• Regent’s University London Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of York Featured Masters Courses
London Metropolitan University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
University of Kent Featured Masters Courses
University of Kent Featured Masters Courses
University College London Featured Masters Courses
"5"×
0 miles

Masters Degrees (5)

  • "5" ×
  • clear all
Showing 1 to 15 of 7,819
Order by 
Master’s Degree in Quantitative Finance and Risk Management draws on the recognized excellence of our engineering school in quantitative finance, and makes great use of the collaborations with the Universities of Paris-Dauphine and Cergy-Pontoise. Read more
Master’s Degree in Quantitative Finance and Risk Management draws on the recognized excellence of our engineering school in quantitative finance, and makes great use of the collaborations with the Universities of Paris-Dauphine and Cergy-Pontoise. The Master is primarily going to appeal to international students, "free movers" or those from our partner universities or for high-potential foreign engineers who are looking for an international career in the domain of finance. This program leads to a Master degree and a Diplôma accredited by the French Ministry of Higher Education and Research.

Objective

This Master’s degree covers the whole chain of quantitative finance, from theoretical aspects to the application in a professional setting. The chain can be described as follows:
o Description of the market and financial products
o Mathematical models of finance
o Mathematical models of risk
o Numerical resolution: computer-aided simulation
o Calibration and asset evaluation

Specific details of the Master:
o The Master came from the Financial Engineering option (IFI) taught at the ESITI for the last 13 years (all students from the option have found work as soon as their compulsory internships finished, and have an average salary 20% higher than the norm in this sector).
o In and of itself, the Master is intrinsically international.
o The theoretical teaching of this Master is very thorough, covering everything needed to know in the associated professions. As a consequence, the students are very adaptable within the work market.
o The Master offers a 3-skilled approach, in Computer Science, Mathematics and Finance.

Practical information
The Master’s degree counts for 120 ECTS (European Credit Transfer System) in total and lasts two years. The training lasts 1316 hours (646 hours in M1 and 670 hours in M2). The semesters are divided as follows:
o M1 courses take place from September until June and count for a total of 60 ECTS
o M2 courses take place from September until mid-April and count for a total of 44 ECTS
o A five-month internship (in France) from mid- April until mid- September for 16 ECTS. Usual indemnities are around 1000 € per month.

Non-French speakers will be asked to participate to a one week intensive French course that precedes the start of the program and allows students to gain the linguistic knowledge necessary for daily interactions.

Organization

M1 modules are taught from September to June (60 ECTS, 646 h):
• Mathematics
• Measure and Integration (2 ECTS, 20 h)
• Functional Analysis (3 ECTS, 30 h)
• Stochastic Processes-Discrete/Continuous Time (5,5 ECTS, 55 h)
• Optimization (2,5 ECTS, 30 h)
• Jump Processes and Application (3 ECTS, 30h)
• Partial Differential Equations (3 ECTS, 30 h)
 Calibration, Simulation and Numerical Analysis
• Monte Carlo Simulations (3 ECTS, 30 h)
• Finite Difference Methods (2,5 ECTS, 25 h)
• Calibration of Financial Models (2 ECTS, 20 h)
• Bloomberg trading room (3ECTS, 30h)
• C++ and Object Oriented Design (2 ECTS, 20 h)
• VBA Programming (3 ECTS, 30 h)
• Interdisciplinary Project (5 ECTS, 5 h)
 Finance and Insurance
• Introduction to Quantitative Finance (3 ECTS, 25 h)
• Risk Management in a mono-period Financial Market & Derivatives (4 ECTS, 40 h)
• Contingent Claims Valuation (3 ECTS, 30 h)
• Portfolio Management and Financial Risks (3 ECTS, 30 h)
• Mathematics Applied to Insurance (3 ECTS, 30 h)
• French as Foreign Language
• French as Foreign Language (4,5 ECTS, 96 h)

M1 modules are taught from September to June (60 ECTS, 646 h):
• Mathematics
• Measure and Integration (2 ECTS, 20 h)
• Functional Analysis (3 ECTS, 30 h)
• Stochastic Processes-Discrete/Continuous Time (5,5 ECTS, 55 h)
• Optimization (2,5 ECTS, 30 h)
• Jump Processes and Application (3 ECTS, 30h)
• Partial Differential Equations (3 ECTS, 30 h)
• Calibration, Simulation and Numerical Analysis
• Monte Carlo Simulations (3 ECTS, 30 h)
• Finite Difference Methods (2,5 ECTS, 25 h)
• Calibration of Financial Models (2 ECTS, 20 h)
• Bloomberg trading room (3ECTS, 30h)
• C++ and Object Oriented Design (2 ECTS, 20 h)
• VBA Programming (3 ECTS, 30 h)
• Interdisciplinary Project (5 ECTS, 5 h)
• Finance and Insurance
• Introduction to Quantitative Finance (3 ECTS, 25 h)
• Risk Management in a mono-period Financial Market & Derivatives (4 ECTS, 40 h)
• Contingent Claims Valuation (3 ECTS, 30 h)
• Portfolio Management and Financial Risks (3 ECTS, 30 h)
• Mathematics Applied to Insurance (3 ECTS, 30 h)
• French as Foreign Language
• French as Foreign Language (4,5 ECTS, 96 h)

