 120 points, choosing from the full range of level-four courses in Biomedical Science that may include the 30-point Research Preparation course (BMSC 580).

Workload and duration

If you are studying full time, you can expect a workload of 40–45 hours a week for much of the year. Part-time students doing two courses per trimester will need to do around 20–23 hours of work a week. Make sure you take this into account if you are working.

You can estimate your workload by adding up the number of points you'll be doing. One point is roughly equal to 10–12 hours work.



Read less
The MSc Forensic Science (with Advanced Practice) postgraduate course concentrates on practices, procedures and analytical techniques used within forensic science. Read more

The MSc Forensic Science (with Advanced Practice) postgraduate course concentrates on practices, procedures and analytical techniques used within forensic science. It considers how these are applied to support the investigation of crime and the criminal justice system as a whole.

Course details

On completing this course you will be able to demonstrate an in-depth knowledge of forensic science and how scientific methods are applied to the investigation of crime. You benefit from our links with practitioners and other professional organisations relevant to forensic science field. Key members of staff are former forensic scientists or crime scene scientists with considerable operational experience. Expect to carry out analytical and practical work in the University’s on-campus forensic facilities including specialist analytical laboratories, a crime scene house laboratory, and forensic chemistry and biology laboratories.There are three routes you can select from to gain a postgraduate Master’s award:

  • MSc Forensic Science – one year full time
  • MSc Forensic Science – two years part time
  • MSc Forensic Science (with Advanced Practice) – two years full time

The one-year programme is a great option if you want to gain a traditional MSc qualification – you can find out more here. This two-year master’s degree with advanced practice enhances your qualification by adding to the one-year master’s programme an internship, research or study abroad experience.

The MSc Forensic Science (with Advanced Practice) course offers you the chance to enhance your qualification by completing an internship, research or study abroad experience in addition to the content of the one-year MSc. This two-year programme is an opportunity to enhance your qualification by spending one semester completing a vocational internship, research internship or by studying abroad. Although we can’t guarantee an internship, we can provide you with practical support and advice on how to find and secure your own internship position.

What you study

For the MSc with advanced practice, you complete 120 credits of taught modules, a 60-credit master’s research project and 60 credits of advanced practice.

Course structure

Core modules

  • Advanced Analytical Techniques
  • Data Acquisition and Signal Processing Techniques
  • Forensic Biology
  • Forensic Chemistry
  • Forensic Investigative Strategy
  • Legal Issues and Evidence Reporting
  • Research Methods and Proposal
  • Research Project (Advanced Practice)

Advanced Practice options

  • Research Internship
  • Study Abroad
  • Vocational Internship

Modules offered may vary.

Teaching

How you learn

You learn through a variety of teaching methods including lectures, tutorials, projects and assignments. You are also expected to participate in self-directed study, to review lecture notes, prepare assignments, work on projects and revise for assessments. Each 20-credit module typically has around 200 hours of learning time. 

How you are assessed

Modules are assessed by in-course assignments – including a courtroom-based expert witness assessment – and end exams.

Employability

Career opportunities

Employment opportunities exist in the fields of forensic science and forensic investigation with forensic science providers and law enforcement agencies. Other roles include scientific investigation where it’s important to be apply forensic science in a legal or regulatory context. 

This MSc programme has been accredited and commended by the Chartered Society of Forensic Sciences, the international professional body for forensic science.

Work placement

On this programme you complete a project related to professional practice. This, along with involving practitioners and academics in delivering these courses, ensures that your learning is relevant to the requirements of the criminal justice system.



Read less
Biomedical science is integral to human and veterinary practice. It looks at how the body works and investigates ways to treat diseases through advanced tools and strategies. Read more

What is biomedical science?

Biomedical science is integral to human and veterinary practice. It looks at how the body works and investigates ways to treat diseases through advanced tools and strategies.

Who is this course for?

This course is for graduates of science, biomedical science, veterinary science or related disciplines who want to specialise in microbiology and immunology. This is a flexible course allowing you to tailor your studies to suit your professional needs and interests.