M2 modules take place from September to Mid-April (60 ECTS, 670h)
• Mathematics
• Mathematical Statistics (2 ECTS, 21 h)
• Mathematical Tools in Finance (4,5 ECTS, 54h)
• Calibration, Simulation and Numerical Analysis
• Advanced Numerical Methods for PDEs in Finance(2,5 ECTS, 30 h)
• Advanced Spreadsheet Programming (2 ECTS, 24h)
• Simulations (2 ECTS, 24 h)
• Calibration (3 ECTS, 30 h)
• Theoretical and Practical Finance
• Theory of Contingent Claims (4,5 ECTS, 54 h)
• Interest Rate, Exchange and Inflation Markets (2,5 ECTS, 30 h)
• Portfolio Managment (2,5 ECTS, 30 h)
• Imperfect Markets (2 ECTS, 20 h)
• Dynamic Hedging and Risk Measures (2 ECTS, 21 h)
• Business Evaluation (2,5 ECTS, 35 h)
• Jump Processes and Applications (2 ECTS, 21 h)
• Careers and financial products (2 ECTS, 30 h)
• Practical Fixed Income Management (2 ECTS, 24 h)
• French as Foreign Language
• French as Foreign Language (4 ECTS, 72 h)
• Master's Thesis (9 ECTS, 150 h)
• Internship (22 weeks from mid-April to)

Teaching

Fourteen external teachers (lecturers from universities, teacher-researchers, professors etc.), supported by a piloting committee, will bring together the training given in Cergy.

All the classes will be taught in English, with the exception of:
• The class of FLE (French as a foreign language), where the objective is to teach the students how to understand and express themselves in French.
• Cultural Openness, where the objective is to enrich the students’ knowledge of French culture.
The EISTI offers an e-learning site to all its students, which complements everything the students will learn through their presence and participation in class:
• class documents, practical work and tutorials online
• questions and discussions between teachers and students, and among students
• a possibility of handing work in online

All Master’s students are equipped with a laptop for the duration of the program that remains the property of the EISTI.

Read less
UCC have developed a Masters in Engineering Science in Sustainable Energy, in recognition of the growing international market for sustainable energy systems and the shortage of qualified engineers. Read more
UCC have developed a Masters in Engineering Science in Sustainable Energy, in recognition of the growing international market for sustainable energy systems and the shortage of qualified engineers. This programme is open to Engineering graduates of all disciplines with an 8 month programme option leading to a Postgraduate Diploma in Sustainable Energy.

Visit the website: http://www.ucc.ie/en/ckr26/

Course Details

In Part I students take modules to the value of 50 credits and a Preliminary Research Report in Sustainable Energy (NE6008) to the value of 10 credits. Part II consists of a Dissertation in Sustainable Energy (NE6009) to the value of 30 credits which is completed over the summer months.

Part I

Students take 50 credits as follows:

NE3002 Energy in Buildings (5 credits)
EE3011 Power Electronic Systems (5 credits)
EE4010 Electrical Power Systems (5 credits)
NE3003 Sustainable Energy (5 credits)
NE4006 Energy Systems in Buildings (5 credits)
NE6003 Wind Energy (5 credits)
NE6004 Biomass Energy (5 credits)
NE6005 Ocean Energy (5 credits)
NE6006 Solar and Geothermal Energy (5 credits)
NE6007 Energy Systems Modelling (5 credits)

Depending on the background of the student, the Programme Coordinator may decide to replace some of the above taught modules from the following list of modules up to a maximum of 20 credits:

CE4001 The Engineer in Society (Law, Architecture and Planning) (5 credits)
EE3012 Electromechanical Energy Conversion (5 credits)
EE4001 Power Electronics, Drives and Energy Conversion (5 credits)
EE4002 Control Engineering (5 credits)
EE6107 Advanced Power Electronics and Electric Drives (5 credits)
ME6007 Mechanical Systems (5 credits)
NE4008 Photovoltaic Systems (5 credits)
PE6003 Process Validation and Quality (5 credits)

In addition, all students must take 10 credits as follows:

NE6008 Preliminary Research Report in Sustainable Energy (10 credits)

Part II

NE6009* Dissertation in Sustainable Energy (30 credits)

*must be submitted on a date in September as specified by the Department

Detailed Entry Requirements

Candidates must have a BE(Hons) or BEng (Hons) Degree or equivalent engineering qualification, with a minimum grade 2H2. However, candidates with equivalent academic qualifications and suitable experience may be accepted subject to the approval of College of Science, Engineering and Food Science. In all cases, the course of study for each candidate must be approved by the Programme Coordinator.
Candidates, for whom English is not their primary language, should possess an IELTS of 6.5 (or TOEFL equivalent) with no less than 6.0 in each individual category.

Candidates from Grandes Écoles Colleges are also eligible to apply if they are studying a cognate discipline in an ENSEA or EFREI Graduate School and are eligible to enter the final year (M2) of their programme.

Assessment

- Postgraduate Diploma in Sustainable Energy -

Students who pass but fail to achieve the requisite grade of 50% across the taught modules and the Preliminary Research Report will be eligible for the award of a Postgraduate Diploma in Sustainable Energy. Candidates passing Part I of the programme who do not wish to proceed to Part II may opt to be conferred with a Postgraduate Diploma in Sustainable Energy.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
Costs. Fees for 2016/17 TBC. 2015-2016 Irish/EU €8,500. Plus subsistence expenses (food etc.) associated with field trips, including the Tidal Energy module based at Queen’s Marine Laboratory, Portaferry, Northern Ireland. Read more
Costs: Fees for 2016/17 TBC. 2015-2016 Irish/EU €8,500. Plus subsistence expenses (food etc.) associated with field trips, including the Tidal Energy module based at Queen’s Marine Laboratory, Portaferry, Northern Ireland. Software necessary for assignments will be provided in UCC laboratories but may not be available for remote use. Optional sea safety training.

Overview

The programme covers a range of engineering and non-engineering topics relevant to the marine renewable energy industry, which is expected to grow rapidly in the coming decade. This will lead to a requirement for engineers with good knowledge of engineering fundamentals as well as detailed knowledge of how wind, wave and tidal devices will be designed, deployed and operated. A key aspect of the programme is the provision of specially-developed advanced modules in marine renewable energy which are not available in any other master’s course. This is an all-Ireland programme, hosted by UCC, delivered in partnership with the following academic institutions: Cork Institute of Technology, Dublin Institute of Technology, National University of Ireland, Maynooth, Queen’s University Belfast, University College Dublin and the University of Limerick.

Course Details

Students take 90 credits as follows:

In Part I students must take the five core modules (unless these or equivalent courses have already been taken), to a total of 25 credits. Students also choose electives from the list below, or may, with the approval of the Programme Director, choose other modules from the University’s Calendar.

NB: For the purposes of this programme it has been agreed that all non-UCC modules are treated as either 5 or 10 credits.

Part II consists of a Marine Renewable Energy Research Project (NE6020), to the value of 30 credits, completed over the summer months, either in industry or in an academic research laboratory in one of the partner institutions. Projects are offered subject to availability of suitable proposals from industry, and will be offered to students based on order of merit of results achieved in Part I. Students are also encouraged to make efforts to secure their own placement from suitable industrial hosts, outside of the list provided.

In every case, the final choice of modules is subject to the approval of the Programme Director of the MEngSc (Marine Renewable Energy). Students may take a maximum total of 15 credits only of undergraduate modules on this programme.

Part I
Core Modules
CE4020 Environmental Hydrodynamics (5 credits; UCC)
NE6003 Wind Energy (5 credits; UCC)
NE6005 Ocean Energy (5 credits; UCC)
NE6010 Advanced Topics in Marine Renewable Energy (5 credits; All institutions)
NE6906 Tidal Energy (5 credits; QUB; 1-week block)

Elective Modules

Students select modules to the value of 35 credits from the following list, (or from elsewhere in the UCC Calendar, subject to approval):

AC6301 Innovation Finance (5 credits) (UCC)
NE3003 Sustainable Energy (5 credits; UCC)
CE4013 Harbour & Coastal Engineering (5 credits; UCC)
CE6024 Finite Element Analysis (5 credits; UCC)
EE4001 Power Electronics, Drives & Energy Conversion (5 credits; UCC)
EE4010 Electrical Power Systems (5 credits; UCC)
EV4012 Environmental Impact Assessments (5 credits) (UCC)
GL6007 Practical Offshore Geological Exploration (5 credits; offered subject to availability of survey vessel time) (UCC)
IS6306 Technology Business Planning (5 credits) (UCC)
LW6104 Intellectual Property Law for High-Tech Entrepreneurs (5 credits) (UCC)
NE6007 Energy Systems Modelling (5 credits; UCC)
NE6901 Control Systems (5 credits; NUIM - EE612)
NE6902 Maintenance & Reliability (5 credits; CIT - MANU8003)

Part II
NE6020 Marine Renewable Energy Research Project (30 credits; All institutions; Summer)

Application Procedure

Application for this programme is on-line at http://www.pac.ie/ucc. Places on this programme are offered in rounds. The closing dates for each round can be found here (http://www.ucc.ie/en/study/postgrad/how/applicationclosingdates/). For full details of the application procedure click How to apply - http://www.ucc.ie/en/study/postgrad/how/

Course Practicalities

You will be studying a range of engineering and non-engineering topics relevant to a career in the marine renewable energy industry.

The programme will include modules in engineering topics such as Wind Energy, Wave Energy, Tidal Energy, Ocean-Structure Interactions; Ocean Energy Device Design; Control Engineering; Mechanical Engineering; Grid Integration and Storage; Marine Operations & Robotics.

The course content will be delivered via blended learning, with some modules presented in traditional lecture format, and some modules delivered remotely using e-learning technologies. All modules will have a significant element of continuous assessment throughout the year. The Tidal Energy module is delivered during a one-week field visit to the Portaferry research laboratory of Queen’s University Belfast.

A significant element of the programme is a R&D project carried out in conjunction with either an industry partner or an academic research group, with the final three months spent working on the project on placement with the partner.

Non-engineering topics available include Intellectual Property Law; Innovation Finance; Environmental Impact Assessment; Practical Offshore Geological Exploration.