Course learning outcomes

Biomedical science examines how the body works and investigates ways to treat diseases using advanced tools and strategies. It covers the fields of biochemistry, microbiology, physiology and anatomy with the aim of improving health outcomes for humans and animals tropical, rural and remote and indigenous communities.
Graduates of the Graduate Diploma of Biomedical Sciences will be able to:
*Apply and adapt advanced and integrated knowledge, including an understanding of recent developments, in the area of biomedicine and related professional competencies, behaviours and ethical frameworks
*Apply an integrated understanding of biomedical science and its application to improve human and animal health in rural, remote and indigenous community settings
*Analyse and synthesise complex information, problems, concepts and theories in new situations or contexts with creativity and independence
*Demonstrate a high level of personal autonomy and accountability for their own future professional development through reflection on current skills, knowledge and attitudes in the biomedical science arena
*Interpret and justify scientific propositions, methodologies and conclusions to specialist and non-specialist audiences through high level written and oral communication and numeracy skills.

Award title

GRADUATE DIPLOMA OF BIOMEDICAL SCIENCES (GDipBiomedSc)

Course articulation

Students who complete this course are eligible for entry to the Master of Biomedical Sciences, and may be granted advanced standing for relevant subjects completed under this course

Post admission requirements

Hepatitis B immunisation:
Students must provide evidence of being immune to hepatitis B within the first teaching period of their studies. A blood-borne viral disease may result in a student’s inability to obtain a placement in a Queensland Health facility and consequently may result in their inability to complete the requirements of the course as accredited by the relevant professional accrediting body. If a student has not complied with the above requirement by the last day of the first teaching period of their studies, their enrolment will be terminated immediately.

Entry requirements (Additional)

English band level 2 - the minimum English Language test scores you need are:
*Academic IELTS – 6.5 (no component lower than 6.0), OR
*TOEFL – 570 (plus minimum Test of Written English score of 4.5), OR
*TOEFL (internet based) – 90 (minimum writing score of 21), OR
*Pearson (PTE Academic) - 64

If you meet the academic requirements for a course, but not the minimum English requirements, you will be given the opportunity to take an English program to improve your skills in addition to an offer to study a degree at JCU. The JCU degree offer will be conditional upon the student gaining a certain grade in their English program. This combination of courses is called a packaged offer.
JCU’s English language provider is Union Institute of Languages (UIL). UIL have teaching centres on both the Townsville and Cairns campuses.

Minimum English Language Proficiency Requirements

Applicants of non-english speaking backgrounds must meet the English language proficiency requirements of Band 2 – Schedule II of the JCU Admissions Policy.

Why JCU?

James Cook University has:
*Purpose-built emergency veterinary clinic including operating theatres and radiology facilities
*anatomy and biomedical science teaching and research laboratories, including housing for small, large and aquatic animals
*veterinary teaching facilities in Atherton, Malanda, Townsville and Charters Towers.

Application deadlines

*1st February for commencement in semester one (February)
*1st July for commencement in semester two (mid-year/July)

Read less
This course is designed for biology, medicine, biomedical and life sciences graduates, keen to develop their knowledge in a city renowned for its medical landmarks. Read more
This course is designed for biology, medicine, biomedical and life sciences graduates, keen to develop their knowledge in a city renowned for its medical landmarks.

More about this course

You will carry out studies of biomedical science, develop a high level of scientific knowledge and understanding of disease processes and enhance intellectual development throughout research projects.

The team delivering the course have an exceptional research profile, particularly in oncology, molecular medicine, immunology and virology. Specialist guest lecturers will add their own enlightenment and passion to a fascinating schedule.

The course aims to:
-Provide you with advanced study of biomedical science, which underpins professional progression and development
-Provide a high level of scientific knowledge and understanding of disease processes
-Develop an informed and critical appreciation of recent scientific developments in relation to diagnostic laboratory pathology
-Enable you, where options are available, to gain additional specialist knowledge in areas such as ageing, epidemiology and medical genetics
-Enhance your intellectual development throughout the research project and dissertation

Students undertake a variety of assessment methods including case studies, literature evaluations, self diagnostic testing, debates, group work, presentations, coursework, essays, and cumulative exams.

Practical skills are summatively assessed through the coursework assignments, including those in the final Project module.

Data handling skills are assessed by, practical reports, problem solving exercises, information abstracting and reviewing exercises, poster presentations, exams and seminar presentations.

Professional accreditation

Accredited by the Institute of Biomedical Science (IBMS), the professional body of Biomedical Scientists.

Modular structure

The modules listed below are for the academic year 2016/17 and represent the course modules at this time. Modules and module details (including, but not limited to, location and time) are subject to change over time.