Assessment

Taught modules (total >= 60 ECTS): will be assessed via a mixture of continuous assessment (assignments and mini design projects) and traditional examinations. This depends on the contributing institution, for example in NUIM, coursework and project-based learning is emphasised. The project module (30 ECTS) will be assessed by means of: oral presentation and seminar; logbook; written report, with input from the industrial placement supervisor.

Read less
UCC has a history of nearly a century of teaching and research in the food sciences and is amongst Europe’s largest multidisciplinary education and research institutions with world-class academics working in all aspects of the food area. Read more
UCC has a history of nearly a century of teaching and research in the food sciences and is amongst Europe’s largest multidisciplinary education and research institutions with world-class academics working in all aspects of the food area. Our first-rate facilities include extensive and well-equipped laboratories and a large pilot plant with excellent dairy, meat and bakery facilities in addition to a modern pilot-scale brewery.

Course Details

The MSc (Food Science) is a full-time taught postgraduate programme running for 12 months from the date of first registration.

Format

Modules will be chosen with the approval of the Programme Board depending on the student's background.

Part 1 - Taught modules

Students take 60 credits as follows:

- Core Modules -

Students take 15 credits:

PG6001 STEPS - Scientific Training for Enhanced Postgraduate Studies (5 credits)
FS6101 Library Project in Food Science (10 credits)

- Elective Modules -

Student take 45 credits from the following:

FE6101 Food Business: Markets and Policy (5 credits)
FS6105 Material Science for Food Systems (5 credits)
FS6106 Advanced Topics in Dairy Biochemistry (5 credits)
FS6107 Advances in the Science of Muscle Foods (5 credits)
FS6108 Advances in Food Formulation Science and Technology (5 credits)
FS6103 Novel Processing Technologies and Ingredients (5 credits)
FS6120 Cheese and Fermented Dairy Products (5 credits)
FS6121 Meat Science and Technology (5 credits)
MB6114 Hygienic Production of Food (5 credits)
NT6102 Human Nutrition and Health (5 credits)
NT6108 Sensory Analysis in Nutrition Research (5 credits)

Depending on background of the student, the Programme Board may decide to replace some of the above modules to a maximum of 15 credits from:

FS3602 Chemistry of Food Proteins (5 credits)
FS3605 Macromolecules and Rheology (5 credits)
FS4603 Advanced Analytical Methods (5 credits)
FS4606 Cereals and Related Beverages (5 credits)
FS4014 Food Product Development and Innovation (5 credits)
MB4611 Microbial Food Safety (5 credits)

Students who pass Part 1 and achieve a minimum aggregate of 55% are eligible to progress to Part 2. Students who pass Part 1 but who fail to meet the minimum progression standards, or who choose to exit the programme, will be conferred with the Postgraduate Diploma in Food Science.

Part 2

FS6102 Dissertation in Food Science (30 credits)

Assessment

The taught modules of this course are assessed by examination in Winter, Spring and Summer. The research aspect is assessed on the quality of a substantial written dissertation.

Careers

On completing this course, you will be able to:

- conduct original research in food science
- demonstrate an understanding of scientific literature
- apply critical thinking and problem-solving skills in food science
- explain the techniques used in food research, in both principle and practice
- communicate effectively with the food industry and with society at large
- show a comprehensive understanding of current food consumer and food industry trends

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
This MSc programme will provide you with the skills required to understand the entrepreneurship and innovation required for the software industry. Read more
This MSc programme will provide you with the skills required to understand the entrepreneurship and innovation required for the software industry. Many national and multinational companies employ computer science graduates in areas such as software development and engineering, artificial intelligence, systems and networks, database and systems security as well as mobile multimedia, modelling, research and development. You will also get the chance to demonstrate the skills you have learned by completing a substantial research and development project.

Visit the website: http://www.ucc.ie/en/ckr40/

Course Details

Students must attain 90 credits through a combination of:

- Core Modules (30 credits)
- Elective Modules (30 credits) (15 credits from Group 1 and 15 credits from Group 2 below)
- Research & Development Project (30 credits)

Core Modules

CS6403 Case Studies in Computing Entrepreneurship (5 credits) - Dr. John Herbert
CS6406 Large-Scale Application Development and Integration 1 (5 credits) - Prof. Gregory Provan
CS6407 Large-Scale Application Development and Integration 2 (5 credits) - Prof. Gregory Provan
CS6408 Database Technology (5 credits) - Mr. Humphrey Sorensen
CS6409 Information Storage and Retrieval (5 credits) - Mr. Humphrey Sorensen
CS6410 Project Development Skills (5 credits) - Mr. Marc Van Dongen

Elective Modules Group I

CS6312 Mobile Devices and Systems (5 credits) - Dr. Dan Grigoras
CS6314 Mobile Applications Design (5 credits) - Dr. Sabin Tabirca
CS6320 Formal Methods for Distributed Systems (5 credits) - Dr. John Herbert
CS6321 Model-Based Software Development (5 credits) - Dr. John Herbert
CS6322 Optimisation (5 credits) - Dr. Steve Prestwich