Year 1 modules include:
-Advanced Immunology (core, 20 credits)
-Biomedical Diagnostics (core, 20 credits)
-Integrated Pathology (core, 20 credits)
-Research Project (core, 60 credits)
-Scientific Frameworks for Research (core, 20 credits)
-Biomedical Informatics (option, 20 credits)
-Clinical Biochemistry (option, 20 credits)
-Epidemiology of Emerging Infectious Disease (option, 20 credits)
-Ethical Issues in Biomedical Science (option, 20 credits)
-Haematology (option, 20 credits)
-Medical Genetics (option, 20 credits)
-Transfusion Science (option, 20 credits)

After the course

Career opportunities include employment in NHS hospital laboratories and other health-related areas. Graduates will also be well placed to apply for research studentships.

This course allows students to be considered for promotion at work. It also allows them to be eligible to sit the Institute of Biomedical Science (IBMS) higher specialist diploma leading to fellowship of the IBMS (FIBMS).

Scholarships

A number of partial scholarships are available for international students from outside the EU: http://www.londonmet.ac.uk/applying/funding-your-studies/postgraduate-international-students/

Moving to one campus

Between 2016 and 2020 we're investing £125 million in the London Metropolitan University campus, moving all of our activity to our current Holloway campus in Islington, north London. This will mean the teaching location of some courses will change over time.

Whether you will be affected will depend on the duration of your course, when you start and your mode of study. The earliest moves affecting new students will be in September 2017. This may mean you begin your course at one location, but over the duration of the course you are relocated to one of our other campuses. Our intention is that no full-time student will change campus more than once during a course of typical duration.

All students will benefit from our move to one campus, which will allow us to develop state-of-the-art facilities, flexible teaching areas and stunning social spaces.

Read less
Biomedical Science uses the basis of biological principles to enhance our understanding of human health and the treatment of disease, using a multidisciplinary approach. Read more

Biomedical Science uses the basis of biological principles to enhance our understanding of human health and the treatment of disease, using a multidisciplinary approach. Knowledge of various disciplines allows the exploration of the normal physiology of the human body, leading to an appreciation of the processes of disease, aiding our advances in disease diagnosis and subsequent therapeutic intervention. Students undertaking this MSc programme will gain an understanding of the importance of research and experience advanced techniques, incorporating research design and data analysis.

Facilities include a wide range of instrumentation and up-to-date equipment for proteomic and genomic analysis, coupled with the studies of cellular processes. The University has an international reputation for research focused on oncology, the cardiovascular system and metabolic diseases. The programme builds upon the research expertise within the School and long-established history of collaboration with clinical scientists within the NHS, in addition to the School’s strong relationship with the Institute of Biomedical Science.

Study information

This programme is taught by academic staff from the School, and invited speakers such as clinical staff from local hospitals. You will be allocated a personal tutor and have regular contact with experienced researchers working in the biomedical field.

The modules taken by all students during taught semesters are:

  • Current Topics in Biomedical Science
  • Research Skills in Biomedical Sciences
  • Diseases in Biomedicine
  • Infection and Immunity
  • Ethics in Biomedicine/Clinical Statistics
  • Cellular and Molecular Biology of Cancer

You will also undertake a substantive research project on your chosen aspect of biomedical science.

From the MSc Biomedical Science programme of study students will gain an in-depth understanding of the generic, biological, physiological, and cellular processes with reference to the interconnectedness between health and disease. You will gain an understanding of the ethical and moral consequences of research in this subject area, and make use of the principles of scientific inquiry in the context of evidence-based practice. Your new knowledge will be acquired through research, practical real-world problem solving and practical experience that will allow you to interpret and critically evaluate data within the context of biomedical science.

* All modules are subject to availability.

Future prospects

This MSc will enhance your scientific theoretical and practical abilities, thus providing you with skills at the forefront of medical science research.

The course will aid your preparation for future employment or your advancement to PhD level studies. Employers of biomedical sciences postgraduates include the NHS, Medical Research Council, Government-funded and private pathology laboratories.



Read less
The MSc in Data Science will provide you with the technical and practical skills to analyse the big data that is the key to success in future business, digital media and science. Read more

The MSc in Data Science will provide you with the technical and practical skills to analyse the big data that is the key to success in future business, digital media and science.

The rate at which we are able to create data is rapidly accelerating. According to IBM, globally, we currently produce over 2.5 quintillion bytes of data a day. This ranges from biomedical data to social media activity and climate monitoring to retail transactions. These enormous quantities of data hold the keys to success across many domains from business and marketing to treating cancer or mitigating climate change.

The pace at which we produce data is rapidly outstripping our ability to analyse and use it. Science and industry are crying out for a new generation of data scientists who combine the statistical skills of data analysis and the computational skills needed to carry out this analysis on a vast scale.

The MSc in Data Science provides you with these skills. 

Studying this Masters, you will learn the mathematical foundations of statistics, data mining and machine learning, and apply these to practical, real world data.

As well as these statistical skills, you will learn the computational techniques needed to efficiently analyse very large data sets. You will apply these skills to a range of real world data, under the guidance of experts in that domain. You will analyse trends in social media, make financial predictions and extract musical information from audio files. 

The degree will culminate in a final project in which you will you can apply your skills and follow your specialist interests. You will do a novel analysis of a real world data of your choice. 

The programme includes:

  • A firm grounding in the theory of data mining, statistics and machine learning
  • Hands-on practical real world applications such as social media, biomedical data and financial data with Hadoop (used by Yahoo!, Facebook, Google, Twitter, LinkedIn, IBM, Amazon, and many others), R and other specialised software
  • The opportunity to work with real-world software such as Apache

Modules & structure

You will study the following core modules:

You will also choose from an anually approved list of modules which may include:

Skills & careers

Data Science is one of the fastest growing sectors of employment internationally. Big Data is an important part of modern finance, retail, marketing, science, social science, medicine and government. 

The study of a combination of long established fields such as statistics, data mining, machine learning and databases with very modern and strongly related fields as big data management and analytics, sentiment analysis and social web mining, offers graduates an excellent opportunity for getting valuable skills in advanced data processing. 

This could lead to a variety of potential jobs including: 

  • Data Scientist
  • Data Mining Analyst
  • Big Data Analyst
  • Hadoop Developer
  • NoSQL Database Developer
  • R Programmer
  • Python Programmer
  • Researcher in Data Science and Data Mining

Find out more about employability at Goldsmiths.



Read less
Technologies based on the intelligent use of data are leading to great changes in our everyday life. Data Science and Engineering refers to the know-how and competence required to effectively manage and analyse the massive amount of data available in a wide range of domains. Read more
Technologies based on the intelligent use of data are leading to great changes in our everyday life. Data Science and Engineering refers to the know-how and competence required to effectively manage and analyse the massive amount of data available in a wide range of domains.

We offer a two-year Master of Science in Computer Science centered on this emerging field. The backbone of the program is constituted by three core units on advanced data management, machine learning, and high performance computing. Leveraging on the expertise of our faculty, the rest of the program is organised in four tracks, Business Intelligence, Health & Life Sciences, Pervasive Computing, and Visual Computing, each providing a solid grounding in data science and engineering as well as a firm grasp of the domain of interest.

By blending standard classes with recitations and lab sessions our program ensures that each student masters the theoretical foundations and acquires hands-on experience in each subject. In most units credit is obtained by working on a final project. Additional credit is also gained through short-term internship in the industry or in a research lab. The master thesis is worth 25% of the total credit.

TRACKS

• Business Intelligence. This track builds on first hand knowledge of business management and fundamentals of data warehousing, and focuses on data mining, graph analytics, information visualisation, and issues related to data protection and privacy.
• Health & Life Sciences. Starting from core knowledge of signal and image processing, bioinformatics and computational biology, this track covers methods for biomedical image reconstruction, computational neuroengineering, well-being technologies and data protection and privacy.
• Pervasive Computing. Security and ubiquitous computing set the scene for this track which deals with data semantics, large scale software engineering, graph analytics and data protection and privacy.
• Visual Computing. This track lays the basics of signal & image processing and of computer graphics & augmented reality, and covers human computer interaction, computational vision, data visualisation, and computer games.

PROSPECTIVE CAREER

Senior expert in Data Science and Engineering. You will be at the forefront of the high-tech job market since all big companies are investing on data driven approaches for decision making and planning. The Business Intelligence area is highly regarded by consulting companies and large enterprises, while the Health and Life Sciences track is mainly oriented toward biomedical industry and research institutes. Both the Pervasive and the Visual Computing tracks are close to the interests of software companies. For all tracks a job in a start-up company or a career on your own are always in order.