Elective Modules Group 2

CS6313 Services and Mobile Middleware (5 credits) - Dr. Dan Grigoras
CS6315 Mobile Systems Security (5 credits)
CS6316 Cellular Network Services (5 credits)
CS6317 Multimedia Technology in Mobile Networks (5 credits) - Dr. Sabin Tabirca
CS6323 Analysis of Networks and Complex Systems (5 credits) - Prof. Gregory Provan
CS6325 Network Security (5 credits) - Dr. Simon Foley
CS6405 Datamining (5 credits) - Dr. Marc Van Dongen

Research Phase (after period 2)

CS6400 Dissertation in Computing Science (30 credits)

Assessment

Full details and regulations governing Examinations for each programme will be contained in the Marks and Standards 2015 Book and for each module in the Book of Modules 2015/2016 - http://www.ucc.ie/modules/

- Postgraduate Diploma in Computing Science -

Students failing to achieve an aggregate of at least 60% across all modules but who achieve a pass in each of the taught modules at their first attempt graduate with a Postgraduate Diploma in Computing Science. Students may also opt to exit the programme and graduate with a Postgraduate Diploma in Computing Science provided they have achieved a pass in each module.

Careers

Companies actively recruiting Computer Science graduates in 2014-15 include:

Accenture, Aer Lingus, Amazon, Apple, Bank of America Merrill Lynch, Bank of Ireland, BT, Cisco, CiTi-Technology, Cloudreach, Dell, Digital Turbine Asia Pacific, EMC, Enterprise Ireland, Ericsson, First Derivatives, Guidewire, IBM, Intel, Open Text, Paddy Power, Pilz, PWC, SAP Galway Transverse Technologies, Trend Micro, Uniwink, Version 1 (Software).

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The Higher Diploma in Applied Computing Technology is a CONVERSION COURSE open to graduates from non-computing disciplines. Read more
The Higher Diploma in Applied Computing Technology is a CONVERSION COURSE open to graduates from non-computing disciplines. The course provides you with an understanding of the principles of internet-based computer systems and will equip you with a range of core IT skills, including web design, web server configuration, managing and manipulating multimedia content, interfacing with databases and working with common office software.

Visit the website: http://www.ucc.ie/en/cko08/

Course Details

The Higher Diploma is offered as a one year full-time or a two years part-time.

This is a CONVERSION COURSE and is intended for graduates who do not have Computer Science Degree and would like to attain skills in demand by the IT sector.

Format

A typical five credit module includes:
• two lecture hours
• one to two hours of practicals per week
• outside these regular hours, you are required to study independently

Full-Time Mode

Full-Time students take 60 credits as follows: 30 credits in teaching period 1 and 30 credits in period 2.

CS1117 Introduction to Programming (15 credits) - Dr. Jospeh Manning
CS5002 Web Development 1 (5 credits) - Dr. Frank Boehme
CS5007 Computer Applications with Visual Basic (5 credits) - Dr. James Doherty
CS5008 Internet Computing (5 credits) - Mr. Adrian O'Riordan
CS5009 Multimedia (5 credits) - Prof. James Bowen
CS5018 Web Development 2 (5 credits) - Dr. Derek Bridge
CS5019 Systems Organization I (5 credits) - Prof. John Morrison
CS5020 Systems Organization II (5 credits) - Prof. John Morrison
CS5021 Introduction to Relational Databases (5 credits) - Dr. Kieran Herley
CS5022 Database Design and Administration (5 credits) - Mr. Humprey Sorensen

Part-Time mode

Part-Time students take 30 credits in each of the two academic years as follows:

- Year 1 -

CS1117 Introduction to Programming (15 credits) - Dr. Joseph Manning
CS5002 Web Development 1 (5 credits) - Dr. Frank Boehme
CS5018 Web Development 2 (5 credits) - Dr. Derek Bridge
CS5021 Introduction to Relational Databases (5 credits) - Dr. Kieran Herley

- Year 2 -

CS5007 Computer Application with Visual Basic (5 credits) - Dr. James Doherty
CS5008 Internet Computing (5 credits) - Mr. Adrian O'Doherty
CS5009 Multimedia (5 credits) - Prof. James Bowen
CS5019 Systems Organization I (5 credits) - Prof. John Morrison
CS5020 Systems Organization II (5 credits) - Prof. John Morrison
CS5022 Database Design and Administration (5 credits) - Mr. Humphrey Sorensen

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Diploma/Science/page14.html

Assessment

The Higher Diploma in Applied Computing Technology will be examined through a combination of end-of-year exams and module assignments.

Careers

Companies actively recruiting Computer Science graduates in 2014-15 include:

Accenture, Aer Lingus, Amazon, Apple, Bank of America Merrill Lynch, Bank of Ireland, BT, Cisco, CiTi-Technology, Cloudreach, Dell, Digital Turbine Asia Pacific, EMC, Enterprise Ireland, Ericsson, First Derivatives, Guidewire, IBM, Intel, Open Text, Paddy Power, Pilz, PWC, SAP Galway Transverse Technologies, Trend Micro, Uniwink, Version 1 (Software).

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
This course is offered in response to sustained international demand for highly skilled graduates in mechanical engineering for manufacturing and process engineering industries. Read more
This course is offered in response to sustained international demand for highly skilled graduates in mechanical engineering for manufacturing and process engineering industries. On completion of the course, you will be able to:

- show a thorough understanding of the principles and theoretical bases of modern manufacturing techniques, automation, and production processes
- identify appropriate manufacturing systems for different production requirements and analyse their performance
- apply appropriate technology, quality tools and manufacturing methodology to design, re-design and continuously improve the manufacturing operations of engineering companies
- plan, research, execute and oversee experiments and research projects, critically analyse and interpret data, and effectively disseminate results
- work effectively as a member of a multidisciplinary team, be self-motivated, able to work independently and demonstrate leadership

Visit the website: http://www.ucc.ie/en/ckr27/

Course Details

The course is 12 months in duration starting in September and consists of 60 credits in Part I from September to March, and 30 credits in Part II from June to September. You take 10 taught modules from the list below to the value of 50 credits and also undertake a preliminary research project (ME6019) worth 10 credits in Part I. If you obtain a minimum of 50% in the taught modules and the preliminary project, you will be eligible to progress to Part II and undertake a major four-month research project (ME6020) worth 30 credits, and submit a dissertation leading to the award of the MEngSc degree.

ME6001 Manufacturing Systems (5 credits)
ME6002 CAD/CAM (5 credits)
ME6003 Production Management (5 credits)
ME6004 Operations Research and Project Economics (5 credits)
ME6007 Mechanical Systems (5 credits)
ME6008 Mechatronics and Robotics (5 credits)
ME6009 Industrial Automation and Control (5 credits)
ME6010 Technology of Materials (5 credits)
ME6012 Advanced Robotics (5 credits)
PE6002 Process Automation and Optimisation (5 credits)
PE6003 Process Validation and Quality (5 credits)
PE6007 Mechanical Design of Process Equipment (5 credits)
PE6009 Pharmaceutical Engineering (5 credits)
CE3010 Energy in Buildings (5 credits)
CE4016 Energy Systems in Buildings (5 credits)
CE6024 Finite Element Analysis (5 credits)
EE4012 Biomedical Design (5 credits)

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/engineering/page05.html

Format

Each module typically consists of 24 lectures, 12 hours of continuous assessment, plus additional supplemental reading and study, carried out over one of two 12-week semesters from September to December (Semester 1), or January to March (Semester 2). The exact workload in each teaching period will depend on the choice of modules. In addition, a substantial weekly commitment to the project module ME6019 is expected over both semesters.

Assessment

Individual modules have different methods of assessment but this typically consists of a single end-of-semester examination in December or April/May, plus continuous assessment throughout the relevant semester. This continuous assessment may consist of a combination of in-class tests, formal laboratories or practicals, design exercises, project work, written reports and presentations. Any repeat examinations are held in August.

Students who pass but fail to achieve an average mark of at least 50% across the taught modules excluding the Preliminary Research Project (ME6019) or do not achieve a mark of at least 50% in the Preliminary Research Project (ME6019) will be eligible for the award of a Postgraduate Diploma in Mechanical Engineering (Manufacturing, Process and Automation Systems). Candidates passing Part I of the programme who do not wish to proceed to Part II may opt to be conferred with a Postgraduate Diploma in Mechanical Engineering (Manufacturing, Process and Automation Systems).

Careers

In response to increasing demand for highly skilled graduates in the field of mechanical engineering applied to the manufacturing and pharma-chem industries, this course will produce mechanical engineering postgraduates who are proficient in the development and realisation of modern manufacturing, process and automation systems. This is achieved through developing an understanding of the concepts of manufacturing systems, and the skills to analyse, design and implement manufacturing systems in practice. This is combined with an understanding of process automation and operational management. The course will equip you with an-up-to date knowledge of manufacturing techniques and processes.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The MSc in Data Science & Analytics, jointly offered by the Department of Computer Science and the Department of Statistics, provides an education in the key principles of this rapidly expanding area. Read more
The MSc in Data Science & Analytics, jointly offered by the Department of Computer Science and the Department of Statistics, provides an education in the key principles of this rapidly expanding area. The combination of sophisticated computing and statistics modules will develop skills in database management, programming, summarisation, modelling and interpretation of data. The programme provides graduates with an opportunity, through development of a research project, to investigate the more applied elements of the disciplines.

Visit the website: http://www.ucc.ie/en/ckr49/

Course Details

The MSc in Data Science and Analytics is a significant collaboration between the Departments of Computer Science and Statistics; designed to provide graduates with the skills and knowledge required to help companies and public bodies deal with ever increasing and complex data. The programme emphasises the application of Computer Science and Statistics methodologies helping transform data into useful information that can support decision making.

Format

A typical 5 credit module:
• 2 lecture hours per week
• 1–2 hours of practicals per week
• Outside these regular hours students are required to study independently by reading and by working in the laboratories and on exercises.