Senior computer scientist.. By personalizing your plan of study you can keep open all the highly qualified job options in software companies.

Further graduate studies.. In all cases, you will be fully qualified to pursue your graduate studies toward a PhD in Computer Science.

Read less
The MSc Biomedical Science course is aimed at students who want to take their biomedical science skills and knowledge to a higher level. Read more
The MSc Biomedical Science course is aimed at students who want to take their biomedical science skills and knowledge to a higher level. It's ideally suited to those with an undergraduate degree in Biomedical Science or other degrees that have a significant amount of human biology or biomedical content, as well as medical, dental or veterinary degrees and some biotechnology degrees depending on what modules you studied at undergraduate level.

Key benefits

The course is accredited by The Institute of Biomedical Science (IBMS) for the 2017 intake.

Course detail

An intensive modular programme offering specialist routes in Medical Microbiology, Immunology, Cellular Pathology, Clinical Biochemistry, Haematology, and Medical Genetics.

Modules

Core Modules:

• Current Issues in Biomedical Sciences
• Practical Skills for Biomedical Science
• Research and Diagnostic Methodologies
• Advanced Topics in Biomedical Science
• Research Project

Choose from one of the specialist modules:

• Clinical Biochemistry
• Medical Microbiology
• Applied Immunology
• Medical Genetics
• Cellular Pathology and Oncology
• Haematology

Format

You learn and develop experience through a mixture of lectures, tutorials, workshops, laboratory practicals, computer-based activities and a conference week.

Assessment

We assess modules using a range of methods, including practical report writing, statistical analysis, oral presentations, poster presentations, researched essays and exams.

Careers / Further study

Graduates from this course have gone on to employment in the healthcare sector, teaching and academia, with many going on to take PhDs in the biomedical sciences.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
The MSc in Biomedical Science (via Distance Learning) is ideal for those interested in earning a Master’s degree while continuing to work. Read more

About the Programme

The MSc in Biomedical Science (via Distance Learning) is ideal for those interested in earning a Master’s degree while continuing to work. Developed for working graduates of engineering, technology or science who wish to upskill or change career direction, the 14 module course will introduce students to interdisciplinary research using technologies and skills from scientific, engineering and clinical disciplines. Modules include: Molecular & Cellular Biology, Anatomy (gross and histology), Innovation & Technology Transfer, Biomaterials, Molecular & Regenerative Medicine, Pharmacology & Toxicology, Tissue Engineering, Stereology, Biomechanics, Project Management, Experimental Design and Data Analysis, Monitoring for Health Hazards at Work, Lasers & Applications, Product Development, Validation and Regulation. Course contributors include senior academics, industry experts and scientists who are actively engaged in research in all areas of biomedical science.
The NUI Galway programme is based within the National Centre for Biomedical Engineering Science (NCBES), an interdisciplinary centre of research excellence with a primary focus on five research themes that include; Biomedical Engineering, Cancer, Infectious Disease, Neuroscience and Regenerative Medicine (see http://www.ncbes.ie for more details).

Career Opportunities

Current participants work in medical device and pharmaceutical companies including Boston Scientific, Abbott, Medtronic, Elan, Stryker, Allergan, Advanced Surgical Concepts, Pfizer, and Tyco Healthcare. Whether industry- or healthcare-based, precise job descriptions vary from sales, to R&D engineers. Completion of this new distance-learning biomedical science programme will broaden career prospects of new graduates and those who have already joined the work force.
As a current participant has said, “I feel the course has enhanced my position in my company, as well as opening up other career opportunities. It is a course well-worth pursuing,” Dermot, Senior Process Development Engineer.

A Prime Location

The NUI Galway campus offers students the vibrancy and activity of a bustling community with over 40,000 students. Offering an extensive range of academically-challenging undergraduate and postgraduate degrees and diplomas of international quality, NUIG’s programmes provide students with opportunities for personal and academic development, as well as equipping them with the skills and knowledge necessary to embark on successful careers. The University's long-standing policy of innovative programme development ensures that the teaching programmes respond to the ever-changing needs of employers and of the economy.
Being a University City, Galway is a lively energetic place throughout the year. The University, situated close to the heart of Galway, enjoys an intimate relationship with the city and during the academic year, 15% of the population of the city are students. A compact, thriving city, Galway caters to youth like few other places can. The University's graduates have played a pivotal role in all areas of the development of Galway, including the arts, industry and commerce.

Programme Delivery

The course is delivered over two years, based on a blended learning format; a mixture of face-to-face contact (approximately 9 hours per module) in addition to 12-18 hours per week of self-directed study combined with e-tutorial on-line support. Students attend on-campus lectures/tutorials on a Friday afternoon and/or Saturday, approximately once every 5 weeks. The final module of year one consists of practical experimentation, when students obtain hands-on experience of a range of biomedical and engineering techniques. Students are required to attend 3-4 practical sessions during this module. Completion of a research project (preferably at place of work) is also required. Semester 1 exams are held in January and Semester 2 exams are held in June. Students will also be required to produce a thesis based on a research project preferably carried out at their place of work.

Minimum entry requirements

Second Class Honours in any science, engineering, medical or technology discipline. Candidates with a general (ie non-honours), or third class honours, B.Sc./B.E. can still apply provided they have at least three years relevant work experience.

Apply

Apply online at http://www.pac.ie (look for college of science postgraduate course code GYS19). Selection is based on the candidate’s academic record at an undergraduate level and their relevant work experience.

First-hand Testimonials

“The masters in distance learning is ideal for anyone who wants to continue with their education without having the full time commitment of other courses that are 9-5, 5 days a week. The modules undertaken during the courses are varied and regardless of a physics or biology background the work is challenging without being too involved. The lab work is excellent-getting to work with new and exciting technologies the module notes are excellent and the tutors and lectures are brilliant.” Sinead, Physicist, self-employed
"A great course. Hard work, but fun. Well designed to meet the needs of the biomedical/medical device industry. It has added hugely to my understanding of the body, its function and the requirements of medical devices and the materials which go into them. I feel that it has expanded my horizons hugely." Martin, Senior Quality Engineer, Boston Scientific

Read less
Studentships. * One-year masters studentships are available for this stream. Each studentship will be worth £5000 and can be taken either as a reduction in fees or as a bursary. Read more

Studentships

* One-year masters studentships are available for this stream. Each studentship will be worth £5000 and can be taken either as a reduction in fees or as a bursary. Studentships will be awarded based on academic merit and are open to all applicants, regardless of fee status (home/EU/overseas). Please indicate 'Data Science' in the first line of your personal statement.

* Two PhD Studentships targeted at successful graduates from this stream. Two 3-year PhD studentships will be on offer, targeted at students obtaining a minimum of a Pass with Merit on the Data Science stream. These studentships will cover the cost of tuition fees for home/EU applicants and a stipend at standard Research Council rates.

Stream overview

This course is a stream within the broader MRes in Biomedical Research.

The Data Science stream provides an interdisciplinary training in analysis of ‘big data’ from modern high throughput biomolecular studies. This is achieved through a core training in multivariate statistics, chemometrics and machine learning methods, along with research experience in the development and application of these methods to real world biomedical studies. There is an emphasis on handling large-scale data from molecular phenotyping techniques such as metabolic profiling and related genomics approaches. Like the other MRes streams, this course exposes students to the latest developments in the field through two mini-research projects of 20 weeks each, supplemented by lectures, workshops and journal clubs. The stream is based in the Division of Computational and Systems Medicine and benefits from close links with large facilities such as the MRC-NIHR National Phenome Centre, the MRC Clinical Phenotyping Centre and the Centre for Systems Oncology. The Data Science stream is developed in collaboration with Imperial’s Data Science Institute.

Who is this course for?

Students with a degree in physical sciences, engineering, mathematics computer science (or related area) who wish to apply their numeric skills to solve biomedical problems with big data.

Stream Objectives

Students will gain experience in analysing and modelling big data from technologically advanced techniques applied to biomedical questions. Individuals who successfully complete the course will have developed the ability to:

• Perform novel computational informatics research and exercise critical scientific thought in the interpretation of results.

• Implement and apply sophisticated statistical and machine learning techniques in the interrogation of large and complex

biomedical data sets.

• Understand the cutting edge technologies used to conduct molecular phenotyping studies on a large scale.

• Interpret and present complex scientific data from multiple sources.

• Mine the scientific literature for relevant information and develop research plans.

• Write a grant application, through the taught grant-writing exercise common to all MRes streams.

• Write and defend research reports through writing, poster presentations and seminars.

• Exercise a range of transferable skills by taking short courses taught through the Graduate School and the core programme of the

MRes Biomedical Research degree.

Projects

A wide range of research projects is made available to students twice a year. The projects available to each student are determined by their stream. Students may have access from other streams, but have priority only on projects offered by their own stream. Example projects for Data Science include (but are not limited to):

• Integration of Multi-Platform Metabolic Profiling Data With Application to Subclinical Atherosclerosis Detection

• What Makes a Biological Pathway Useful? Investigating Pathway Robustness

• Bioinformatics for mass spectrometry imaging in augmented systems histology

• Processing of 3D imaging hyperspectral datasets for explorative analysis of tumour heterogeneity

• Fusion of molecular and clinical phenotypes to predict patient mortality

• 4-dimensional visualization of high throughput molecular data for surgical diagnostics

• Modelling short but highly multivariate time series in metabolomics and genomics

• Searching for the needle in the haystack: statistically enhanced pattern detection in high resolution molecular spectra

Visit the MRes in Biomedical Research (Data Science) page on the Imperial College London web site for more details!



Read less
Imaging has contributed to some of the most significant advances in biomedicine and healthcare and this trend is accelerating. Read more

Imaging has contributed to some of the most significant advances in biomedicine and healthcare and this trend is accelerating. This MSc, taught by leading scientists and clinicians, will equip imaging students from all science backgrounds with detailed knowledge of the advanced imaging techniques which provide new insights into cellular, molecular and functional processes, preparing them for a PhD or a career in industry.

About this degree

Imaging is essential for diagnosis of disease and development of novel treatments. This programme focuses on translational medical imaging, and the development and use of preclinical imaging technologies to detect, monitor and prevent illnesses such as cancer, heart diseases and neurodegeneration. Students will undertake an independent research-based project in UCL’s world-class laboratories and develop their communication skills in biomedical science.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (120 credits), and a research dissertation (60 credits).

A Postgraduate Diploma (120 credits, full-time) is offered.

A Postgraduate Certificate (60 credits, full-time) is offered.

Core modules

  • Advanced Biomedical Imaging Techniques I & II
  • Practical Preclinical Research (including Home Office Personal Licence)
  • Translational Biomedical Imaging of Disease and Therapy I & II
  • Science Communication for Biomedicine
  • Statistical Methods in Research
  • Ethics and Regulation of Research

Optional modules

There are no optional modules for this programme.

Dissertation/report

All MSc students undertake an independent research project which culminates in a dissertation of 7,000 words or a manuscript suitable for submission to a peer-reviewed journal.

Teaching and learning

The programme is delivered through a combination of seminars, lectures, laboratory work, site visits and practicals. Assessment is through examination, presentations, essays, practical reports and the dissertation.

Further information on modules and degree structure is available on the department website: Advanced Biomedical Imaging MSc

Careers

UCL is involved in the dynamic and successful London-based entrepreneurial activity in biomedical imaging. It has a strong track record in placing postgraduates in key positions within industry (e.g. Siemens, Philips, GE Healthcare, GSK, SMEs and start-ups) and at other leading academic institutions with preclinical imaging facilities, including the Universities of Oxford and Cambridge in the UK, and MIT and NIH in the US. This MSc will provide ideal training for students who wish to apply to UCL’s EPSRC Centre for Doctoral Training in Medical Imaging.

Employability

This programme belongs to the School of Life and Medical Sciences; one of the largest and most prestigious aggregations of academics in its field, with a global reputation for teaching informed by cutting-edge research. Our close links with major hospitals and industry allow students to perform significant research projects. This laboratory experience makes them attractive applicants for PhD studentships or research assistant positions. Around 75% of our graduates have found research positions; either PhD studentships (50%) or research assistant positions (25%) in leading laboratories. Other graduates have taken up positions in industry or continued with specialist clinical training.

Why study this degree at UCL?

UCL offers a world-class environment in medical imaging and hosts several medical and biomedical imaging centres of excellence.

The UCL Centre for Advanced Biomedical Imaging is one of the world’s most advanced imaging centres, with 11 state-of-the-art imaging technologies, and is dedicated to developing imaging techniques of the future. Biomedical imaging is an interdisciplinary field drawing together biology, medicine, physics, engineering, and art.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Division of Medicine

80% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less

Show 10 15 30 per page



Cookie Policy    X