Structure

Students must attain 90 credits through a combination of:

- Core Modules (30 credits)
- Elective Modules (30 credits)
- Dissertation (30 credits)

Part 1 (60 credits)

- Core Modules (30 credits) -

CS6405 Data Mining (5 credits) - Dr. Marc Van Dongen
ST6030 Foundations of Statistical Data Analytics (10 credits)
ST6033 Generalised Linear Modelling Techniques (5 credits)

- Database Modules -

Students who have adequate database experience take:

CS6408 Database Technology (5 credits) - Mr. Humphrey Sorensen
CS6409 Information Storage and Retrieval (5 credits) - Mr. Humphrey Sorensen

- Students who have not studied databases take:

CS6503 Introduction to Relational Databases (5 credits)
CS6505 Database Design and Administration (5 credits)

Elective Modules (30 credits)

Students must take at least 10 credits of CS (Computer Science) modules and at least 10 credits of ST (Statistics) modules from those listed below:

CS6322 Optimisation (5 credits) - Dr. Steve Prestwich
CS6323 Analysis of Networks and Complex Systems (5 credits) - Prof. Gregory Provan
CS6509 Internet Computing for Data Science (5 credits)
ST6032 Stochastic Modelling Techniques (5 credits)
ST6034 Multivariate Methods for Data Analysis (10 credits)
ST6035 Operations Research (5 credits)
ST6036 Stochastic Decision Science (5 credits)

- Programming Modules -

Students who have adequate programming experience take:

CS6406 Large-Scale Application Development and Integration l (5 credits) - Professor Gregory Provan
CS4607 Large-Scale Application Development and Integration ll (5 credits) - Professor Gregory Provan

- Students who have not studied programming take:

CS6506 Programming in Python (5 credits)
CS6507 Programme in Python with Data Science and Applications (5 credits) - Dr. Kieran Herley

Part 2 (30 credits)

Students select one of the following modules:

CS6500 Dissertation in Data Analytics (30 credits)
ST6090 Dissertation in Data Analytics (30 credits)

Assessment

Full details and regulations governing Examinations for each programme will be contained in the Marks and Standards 2015 Book and for each module in the Book of Modules 2015/2016 - http://www.ucc.ie/modules/

Postgraduate Diploma in Data Science and Analytics

Students who pass each of the taught modules may opt to exit the programme and be conferred with a Postgraduate Diploma in Data Science and Analytics.

Careers

This programme aims to prepare students to manage, analyse and interpret large heterogeneous data sources. Graduates will design, compare and select appropriate data analytic techniques, using software tools for data storage/management and analysis, machine learning, as well as probabilistic and statistical methods. Such abilities are at the core of companies that constantly face the need to deal with large data sets.

Companies currently seeking graduates with data analytics skills include: firms specialising in analytics, financial services and consulting, or governmental agencies.

Companies actively recruiting Computer Science graduates in 2014-15 include:

Accenture, Aer Lingus, Amazon, Apple, Bank of America Merrill Lynch, Bank of Ireland, BT, Cisco, CiTi-Technology, Cloudreach, Dell, Digital Turbine Asia Pacific, EMC, Enterprise Ireland, Ericsson, First Derivatives, Guidewire, IBM, Intel, Open Text, Paddy Power, Pilz, PWC, SAP Galway Transverse Technologies, Trend Micro, Uniwink, Version 1 (Software).

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The MEngSc/PG Dip in Pharmaceutical and Biopharmaceutical Engineering are part-time modular degrees which can be taken over 24 months (for award of a Postgraduate Diploma) to 60 months. Read more
The MEngSc/PG Dip in Pharmaceutical and Biopharmaceutical Engineering are part-time modular degrees which can be taken over 24 months (for award of a Postgraduate Diploma) to 60 months. You will have the opportunity to gain a formal qualification in areas of particular concern to the bio/pharmaceutical industry that you may not have benefited from before, including issues such as product containment, powder/particle technology, design of API and secondary production facilities, current Good Manufacturing Practice (cGMP), design of classified facilities, aseptic processing facility design and validation.

Visit the website: http://www.ucc.ie/en/ckr35/

Course Details

The aim of this course is to fill a need for the continuing professional development (CPD) and postgraduate education of engineers working in the pharmaceutical industry. This course covers issues of particular concern to the pharmaceutical industry such as product containment, powder/particle technology, design of API and secondary production facilities, current Good Manufacturing Practice (cGMP), design of classified facilities, aseptic processing facility design, validation, etc.

Format

The MEngSc course is in two parts. Part I (which constitutes the PG Diploma) involves taking 12 modules to the value of ECTS 60 credits. Taught modules are offered on a cyclical basis. Six modules are taken per annum over a two year period if you opt for full registration, although the course can be taken over a maximum of five years. Part II consists of a research thesis to the value of 30 credits. The choice of modules is subject to the approval of the course coordinator.

Part I

Students take 60 credits from the following:

Offered in 2015/16
PE6010 Pharmaceutical Engineering (5 credits)
PE6011 Biopharmaceutical Engineering (5 credits)
PE6012 Pharmaceutical Process Equipment; Materials and Mechanical Design (5 credits)
PE6013 Powder and Particle Technology and Unit Operations (5 credits)
PE6014 Chemical Kinetics, Reactor Design and Bioreactor Engineering (5 credits)
PE6015Environmental Engineering in the Pharmaceutical Sector (5 credits)
PE6023 Pharmaceutical and Biopharmaceutical Utilities (5 credits)
PE6025 Advanced Health & Safety Management (5 credits)

Offered in 2016/17
PE6016 Pharmaceutical Industry; Manufacturing and Optimisation (5 credits)
PE6017 Pharmaceutical Plant Design and Project Management (5 credits)
PE6018 Pharmaceutical Process Validation and Quality (5 credits)
PE6019 Process Analytical Technology (5 credits)
PE6022Aseptic Manufacturing Design (5 credits)
PF6302 Introduction to Pharmaceutics: Formulation Science (5 credits)
PE6024 Advanced Process Design & Safety Engineering (5 credits)
PE6025 Advanced Health & Safety Management (5 credits)

Part II (MEngSc only):

PE6021 Dissertation in Pharmaceutical and Biopharmaceutical Engineering (30 credits)

These are subject to change. For full course information see programme website - http://www.ucc.ie/en/processeng/postgrads/taughtmasters/mengsc//

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/engineering/page08.html

Assessment

Assessment is by continuous assessment and end of period exams.

Careers

The course offers graduates working in the pharmaceutical industry the opportunity to further develop your skills set and employability across a wider range of roles in the industry through enhanced continuing professional development.

Through the opportunities provided by participation on the programme, you are provided with opportunities to enable greater cohesion and understanding among inter-and multi-disciplinary teams while earning a formal qualification in engineering.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The PG Dip in Pharmaceutical and Biopharmaceutical Engineering is a part-time modular degree which can be taken over 24 months to 60 months. Read more
The PG Dip in Pharmaceutical and Biopharmaceutical Engineering is a part-time modular degree which can be taken over 24 months to 60 months. You will have the opportunity to gain a formal qualification in areas of particular concern to the bio/pharmaceutical industry that you may not have benefited from before, including issues such as product containment, powder/particle technology, design of API and secondary production facilities, current Good Manufacturing Practice (cGMP), design of classified facilities, aseptic processing facility design and validation.

Visit the website: http://www.ucc.ie/en/ckp08/

Course Details

Many graduates working in the pharmaceutical industries with a scientific background find themselves working in areas which increasingly overlap with engineers and engineering. Many would like to develop an engineering-based understanding of processes and production in a formal manner. This course offers you the opportunity to do this, developing your skills set and employability across a wider range of roles.

The course also presents the pharmaceutical and biopharmaceutical industry with an opportunity to enable greater cohesion and understanding among inter- and multi-disciplinary teams as graduates with science backgrounds receive a formal qualification in engineering.

Format

The PGDip involves taking 12 modules to the value of ECTS 60 credits. Taught modules are offered on a cyclical basis. Six modules are taken per annum over a two year period if you opt for full registration, although the course can be taken over a maximum of five years. The choice of modules is subject to the approval of the course coordinator. Candidates who achieve an average of 50% in all taught modules may apply for entry to the MEngSc to complete a thesis.

Part I

Students take 60 credits from the following:

Offered in 2015/16

PE6010 Pharmaceutical Engineering (5 credits)
PE6011 Biopharmaceutical Engineering (5 credits)
PE6012 Pharmaceutical Process Equipment, Materials and Mechanical Design (5 credits)
PE6013 Powder & Particle Technology and Unit Operations (5 credits)
PE6014 Chemical Kinetics, Reactor Design and Bioreactor Engineering (5 credits)
PE6015 Environmental Engineering in the Pharmaceutical Sector (5 credits)
PE6023 Pharmaceutical and Biopharmaceutical Utilities (5 credits)
PE6025 Advanced Health & Safety Management (5 credits)

Offered in 2016/17

PE6016 Pharmaceutical Industry, Manufacturing and Optimisation (5 credits)
PE6017 Pharmaceutical Plant Design and Project Management (5 credits)
PE6018 Pharmaceutical Process Validation and Quality (5 credits)
PE6019 Process Analytical Technology (5 credits)
PE6022 Aseptic Manufacturing Design (5 credits)
PF6302 Introduction to Pharmaceutics: Formulation Science (5 credits)
PE6024 Advanced Process Design & Safety Engineering (5 credits)
PE6025 Advanced Health & Safety Management (5 credits)

Part II (MEngSc only)

PE6021 Dissertation in Pharmaceutical and Biopharmaceutical Engineering (30 credits)

These are subject to change. For full course information see programme website - http://www.ucc.ie/en/processeng/postgrads/taughtmasters/mengsc//

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/engineering/page08.html

Placement and study abroad

Students will study at a UCC partner university in China and take the equivalent of 60 credits there in the Third Year.

Assessment

Assessment is by continuous assessment and end of period exams.

Careers

The course offers graduates working in the pharmaceutical industry the opportunity to further develop your skills set and employability across a wider range of roles in the industry through enhanced continuing professional development.

Through the opportunities provided by participation on the programme, you are provided with opportunities to enable greater cohesion and understanding among inter-and multi-disciplinary teams while earning a formal qualification in engineering.

Read less
The MRes in Geological Sciences is a full-time programme running over 12 months from the date of first registration for the programme. Read more
The MRes in Geological Sciences is a full-time programme running over 12 months from the date of first registration for the programme. Applications will be accepted for a start date in October or January. The programme consists of (a) a major research thesis and (b) taught modules on generic and transferable skills, with an emphasis on scientific writing, oral presentations, and general research skills. Part-time study for this programme is not available.

Prospective students are advised to contact the Programme Coordinator (Prof. Andy Wheeler in advance of application via http://www.pac.ie (PAC code CKS82) to discuss possible project areas.

Visit the website: